Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /afp /AWN /OAWN_SOS.thy
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
34.6 kB
(* Title: OAWN_SOS.thy
License: BSD 2-Clause. See LICENSE.
Author: Timothy Bourke
*)
section "Open semantics of the Algebra of Wireless Networks"
theory OAWN_SOS
imports TransitionSystems AWN
begin
text \<open>
These are variants of the SOS rules that work against a mixed global/local context, where
the global context is represented by a function @{term \<sigma>} mapping ip addresses to states.
\<close>
subsection "Open structural operational semantics for sequential process expressions "
inductive_set
oseqp_sos
:: "('s, 'm, 'p, 'l) seqp_env \<Rightarrow> ip
\<Rightarrow> ((ip \<Rightarrow> 's) \<times> ('s, 'm, 'p, 'l) seqp, 'm seq_action) transition set"
for \<Gamma> :: "('s, 'm, 'p, 'l) seqp_env"
and i :: ip
where
obroadcastT: "\<sigma>' i = \<sigma> i \<Longrightarrow>
((\<sigma>, {l}broadcast(s\<^sub>m\<^sub>s\<^sub>g).p), broadcast (s\<^sub>m\<^sub>s\<^sub>g (\<sigma> i)), (\<sigma>', p)) \<in> oseqp_sos \<Gamma> i"
| ogroupcastT: "\<sigma>' i = \<sigma> i \<Longrightarrow>
((\<sigma>, {l}groupcast(s\<^sub>i\<^sub>p\<^sub>s, s\<^sub>m\<^sub>s\<^sub>g).p), groupcast (s\<^sub>i\<^sub>p\<^sub>s (\<sigma> i)) (s\<^sub>m\<^sub>s\<^sub>g (\<sigma> i)), (\<sigma>', p)) \<in> oseqp_sos \<Gamma> i"
| ounicastT: "\<sigma>' i = \<sigma> i \<Longrightarrow>
((\<sigma>, {l}unicast(s\<^sub>i\<^sub>p, s\<^sub>m\<^sub>s\<^sub>g).p \<triangleright> q), unicast (s\<^sub>i\<^sub>p (\<sigma> i)) (s\<^sub>m\<^sub>s\<^sub>g (\<sigma> i)), (\<sigma>', p)) \<in> oseqp_sos \<Gamma> i"
| onotunicastT:"\<sigma>' i = \<sigma> i \<Longrightarrow>
((\<sigma>, {l}unicast(s\<^sub>i\<^sub>p, s\<^sub>m\<^sub>s\<^sub>g).p \<triangleright> q), \<not>unicast (s\<^sub>i\<^sub>p (\<sigma> i)), (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i"
| osendT: "\<sigma>' i = \<sigma> i \<Longrightarrow>
((\<sigma>, {l}send(s\<^sub>m\<^sub>s\<^sub>g).p), send (s\<^sub>m\<^sub>s\<^sub>g (\<sigma> i)), (\<sigma>', p)) \<in> oseqp_sos \<Gamma> i"
| odeliverT: "\<sigma>' i = \<sigma> i \<Longrightarrow>
((\<sigma>, {l}deliver(s\<^sub>d\<^sub>a\<^sub>t\<^sub>a).p), deliver (s\<^sub>d\<^sub>a\<^sub>t\<^sub>a (\<sigma> i)), (\<sigma>', p)) \<in> oseqp_sos \<Gamma> i"
| oreceiveT: "\<sigma>' i = u\<^sub>m\<^sub>s\<^sub>g msg (\<sigma> i) \<Longrightarrow>
((\<sigma>, {l}receive(u\<^sub>m\<^sub>s\<^sub>g).p), receive msg, (\<sigma>', p)) \<in> oseqp_sos \<Gamma> i"
| oassignT: "\<sigma>' i = u (\<sigma> i) \<Longrightarrow>
((\<sigma>, {l}\<lbrakk>u\<rbrakk> p), \<tau>, (\<sigma>', p)) \<in> oseqp_sos \<Gamma> i"
| ocallT: "((\<sigma>, \<Gamma> pn), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i \<Longrightarrow>
((\<sigma>, call(pn)), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" (* TPB: quite different to Table 1 *)
| ochoiceT1: "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i \<Longrightarrow>
((\<sigma>, p \<oplus> q), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
| ochoiceT2: "((\<sigma>, q), a, (\<sigma>', q')) \<in> oseqp_sos \<Gamma> i \<Longrightarrow>
((\<sigma>, p \<oplus> q), a, (\<sigma>', q')) \<in> oseqp_sos \<Gamma> i"
| oguardT: "\<sigma>' i \<in> g (\<sigma> i) \<Longrightarrow> ((\<sigma>, {l}\<langle>g\<rangle> p), \<tau>, (\<sigma>', p)) \<in> oseqp_sos \<Gamma> i"
inductive_cases
oseq_callTE [elim]: "((\<sigma>, call(pn)), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i"
and oseq_choiceTE [elim]: "((\<sigma>, p1 \<oplus> p2), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i"
lemma oseq_broadcastTE [elim]:
"\<lbrakk>((\<sigma>, {l}broadcast(s\<^sub>m\<^sub>s\<^sub>g). p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i;
\<lbrakk>a = broadcast (s\<^sub>m\<^sub>s\<^sub>g (\<sigma> i)); \<sigma>' i = \<sigma> i; q = p\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (ind_cases "((\<sigma>, {l}broadcast(s\<^sub>m\<^sub>s\<^sub>g). p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i") simp
lemma oseq_groupcastTE [elim]:
"\<lbrakk>((\<sigma>, {l}groupcast(s\<^sub>i\<^sub>p\<^sub>s, s\<^sub>m\<^sub>s\<^sub>g). p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i;
\<lbrakk>a = groupcast (s\<^sub>i\<^sub>p\<^sub>s (\<sigma> i)) (s\<^sub>m\<^sub>s\<^sub>g (\<sigma> i)); \<sigma>' i = \<sigma> i; q = p\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (ind_cases "((\<sigma>, {l}groupcast(s\<^sub>i\<^sub>p\<^sub>s, s\<^sub>m\<^sub>s\<^sub>g). p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i") simp
lemma oseq_unicastTE [elim]:
"\<lbrakk>((\<sigma>, {l}unicast(s\<^sub>i\<^sub>p, s\<^sub>m\<^sub>s\<^sub>g). p \<triangleright> q), a, (\<sigma>', r)) \<in> oseqp_sos \<Gamma> i;
\<lbrakk>a = unicast (s\<^sub>i\<^sub>p (\<sigma> i)) (s\<^sub>m\<^sub>s\<^sub>g (\<sigma> i)); \<sigma>' i = \<sigma> i; r = p\<rbrakk> \<Longrightarrow> P;
\<lbrakk>a = \<not>unicast (s\<^sub>i\<^sub>p (\<sigma> i)); \<sigma>' i = \<sigma> i; r = q\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (ind_cases "((\<sigma>, {l}unicast(s\<^sub>i\<^sub>p, s\<^sub>m\<^sub>s\<^sub>g). p \<triangleright> q), a, (\<sigma>', r)) \<in> oseqp_sos \<Gamma> i") simp_all
lemma oseq_sendTE [elim]:
"\<lbrakk>((\<sigma>, {l}send(s\<^sub>m\<^sub>s\<^sub>g). p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i;
\<lbrakk>a = send (s\<^sub>m\<^sub>s\<^sub>g (\<sigma> i)); \<sigma>' i = \<sigma> i; q = p\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (ind_cases "((\<sigma>, {l}send(s\<^sub>m\<^sub>s\<^sub>g). p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i") simp
lemma oseq_deliverTE [elim]:
"\<lbrakk>((\<sigma>, {l}deliver(s\<^sub>d\<^sub>a\<^sub>t\<^sub>a). p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i;
\<lbrakk>a = deliver (s\<^sub>d\<^sub>a\<^sub>t\<^sub>a (\<sigma> i)); \<sigma>' i = \<sigma> i; q = p\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (ind_cases "((\<sigma>, {l}deliver(s\<^sub>d\<^sub>a\<^sub>t\<^sub>a). p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i") simp
lemma oseq_receiveTE [elim]:
"\<lbrakk>((\<sigma>, {l}receive(u\<^sub>m\<^sub>s\<^sub>g). p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i;
\<And>msg. \<lbrakk>a = receive msg; \<sigma>' i = u\<^sub>m\<^sub>s\<^sub>g msg (\<sigma> i); q = p\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (ind_cases "((\<sigma>, {l}receive(u\<^sub>m\<^sub>s\<^sub>g). p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i") simp
lemma oseq_assignTE [elim]:
"\<lbrakk>((\<sigma>, {l}\<lbrakk>u\<rbrakk> p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i; \<lbrakk>a = \<tau>; \<sigma>' i = u (\<sigma> i); q = p\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (ind_cases "((\<sigma>, {l}\<lbrakk>u\<rbrakk> p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i") simp
lemma oseq_guardTE [elim]:
"\<lbrakk>((\<sigma>, {l}\<langle>g\<rangle> p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i; \<lbrakk>a = \<tau>; \<sigma>' i \<in> g (\<sigma> i); q = p\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (ind_cases "((\<sigma>, {l}\<langle>g\<rangle> p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i") simp
lemmas oseqpTEs =
oseq_broadcastTE
oseq_groupcastTE
oseq_unicastTE
oseq_sendTE
oseq_deliverTE
oseq_receiveTE
oseq_assignTE
oseq_callTE
oseq_choiceTE
oseq_guardTE
declare oseqp_sos.intros [intro]
subsection "Open structural operational semantics for parallel process expressions "
inductive_set
oparp_sos :: "ip
\<Rightarrow> ((ip \<Rightarrow> 's) \<times> 's1, 'm seq_action) transition set
\<Rightarrow> ('s2, 'm seq_action) transition set
\<Rightarrow> ((ip \<Rightarrow> 's) \<times> ('s1 \<times> 's2), 'm seq_action) transition set"
for i :: ip
and S :: "((ip \<Rightarrow> 's) \<times> 's1, 'm seq_action) transition set"
and T :: "('s2, 'm seq_action) transition set"
where
oparleft: "\<lbrakk> ((\<sigma>, s), a, (\<sigma>', s')) \<in> S; \<And>m. a \<noteq> receive m \<rbrakk> \<Longrightarrow>
((\<sigma>, (s, t)), a, (\<sigma>', (s', t))) \<in> oparp_sos i S T"
| oparright: "\<lbrakk> (t, a, t') \<in> T; \<And>m. a \<noteq> send m; \<sigma>' i = \<sigma> i \<rbrakk> \<Longrightarrow>
((\<sigma>, (s, t)), a, (\<sigma>', (s, t'))) \<in> oparp_sos i S T"
| oparboth: "\<lbrakk> ((\<sigma>, s), receive m, (\<sigma>', s')) \<in> S; (t, send m, t') \<in> T \<rbrakk> \<Longrightarrow>
((\<sigma>, (s, t)), \<tau>, (\<sigma>', (s', t'))) \<in> oparp_sos i S T"
lemma opar_broadcastTE [elim]:
"\<lbrakk>((\<sigma>, (s, t)), broadcast m, (\<sigma>', (s', t'))) \<in> oparp_sos i S T;
\<lbrakk>((\<sigma>, s), broadcast m, (\<sigma>', s')) \<in> S; t' = t\<rbrakk> \<Longrightarrow> P;
\<lbrakk>(t, broadcast m, t') \<in> T; s' = s; \<sigma>' i = \<sigma> i\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (ind_cases "((\<sigma>, (s, t)), broadcast m, (\<sigma>', (s', t'))) \<in> oparp_sos i S T") simp_all
lemma opar_groupcastTE [elim]:
"\<lbrakk>((\<sigma>, (s, t)), groupcast ips m, (\<sigma>', (s', t'))) \<in> oparp_sos i S T;
\<lbrakk>((\<sigma>, s), groupcast ips m, (\<sigma>', s')) \<in> S; t' = t\<rbrakk> \<Longrightarrow> P;
\<lbrakk>(t, groupcast ips m, t') \<in> T; s' = s; \<sigma>' i = \<sigma> i\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (ind_cases "((\<sigma>, (s, t)), groupcast ips m, (\<sigma>', (s', t'))) \<in> oparp_sos i S T") simp_all
lemma opar_unicastTE [elim]:
"\<lbrakk>((\<sigma>, (s, t)), unicast i m, (\<sigma>', (s', t'))) \<in> oparp_sos i S T;
\<lbrakk>((\<sigma>, s), unicast i m, (\<sigma>', s')) \<in> S; t' = t\<rbrakk> \<Longrightarrow> P;
\<lbrakk>(t, unicast i m, t') \<in> T; s' = s; \<sigma>' i = \<sigma> i\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (ind_cases "((\<sigma>, (s, t)), unicast i m, (\<sigma>', (s', t'))) \<in> oparp_sos i S T") simp_all
lemma opar_notunicastTE [elim]:
"\<lbrakk>((\<sigma>, (s, t)), notunicast i, (\<sigma>', (s', t'))) \<in> oparp_sos i S T;
\<lbrakk>((\<sigma>, s), notunicast i, (\<sigma>', s')) \<in> S; t' = t\<rbrakk> \<Longrightarrow> P;
\<lbrakk>(t, notunicast i, t') \<in> T; s' = s; \<sigma>' i = \<sigma> i\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (ind_cases "((\<sigma>, (s, t)), notunicast i, (\<sigma>', (s', t'))) \<in> oparp_sos i S T") simp_all
lemma opar_sendTE [elim]:
"\<lbrakk>((\<sigma>, (s, t)), send m, (\<sigma>', (s', t'))) \<in> oparp_sos i S T;
\<lbrakk>((\<sigma>, s), send m, (\<sigma>', s')) \<in> S; t' = t\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (ind_cases "((\<sigma>, (s, t)), send m, (\<sigma>', (s', t'))) \<in> oparp_sos i S T") auto
lemma opar_deliverTE [elim]:
"\<lbrakk>((\<sigma>, (s, t)), deliver d, (\<sigma>', (s', t'))) \<in> oparp_sos i S T;
\<lbrakk>((\<sigma>, s), deliver d, (\<sigma>', s')) \<in> S; t' = t\<rbrakk> \<Longrightarrow> P;
\<lbrakk>(t, deliver d, t') \<in> T; s' = s; \<sigma>' i = \<sigma> i\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (ind_cases "((\<sigma>, (s, t)), deliver d, (\<sigma>', (s', t'))) \<in> oparp_sos i S T") simp_all
lemma opar_receiveTE [elim]:
"\<lbrakk>((\<sigma>, (s, t)), receive m, (\<sigma>', (s', t'))) \<in> oparp_sos i S T;
\<lbrakk>(t, receive m, t') \<in> T; s' = s; \<sigma>' i = \<sigma> i\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (ind_cases "((\<sigma>, (s, t)), receive m, (\<sigma>', (s', t'))) \<in> oparp_sos i S T") auto
inductive_cases opar_tauTE: "((\<sigma>, (s, t)), \<tau>, (\<sigma>', (s', t'))) \<in> oparp_sos i S T"
lemmas oparpTEs =
opar_broadcastTE
opar_groupcastTE
opar_unicastTE
opar_notunicastTE
opar_sendTE
opar_deliverTE
opar_receiveTE
lemma oparp_sos_cases [elim]:
assumes "((\<sigma>, (s, t)), a, (\<sigma>', (s', t'))) \<in> oparp_sos i S T"
and "\<lbrakk> ((\<sigma>, s), a, (\<sigma>', s')) \<in> S; \<And>m. a \<noteq> receive m; t' = t \<rbrakk> \<Longrightarrow> P"
and "\<lbrakk> (t, a, t') \<in> T; \<And>m. a \<noteq> send m; s' = s; \<sigma>' i = \<sigma> i \<rbrakk> \<Longrightarrow> P"
and "\<And>m. \<lbrakk> a = \<tau>; ((\<sigma>, s), receive m, (\<sigma>', s')) \<in> S; (t, send m, t') \<in> T \<rbrakk> \<Longrightarrow> P"
shows "P"
using assms by cases auto
definition extg :: "('a \<times> 'b) \<times> 'c \<Rightarrow> 'a \<times> 'b \<times> 'c"
where "extg \<equiv> \<lambda>((\<sigma>, l1), l2). (\<sigma>, (l1, l2))"
lemma extgsimp [simp]:
"extg ((\<sigma>, l1), l2) = (\<sigma>, (l1, l2))"
unfolding extg_def by simp
lemma extg_range_prod: "extg ` (i1 \<times> i2) = {(\<sigma>, (s1, s2))|\<sigma> s1 s2. (\<sigma>, s1) \<in> i1 \<and> s2 \<in> i2}"
unfolding image_def extg_def
by (rule Collect_cong) (auto split: prod.split)
definition
opar_comp :: "((ip \<Rightarrow> 's) \<times> 's1, 'm seq_action) automaton
\<Rightarrow> ip
\<Rightarrow> ('s2, 'm seq_action) automaton
\<Rightarrow> ((ip \<Rightarrow> 's) \<times> 's1 \<times> 's2, 'm seq_action) automaton"
("(_ \<langle>\<langle>\<^bsub>_\<^esub> _)" [102, 0, 103] 102)
where
"s \<langle>\<langle>\<^bsub>i\<^esub> t \<equiv> \<lparr> init = extg ` (init s \<times> init t), trans = oparp_sos i (trans s) (trans t) \<rparr>"
lemma opar_comp_def':
"s \<langle>\<langle>\<^bsub>i\<^esub> t = \<lparr> init = {(\<sigma>, (s\<^sub>l, t\<^sub>l))|\<sigma> s\<^sub>l t\<^sub>l. (\<sigma>, s\<^sub>l) \<in> init s \<and> t\<^sub>l \<in> init t},
trans = oparp_sos i (trans s) (trans t) \<rparr>"
unfolding opar_comp_def extg_def image_def by (auto split: prod.split)
lemma trans_opar_comp [simp]:
"trans (s \<langle>\<langle>\<^bsub>i\<^esub> t) = oparp_sos i (trans s) (trans t)"
unfolding opar_comp_def by simp
lemma init_opar_comp [simp]:
"init (s \<langle>\<langle>\<^bsub>i\<^esub> t) = extg ` (init s \<times> init t)"
unfolding opar_comp_def by simp
subsection "Open structural operational semantics for node expressions "
inductive_set
onode_sos :: "((ip \<Rightarrow> 's) \<times> 'l, 'm seq_action) transition set
\<Rightarrow> ((ip \<Rightarrow> 's) \<times> 'l net_state, 'm node_action) transition set"
for S :: "((ip \<Rightarrow> 's) \<times> 'l, 'm seq_action) transition set"
where
onode_bcast:
"((\<sigma>, s), broadcast m, (\<sigma>', s')) \<in> S \<Longrightarrow> ((\<sigma>, NodeS i s R), R:*cast(m), (\<sigma>', NodeS i s' R)) \<in> onode_sos S"
| onode_gcast:
"((\<sigma>, s), groupcast D m, (\<sigma>', s')) \<in> S \<Longrightarrow> ((\<sigma>, NodeS i s R), (R\<inter>D):*cast(m), (\<sigma>', NodeS i s' R)) \<in> onode_sos S"
| onode_ucast:
"\<lbrakk> ((\<sigma>, s), unicast d m, (\<sigma>', s')) \<in> S; d\<in>R \<rbrakk> \<Longrightarrow> ((\<sigma>, NodeS i s R), {d}:*cast(m), (\<sigma>', NodeS i s' R)) \<in> onode_sos S"
(* Such assumptions aid later proofs, but they must be justified when transferring results
to closed systems. *)
| onode_notucast: "\<lbrakk> ((\<sigma>, s), \<not>unicast d, (\<sigma>', s')) \<in> S; d\<notin>R; \<forall>j. j\<noteq>i \<longrightarrow> \<sigma>' j = \<sigma> j \<rbrakk>
\<Longrightarrow> ((\<sigma>, NodeS i s R), \<tau>, (\<sigma>', NodeS i s' R)) \<in> onode_sos S"
| onode_deliver: "\<lbrakk> ((\<sigma>, s), deliver d, (\<sigma>', s')) \<in> S; \<forall>j. j\<noteq>i \<longrightarrow> \<sigma>' j = \<sigma> j \<rbrakk>
\<Longrightarrow> ((\<sigma>, NodeS i s R), i:deliver(d), (\<sigma>', NodeS i s' R)) \<in> onode_sos S"
| onode_tau: "\<lbrakk> ((\<sigma>, s), \<tau>, (\<sigma>', s')) \<in> S; \<forall>j. j\<noteq>i \<longrightarrow> \<sigma>' j = \<sigma> j \<rbrakk>
\<Longrightarrow> ((\<sigma>, NodeS i s R), \<tau>, (\<sigma>', NodeS i s' R)) \<in> onode_sos S"
| onode_receive:
"((\<sigma>, s), receive m, (\<sigma>', s')) \<in> S \<Longrightarrow> ((\<sigma>, NodeS i s R), {i}\<not>{}:arrive(m), (\<sigma>', NodeS i s' R)) \<in> onode_sos S"
| onode_arrive:
"\<sigma>' i = \<sigma> i \<Longrightarrow> ((\<sigma>, NodeS i s R), {}\<not>{i}:arrive(m), (\<sigma>', NodeS i s R)) \<in> onode_sos S"
| onode_connect1:
"\<sigma>' i = \<sigma> i \<Longrightarrow> ((\<sigma>, NodeS i s R), connect(i, i'), (\<sigma>', NodeS i s (R \<union> {i'}))) \<in> onode_sos S"
| onode_connect2:
"\<sigma>' i = \<sigma> i \<Longrightarrow> ((\<sigma>, NodeS i s R), connect(i', i), (\<sigma>', NodeS i s (R \<union> {i'}))) \<in> onode_sos S"
| onode_disconnect1:
"\<sigma>' i = \<sigma> i \<Longrightarrow> ((\<sigma>, NodeS i s R), disconnect(i, i'), (\<sigma>', NodeS i s (R - {i'}))) \<in> onode_sos S"
| onode_disconnect2:
"\<sigma>' i = \<sigma> i \<Longrightarrow> ((\<sigma>, NodeS i s R), disconnect(i', i), (\<sigma>', NodeS i s (R - {i'}))) \<in> onode_sos S"
| onode_connect_other:
"\<lbrakk> i \<noteq> i'; i \<noteq> i''; \<sigma>' i = \<sigma> i \<rbrakk> \<Longrightarrow> ((\<sigma>, NodeS i s R), connect(i', i''), (\<sigma>', NodeS i s R)) \<in> onode_sos S"
| onode_disconnect_other:
"\<lbrakk> i \<noteq> i'; i \<noteq> i''; \<sigma>' i = \<sigma> i \<rbrakk> \<Longrightarrow> ((\<sigma>, NodeS i s R), disconnect(i', i''), (\<sigma>', NodeS i s R)) \<in> onode_sos S"
inductive_cases
onode_arriveTE [elim]: "((\<sigma>, NodeS i s R), ii\<not>ni:arrive(m), (\<sigma>', NodeS i' s' R')) \<in> onode_sos S"
and onode_castTE [elim]: "((\<sigma>, NodeS i s R), RR:*cast(m), (\<sigma>', NodeS i' s' R')) \<in> onode_sos S"
and onode_deliverTE [elim]: "((\<sigma>, NodeS i s R), ii:deliver(d), (\<sigma>', NodeS i' s' R')) \<in> onode_sos S"
and onode_connectTE [elim]: "((\<sigma>, NodeS i s R), connect(ii, ii'), (\<sigma>', NodeS i' s' R')) \<in> onode_sos S"
and onode_disconnectTE [elim]: "((\<sigma>, NodeS i s R), disconnect(ii, ii'),(\<sigma>', NodeS i' s' R')) \<in> onode_sos S"
and onode_newpktTE [elim]: "((\<sigma>, NodeS i s R), ii:newpkt(d, di), (\<sigma>', NodeS i' s' R')) \<in> onode_sos S"
and onode_tauTE [elim]: "((\<sigma>, NodeS i s R), \<tau>, (\<sigma>', NodeS i' s' R')) \<in> onode_sos S"
lemma oarrives_or_not:
assumes "((\<sigma>, NodeS i s R), ii\<not>ni:arrive(m), (\<sigma>', NodeS i' s' R')) \<in> onode_sos S"
shows "(ii = {i} \<and> ni = {}) \<or> (ii = {} \<and> ni = {i})"
using assms by rule simp_all
definition
onode_comp :: "ip
\<Rightarrow> ((ip \<Rightarrow> 's) \<times> 'l, 'm seq_action) automaton
\<Rightarrow> ip set
\<Rightarrow> ((ip \<Rightarrow> 's) \<times> 'l net_state, 'm node_action) automaton"
("(\<langle>_ : (_) : _\<rangle>\<^sub>o)" [0, 0, 0] 104)
where
"\<langle>i : onp : R\<^sub>i\<rangle>\<^sub>o \<equiv> \<lparr> init = {(\<sigma>, NodeS i s R\<^sub>i)|\<sigma> s. (\<sigma>, s) \<in> init onp},
trans = onode_sos (trans onp) \<rparr>"
lemma trans_onode_comp:
"trans (\<langle>i : S : R\<rangle>\<^sub>o) = onode_sos (trans S)"
unfolding onode_comp_def by simp
lemma init_onode_comp:
"init (\<langle>i : S : R\<rangle>\<^sub>o) = {(\<sigma>, NodeS i s R)|\<sigma> s. (\<sigma>, s) \<in> init S}"
unfolding onode_comp_def by simp
lemmas onode_comps = trans_onode_comp init_onode_comp
lemma fst_par_onode_comp [simp]:
"trans (\<langle>i : s \<langle>\<langle>\<^bsub>I\<^esub> t : R\<rangle>\<^sub>o) = onode_sos (oparp_sos I (trans s) (trans t))"
unfolding onode_comp_def by simp
lemma init_par_onode_comp [simp]:
"init (\<langle>i : s \<langle>\<langle>\<^bsub>I\<^esub> t : R\<rangle>\<^sub>o) = {(\<sigma>, NodeS i (s1, s2) R)|\<sigma> s1 s2. ((\<sigma>, s1), s2) \<in> init s \<times> init t}"
unfolding onode_comp_def by (simp add: extg_range_prod)
lemma onode_sos_dest_is_net_state:
assumes "((\<sigma>, p), a, s') \<in> onode_sos S"
shows "\<exists>\<sigma>' i' \<zeta>' R'. s' = (\<sigma>', NodeS i' \<zeta>' R')"
using assms proof -
assume "((\<sigma>, p), a, s') \<in> onode_sos S"
then obtain \<sigma>' i' \<zeta>' R' where "s' = (\<sigma>', NodeS i' \<zeta>' R')"
by (cases s') (auto elim!: onode_sos.cases)
thus ?thesis by simp
qed
lemma onode_sos_dest_is_net_state':
assumes "((\<sigma>, NodeS i p R), a, s') \<in> onode_sos S"
shows "\<exists>\<sigma>' \<zeta>' R'. s' = (\<sigma>', NodeS i \<zeta>' R')"
using assms proof -
assume "((\<sigma>, NodeS i p R), a, s') \<in> onode_sos S"
then obtain \<sigma>' \<zeta>' R' where "s' = (\<sigma>', NodeS i \<zeta>' R')"
by (cases s') (auto elim!: onode_sos.cases)
thus ?thesis by simp
qed
lemma onode_sos_dest_is_net_state'':
assumes "((\<sigma>, NodeS i p R), a, (\<sigma>', s')) \<in> onode_sos S"
shows "\<exists>\<zeta>' R'. s' = NodeS i \<zeta>' R'"
proof -
define ns' where "ns' = (\<sigma>', s')"
with assms have "((\<sigma>, NodeS i p R), a, ns') \<in> onode_sos S" by simp
then obtain \<sigma>'' \<zeta>' R' where "ns' = (\<sigma>'', NodeS i \<zeta>' R')"
by (metis onode_sos_dest_is_net_state')
hence "s' = NodeS i \<zeta>' R'" by (simp add: ns'_def)
thus ?thesis by simp
qed
lemma onode_sos_src_is_net_state:
assumes "((\<sigma>, p), a, s') \<in> onode_sos S"
shows "\<exists>i \<zeta> R. p = NodeS i \<zeta> R"
using assms proof -
assume "((\<sigma>, p), a, s') \<in> onode_sos S"
then obtain i \<zeta> R where "p = NodeS i \<zeta> R"
by (cases s') (auto elim!: onode_sos.cases)
thus ?thesis by simp
qed
lemma onode_sos_net_states:
assumes "((\<sigma>, s), a, (\<sigma>', s')) \<in> onode_sos S"
shows "\<exists>i \<zeta> R \<zeta>' R'. s = NodeS i \<zeta> R \<and> s' = NodeS i \<zeta>' R'"
proof -
from assms obtain i \<zeta> R where "s = NodeS i \<zeta> R"
by (metis onode_sos_src_is_net_state)
moreover with assms obtain \<zeta>' R' where "s' = NodeS i \<zeta>' R'"
by (auto dest!: onode_sos_dest_is_net_state')
ultimately show ?thesis by simp
qed
lemma node_sos_cases [elim]:
"((\<sigma>, NodeS i p R), a, (\<sigma>', NodeS i p' R')) \<in> onode_sos S \<Longrightarrow>
(\<And>m . \<lbrakk> a = R:*cast(m); R' = R; ((\<sigma>, p), broadcast m, (\<sigma>', p')) \<in> S \<rbrakk> \<Longrightarrow> P) \<Longrightarrow>
(\<And>m D. \<lbrakk> a = (R \<inter> D):*cast(m); R' = R; ((\<sigma>, p), groupcast D m, (\<sigma>', p')) \<in> S \<rbrakk> \<Longrightarrow> P) \<Longrightarrow>
(\<And>d m. \<lbrakk> a = {d}:*cast(m); R' = R; ((\<sigma>, p), unicast d m, (\<sigma>', p')) \<in> S; d \<in> R \<rbrakk> \<Longrightarrow> P) \<Longrightarrow>
(\<And>d. \<lbrakk> a = \<tau>; R' = R; ((\<sigma>, p), \<not>unicast d, (\<sigma>', p')) \<in> S; d \<notin> R \<rbrakk> \<Longrightarrow> P) \<Longrightarrow>
(\<And>d. \<lbrakk> a = i:deliver(d); R' = R; ((\<sigma>, p), deliver d, (\<sigma>', p')) \<in> S \<rbrakk> \<Longrightarrow> P) \<Longrightarrow>
(\<And>m. \<lbrakk> a = {i}\<not>{}:arrive(m); R' = R; ((\<sigma>, p), receive m, (\<sigma>', p')) \<in> S \<rbrakk> \<Longrightarrow> P) \<Longrightarrow>
( \<lbrakk> a = \<tau>; R' = R; ((\<sigma>, p), \<tau>, (\<sigma>', p')) \<in> S \<rbrakk> \<Longrightarrow> P) \<Longrightarrow>
(\<And>m. \<lbrakk> a = {}\<not>{i}:arrive(m); R' = R; p = p'; \<sigma>' i = \<sigma> i \<rbrakk> \<Longrightarrow> P) \<Longrightarrow>
(\<And>i i'. \<lbrakk> a = connect(i, i'); R' = R \<union> {i'}; p = p'; \<sigma>' i = \<sigma> i \<rbrakk> \<Longrightarrow> P) \<Longrightarrow>
(\<And>i i'. \<lbrakk> a = connect(i', i); R' = R \<union> {i'}; p = p'; \<sigma>' i = \<sigma> i \<rbrakk> \<Longrightarrow> P) \<Longrightarrow>
(\<And>i i'. \<lbrakk> a = disconnect(i, i'); R' = R - {i'}; p = p'; \<sigma>' i = \<sigma> i \<rbrakk> \<Longrightarrow> P) \<Longrightarrow>
(\<And>i i'. \<lbrakk> a = disconnect(i', i); R' = R - {i'}; p = p'; \<sigma>' i = \<sigma> i \<rbrakk> \<Longrightarrow> P) \<Longrightarrow>
(\<And>i i' i''. \<lbrakk> a = connect(i', i''); R' = R; p = p'; i \<noteq> i'; i \<noteq> i''; \<sigma>' i = \<sigma> i \<rbrakk> \<Longrightarrow> P) \<Longrightarrow>
(\<And>i i' i''. \<lbrakk> a = disconnect(i', i''); R' = R; p = p'; i \<noteq> i'; i \<noteq> i''; \<sigma>' i = \<sigma> i \<rbrakk> \<Longrightarrow> P) \<Longrightarrow>
P"
by (erule onode_sos.cases) (simp | metis)+
subsection "Open structural operational semantics for partial network expressions "
inductive_set
opnet_sos :: "((ip \<Rightarrow> 's) \<times> 'l net_state, 'm node_action) transition set
\<Rightarrow> ((ip \<Rightarrow> 's) \<times> 'l net_state, 'm node_action) transition set
\<Rightarrow> ((ip \<Rightarrow> 's) \<times> 'l net_state, 'm node_action) transition set"
for S :: "((ip \<Rightarrow> 's) \<times> 'l net_state, 'm node_action) transition set"
and T :: "((ip \<Rightarrow> 's) \<times> 'l net_state, 'm node_action) transition set"
where
opnet_cast1:
"\<lbrakk> ((\<sigma>, s), R:*cast(m), (\<sigma>', s')) \<in> S; ((\<sigma>, t), H\<not>K:arrive(m), (\<sigma>', t')) \<in> T; H \<subseteq> R; K \<inter> R = {} \<rbrakk>
\<Longrightarrow> ((\<sigma>, SubnetS s t), R:*cast(m), (\<sigma>', SubnetS s' t')) \<in> opnet_sos S T"
| opnet_cast2:
"\<lbrakk> ((\<sigma>, s), H\<not>K:arrive(m), (\<sigma>', s')) \<in> S; ((\<sigma>, t), R:*cast(m), (\<sigma>', t')) \<in> T; H \<subseteq> R; K \<inter> R = {} \<rbrakk>
\<Longrightarrow> ((\<sigma>, SubnetS s t), R:*cast(m), (\<sigma>', SubnetS s' t')) \<in> opnet_sos S T"
| opnet_arrive:
"\<lbrakk> ((\<sigma>, s), H\<not>K:arrive(m), (\<sigma>', s')) \<in> S; ((\<sigma>, t), H'\<not>K':arrive(m), (\<sigma>', t')) \<in> T \<rbrakk>
\<Longrightarrow> ((\<sigma>, SubnetS s t), (H \<union> H')\<not>(K \<union> K'):arrive(m), (\<sigma>', SubnetS s' t')) \<in> opnet_sos S T"
| opnet_deliver1:
"((\<sigma>, s), i:deliver(d), (\<sigma>', s')) \<in> S
\<Longrightarrow> ((\<sigma>, SubnetS s t), i:deliver(d), (\<sigma>', SubnetS s' t)) \<in> opnet_sos S T"
| opnet_deliver2:
"\<lbrakk> ((\<sigma>, t), i:deliver(d), (\<sigma>', t')) \<in> T \<rbrakk>
\<Longrightarrow> ((\<sigma>, SubnetS s t), i:deliver(d), (\<sigma>', SubnetS s t')) \<in> opnet_sos S T"
| opnet_tau1:
"((\<sigma>, s), \<tau>, (\<sigma>', s')) \<in> S \<Longrightarrow> ((\<sigma>, SubnetS s t), \<tau>, (\<sigma>', SubnetS s' t)) \<in> opnet_sos S T"
| opnet_tau2:
"((\<sigma>, t), \<tau>, (\<sigma>', t')) \<in> T \<Longrightarrow> ((\<sigma>, SubnetS s t), \<tau>, (\<sigma>', SubnetS s t')) \<in> opnet_sos S T"
| opnet_connect:
"\<lbrakk> ((\<sigma>, s), connect(i, i'), (\<sigma>', s')) \<in> S; ((\<sigma>, t), connect(i, i'), (\<sigma>', t')) \<in> T \<rbrakk>
\<Longrightarrow> ((\<sigma>, SubnetS s t), connect(i, i'), (\<sigma>', SubnetS s' t')) \<in> opnet_sos S T"
| opnet_disconnect:
"\<lbrakk> ((\<sigma>, s), disconnect(i, i'), (\<sigma>', s')) \<in> S; ((\<sigma>, t), disconnect(i, i'), (\<sigma>', t')) \<in> T \<rbrakk>
\<Longrightarrow> ((\<sigma>, SubnetS s t), disconnect(i, i'), (\<sigma>', SubnetS s' t')) \<in> opnet_sos S T"
inductive_cases opartial_castTE [elim]: "((\<sigma>, s), R:*cast(m), (\<sigma>', s')) \<in> opnet_sos S T"
and opartial_arriveTE [elim]: "((\<sigma>, s), H\<not>K:arrive(m), (\<sigma>', s')) \<in> opnet_sos S T"
and opartial_deliverTE [elim]: "((\<sigma>, s), i:deliver(d), (\<sigma>', s')) \<in> opnet_sos S T"
and opartial_tauTE [elim]: "((\<sigma>, s), \<tau>, (\<sigma>', s')) \<in> opnet_sos S T"
and opartial_connectTE [elim]: "((\<sigma>, s), connect(i, i'), (\<sigma>', s')) \<in> opnet_sos S T"
and opartial_disconnectTE [elim]: "((\<sigma>, s), disconnect(i, i'), (\<sigma>', s')) \<in> opnet_sos S T"
and opartial_newpktTE [elim]: "((\<sigma>, s), i:newpkt(d, di), (\<sigma>', s')) \<in> opnet_sos S T"
fun opnet :: "(ip \<Rightarrow> ((ip \<Rightarrow> 's) \<times> 'l, 'm seq_action) automaton)
\<Rightarrow> net_tree \<Rightarrow> ((ip \<Rightarrow> 's) \<times> 'l net_state, 'm node_action) automaton"
where
"opnet onp (\<langle>i; R\<^sub>i\<rangle>) = \<langle>i : onp i : R\<^sub>i\<rangle>\<^sub>o"
| "opnet onp (p\<^sub>1 \<parallel> p\<^sub>2) = \<lparr> init = {(\<sigma>, SubnetS s\<^sub>1 s\<^sub>2) |\<sigma> s\<^sub>1 s\<^sub>2.
(\<sigma>, s\<^sub>1) \<in> init (opnet onp p\<^sub>1)
\<and> (\<sigma>, s\<^sub>2) \<in> init (opnet onp p\<^sub>2)
\<and> net_ips s\<^sub>1 \<inter> net_ips s\<^sub>2 = {}},
trans = opnet_sos (trans (opnet onp p\<^sub>1)) (trans (opnet onp p\<^sub>2)) \<rparr>"
lemma opnet_node_init [elim, simp]:
assumes "(\<sigma>, s) \<in> init (opnet onp \<langle>i; R\<rangle>)"
shows "(\<sigma>, s) \<in> { (\<sigma>, NodeS i ns R) |\<sigma> ns. (\<sigma>, ns) \<in> init (onp i)}"
using assms by (simp add: onode_comp_def)
lemma opnet_node_init' [elim]:
assumes "(\<sigma>, s) \<in> init (opnet onp \<langle>i; R\<rangle>)"
obtains ns where "s = NodeS i ns R"
and "(\<sigma>, ns) \<in> init (onp i)"
using assms by (auto simp add: onode_comp_def)
lemma opnet_node_trans [elim, simp]:
assumes "(s, a, s') \<in> trans (opnet onp \<langle>i; R\<rangle>)"
shows "(s, a, s') \<in> onode_sos (trans (onp i))"
using assms by (simp add: trans_onode_comp)
subsection "Open structural operational semantics for complete network expressions "
inductive_set
ocnet_sos :: "((ip \<Rightarrow> 's) \<times> 'l net_state, 'm::msg node_action) transition set
\<Rightarrow> ((ip \<Rightarrow> 's) \<times> 'l net_state, 'm node_action) transition set"
for S :: "((ip \<Rightarrow> 's) \<times> 'l net_state, 'm node_action) transition set"
where
ocnet_connect:
"\<lbrakk> ((\<sigma>, s), connect(i, i'), (\<sigma>', s')) \<in> S; \<forall>j. j \<notin> net_ips s \<longrightarrow> (\<sigma>' j = \<sigma> j) \<rbrakk>
\<Longrightarrow> ((\<sigma>, s), connect(i, i'), (\<sigma>', s')) \<in> ocnet_sos S"
| ocnet_disconnect:
"\<lbrakk> ((\<sigma>, s), disconnect(i, i'), (\<sigma>', s')) \<in> S; \<forall>j. j \<notin> net_ips s \<longrightarrow> (\<sigma>' j = \<sigma> j) \<rbrakk>
\<Longrightarrow> ((\<sigma>, s), disconnect(i, i'), (\<sigma>', s')) \<in> ocnet_sos S"
| ocnet_cast:
"\<lbrakk> ((\<sigma>, s), R:*cast(m), (\<sigma>', s')) \<in> S; \<forall>j. j \<notin> net_ips s \<longrightarrow> (\<sigma>' j = \<sigma> j) \<rbrakk>
\<Longrightarrow> ((\<sigma>, s), \<tau>, (\<sigma>', s')) \<in> ocnet_sos S"
| ocnet_tau:
"\<lbrakk> ((\<sigma>, s), \<tau>, (\<sigma>', s')) \<in> S; \<forall>j. j \<notin> net_ips s \<longrightarrow> (\<sigma>' j = \<sigma> j) \<rbrakk>
\<Longrightarrow> ((\<sigma>, s), \<tau>, (\<sigma>', s')) \<in> ocnet_sos S"
| ocnet_deliver:
"\<lbrakk> ((\<sigma>, s), i:deliver(d), (\<sigma>', s')) \<in> S; \<forall>j. j \<notin> net_ips s \<longrightarrow> (\<sigma>' j = \<sigma> j) \<rbrakk>
\<Longrightarrow> ((\<sigma>, s), i:deliver(d), (\<sigma>', s')) \<in> ocnet_sos S"
| ocnet_newpkt:
"\<lbrakk> ((\<sigma>, s), {i}\<not>K:arrive(newpkt(d, di)), (\<sigma>', s')) \<in> S; \<forall>j. j \<notin> net_ips s \<longrightarrow> (\<sigma>' j = \<sigma> j) \<rbrakk>
\<Longrightarrow> ((\<sigma>, s), i:newpkt(d, di), (\<sigma>', s')) \<in> ocnet_sos S"
inductive_cases oconnect_completeTE: "((\<sigma>, s), connect(i, i'), (\<sigma>', s')) \<in> ocnet_sos S"
and odisconnect_completeTE: "((\<sigma>, s), disconnect(i, i'), (\<sigma>', s')) \<in> ocnet_sos S"
and otau_completeTE: "((\<sigma>, s), \<tau>, (\<sigma>', s')) \<in> ocnet_sos S"
and odeliver_completeTE: "((\<sigma>, s), i:deliver(d), (\<sigma>', s')) \<in> ocnet_sos S"
and onewpkt_completeTE: "((\<sigma>, s), i:newpkt(d, di), (\<sigma>', s')) \<in> ocnet_sos S"
lemmas ocompleteTEs = oconnect_completeTE
odisconnect_completeTE
otau_completeTE
odeliver_completeTE
onewpkt_completeTE
lemma ocomplete_no_cast [simp]:
"((\<sigma>, s), R:*cast(m), (\<sigma>', s')) \<notin> ocnet_sos T"
proof
assume "((\<sigma>, s), R:*cast(m), (\<sigma>', s')) \<in> ocnet_sos T"
hence "R:*cast(m) \<noteq> R:*cast(m)"
by (rule ocnet_sos.cases) auto
thus False by simp
qed
lemma ocomplete_no_arrive [simp]:
"((\<sigma>, s), ii\<not>ni:arrive(m), (\<sigma>', s')) \<notin> ocnet_sos T"
proof
assume "((\<sigma>, s), ii\<not>ni:arrive(m), (\<sigma>', s')) \<in> ocnet_sos T"
hence "ii\<not>ni:arrive(m) \<noteq> ii\<not>ni:arrive(m)"
by (rule ocnet_sos.cases) auto
thus False by simp
qed
lemma ocomplete_no_change [elim]:
assumes "((\<sigma>, s), a, (\<sigma>', s')) \<in> ocnet_sos T"
and "j \<notin> net_ips s"
shows "\<sigma>' j = \<sigma> j"
using assms by cases simp_all
lemma ocomplete_transE [elim]:
assumes "((\<sigma>, \<zeta>), a, (\<sigma>', \<zeta>')) \<in> ocnet_sos (trans (opnet onp n))"
obtains a' where "((\<sigma>, \<zeta>), a', (\<sigma>', \<zeta>')) \<in> trans (opnet onp n)"
using assms by (cases a) (auto elim!: ocompleteTEs [simplified])
abbreviation
oclosed :: "((ip \<Rightarrow> 's) \<times> 'l net_state, ('m::msg) node_action) automaton
\<Rightarrow> ((ip \<Rightarrow> 's) \<times> 'l net_state, 'm node_action) automaton"
where
"oclosed \<equiv> (\<lambda>A. A \<lparr> trans := ocnet_sos (trans A) \<rparr>)"
end