Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
section "Collecting Semantics of Commands" | |
theory Collecting | |
imports Complete_Lattice_ix ACom | |
begin | |
subsection "Annotated commands as a complete lattice" | |
(* Orderings could also be lifted generically (thus subsuming the | |
instantiation for preord and order), but then less_eq_acom would need to | |
become a definition, eg less_eq_acom = lift2 less_eq, and then proofs would | |
need to unfold this defn first. *) | |
instantiation acom :: (order) order | |
begin | |
fun less_eq_acom :: "('a::order)acom \<Rightarrow> 'a acom \<Rightarrow> bool" where | |
"(SKIP {S}) \<le> (SKIP {S'}) = (S \<le> S')" | | |
"(x ::= e {S}) \<le> (x' ::= e' {S'}) = (x=x' \<and> e=e' \<and> S \<le> S')" | | |
"(c1;;c2) \<le> (c1';;c2') = (c1 \<le> c1' \<and> c2 \<le> c2')" | | |
"(IF b THEN c1 ELSE c2 {S}) \<le> (IF b' THEN c1' ELSE c2' {S'}) = | |
(b=b' \<and> c1 \<le> c1' \<and> c2 \<le> c2' \<and> S \<le> S')" | | |
"({Inv} WHILE b DO c {P}) \<le> ({Inv'} WHILE b' DO c' {P'}) = | |
(b=b' \<and> c \<le> c' \<and> Inv \<le> Inv' \<and> P \<le> P')" | | |
"less_eq_acom _ _ = False" | |
lemma SKIP_le: "SKIP {S} \<le> c \<longleftrightarrow> (\<exists>S'. c = SKIP {S'} \<and> S \<le> S')" | |
by (cases c) auto | |
lemma Assign_le: "x ::= e {S} \<le> c \<longleftrightarrow> (\<exists>S'. c = x ::= e {S'} \<and> S \<le> S')" | |
by (cases c) auto | |
lemma Seq_le: "c1;;c2 \<le> c \<longleftrightarrow> (\<exists>c1' c2'. c = c1';;c2' \<and> c1 \<le> c1' \<and> c2 \<le> c2')" | |
by (cases c) auto | |
lemma If_le: "IF b THEN c1 ELSE c2 {S} \<le> c \<longleftrightarrow> | |
(\<exists>c1' c2' S'. c= IF b THEN c1' ELSE c2' {S'} \<and> c1 \<le> c1' \<and> c2 \<le> c2' \<and> S \<le> S')" | |
by (cases c) auto | |
lemma While_le: "{Inv} WHILE b DO c {P} \<le> w \<longleftrightarrow> | |
(\<exists>Inv' c' P'. w = {Inv'} WHILE b DO c' {P'} \<and> c \<le> c' \<and> Inv \<le> Inv' \<and> P \<le> P')" | |
by (cases w) auto | |
definition less_acom :: "'a acom \<Rightarrow> 'a acom \<Rightarrow> bool" where | |
"less_acom x y = (x \<le> y \<and> \<not> y \<le> x)" | |
instance | |
proof (standard,goal_cases) | |
case 1 show ?case by(simp add: less_acom_def) | |
next | |
case (2 x) thus ?case by (induct x) auto | |
next | |
case (3 x y z) thus ?case | |
apply(induct x y arbitrary: z rule: less_eq_acom.induct) | |
apply (auto intro: le_trans simp: SKIP_le Assign_le Seq_le If_le While_le) | |
done | |
next | |
case (4 x y) thus ?case | |
apply(induct x y rule: less_eq_acom.induct) | |
apply (auto intro: le_antisym) | |
done | |
qed | |
end | |
fun sub\<^sub>1 :: "'a acom \<Rightarrow> 'a acom" where | |
"sub\<^sub>1(c1;;c2) = c1" | | |
"sub\<^sub>1(IF b THEN c1 ELSE c2 {S}) = c1" | | |
"sub\<^sub>1({I} WHILE b DO c {P}) = c" | |
fun sub\<^sub>2 :: "'a acom \<Rightarrow> 'a acom" where | |
"sub\<^sub>2(c1;;c2) = c2" | | |
"sub\<^sub>2(IF b THEN c1 ELSE c2 {S}) = c2" | |
fun invar :: "'a acom \<Rightarrow> 'a" where | |
"invar({I} WHILE b DO c {P}) = I" | |
fun lift :: "('a set \<Rightarrow> 'b) \<Rightarrow> com \<Rightarrow> 'a acom set \<Rightarrow> 'b acom" | |
where | |
"lift F com.SKIP M = (SKIP {F (post ` M)})" | | |
"lift F (x ::= a) M = (x ::= a {F (post ` M)})" | | |
"lift F (c1;;c2) M = | |
lift F c1 (sub\<^sub>1 ` M);; lift F c2 (sub\<^sub>2 ` M)" | | |
"lift F (IF b THEN c1 ELSE c2) M = | |
IF b THEN lift F c1 (sub\<^sub>1 ` M) ELSE lift F c2 (sub\<^sub>2 ` M) | |
{F (post ` M)}" | | |
"lift F (WHILE b DO c) M = | |
{F (invar ` M)} | |
WHILE b DO lift F c (sub\<^sub>1 ` M) | |
{F (post ` M)}" | |
global_interpretation Complete_Lattice_ix "%c. {c'. strip c' = c}" "lift Inter" | |
proof (standard,goal_cases) | |
case (1 A _ a) | |
have "a:A \<Longrightarrow> lift Inter (strip a) A \<le> a" | |
proof(induction a arbitrary: A) | |
case Seq from Seq.prems show ?case by(force intro!: Seq.IH) | |
next | |
case If from If.prems show ?case by(force intro!: If.IH) | |
next | |
case While from While.prems show ?case by(force intro!: While.IH) | |
qed force+ | |
with 1 show ?case by auto | |
next | |
case (2 b i A) | |
thus ?case | |
proof(induction b arbitrary: i A) | |
case SKIP thus ?case by (force simp:SKIP_le) | |
next | |
case Assign thus ?case by (force simp:Assign_le) | |
next | |
case Seq from Seq.prems show ?case | |
by (force intro!: Seq.IH simp:Seq_le) | |
next | |
case If from If.prems show ?case by (force simp: If_le intro!: If.IH) | |
next | |
case While from While.prems show ?case | |
by(fastforce simp: While_le intro: While.IH) | |
qed | |
next | |
case (3 A i) | |
have "strip(lift Inter i A) = i" | |
proof(induction i arbitrary: A) | |
case Seq from Seq.prems show ?case | |
by (fastforce simp: strip_eq_Seq subset_iff intro!: Seq.IH) | |
next | |
case If from If.prems show ?case | |
by (fastforce intro!: If.IH simp: strip_eq_If) | |
next | |
case While from While.prems show ?case | |
by(fastforce intro: While.IH simp: strip_eq_While) | |
qed auto | |
thus ?case by auto | |
qed | |
lemma le_post: "c \<le> d \<Longrightarrow> post c \<le> post d" | |
by(induction c d rule: less_eq_acom.induct) auto | |
subsection "Collecting semantics" | |
fun step :: "state set \<Rightarrow> state set acom \<Rightarrow> state set acom" where | |
"step S (SKIP {P}) = (SKIP {S})" | | |
"step S (x ::= e {P}) = | |
(x ::= e {{s'. \<exists>s\<in>S. s' = s(x := aval e s)}})" | | |
"step S (c1;; c2) = step S c1;; step (post c1) c2" | | |
"step S (IF b THEN c1 ELSE c2 {P}) = | |
IF b THEN step {s:S. bval b s} c1 ELSE step {s:S. \<not> bval b s} c2 | |
{post c1 \<union> post c2}" | | |
"step S ({Inv} WHILE b DO c {P}) = | |
{S \<union> post c} WHILE b DO (step {s:Inv. bval b s} c) {{s:Inv. \<not> bval b s}}" | |
definition CS :: "com \<Rightarrow> state set acom" where | |
"CS c = lfp (step UNIV) c" | |
lemma mono2_step: "c1 \<le> c2 \<Longrightarrow> S1 \<subseteq> S2 \<Longrightarrow> step S1 c1 \<le> step S2 c2" | |
proof(induction c1 c2 arbitrary: S1 S2 rule: less_eq_acom.induct) | |
case 2 thus ?case by fastforce | |
next | |
case 3 thus ?case by(simp add: le_post) | |
next | |
case 4 thus ?case by(simp add: subset_iff)(metis le_post subsetD)+ | |
next | |
case 5 thus ?case by(simp add: subset_iff) (metis le_post subsetD) | |
qed auto | |
lemma mono_step: "mono (step S)" | |
by(blast intro: monoI mono2_step) | |
lemma strip_step: "strip(step S c) = strip c" | |
by (induction c arbitrary: S) auto | |
lemma lfp_cs_unfold: "lfp (step S) c = step S (lfp (step S) c)" | |
apply(rule lfp_unfold[OF _ mono_step]) | |
apply(simp add: strip_step) | |
done | |
lemma CS_unfold: "CS c = step UNIV (CS c)" | |
by (metis CS_def lfp_cs_unfold) | |
lemma strip_CS[simp]: "strip(CS c) = c" | |
by(simp add: CS_def index_lfp[simplified]) | |
end | |