Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Tobias Nipkow *) | |
section "Complete Lattice (indexed)" | |
theory Complete_Lattice_ix | |
imports Main | |
begin | |
text\<open>A complete lattice is an ordered type where every set of elements has | |
a greatest lower (and thus also a leats upper) bound. Sets are the | |
prototypical complete lattice where the greatest lower bound is | |
intersection. Sometimes that set of all elements of a type is not a complete | |
lattice although all elements of the same shape form a complete lattice, for | |
example lists of the same length, where the list elements come from a | |
complete lattice. We will have exactly this situation with annotated | |
commands. This theory introduces a slightly generalised version of complete | |
lattices where elements have an ``index'' and only the set of elements with | |
the same index form a complete lattice; the type as a whole is a disjoint | |
union of complete lattices. Because sets are not types, this requires a | |
special treatment.\<close> | |
locale Complete_Lattice_ix = | |
fixes L :: "'i \<Rightarrow> 'a::order set" | |
and Glb :: "'i \<Rightarrow> 'a set \<Rightarrow> 'a" | |
assumes Glb_lower: "A \<subseteq> L i \<Longrightarrow> a \<in> A \<Longrightarrow> (Glb i A) \<le> a" | |
and Glb_greatest: "b : L i \<Longrightarrow> \<forall>a\<in>A. b \<le> a \<Longrightarrow> b \<le> (Glb i A)" | |
and Glb_in_L: "A \<subseteq> L i \<Longrightarrow> Glb i A : L i" | |
begin | |
definition lfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'i \<Rightarrow> 'a" where | |
"lfp f i = Glb i {a : L i. f a \<le> a}" | |
lemma index_lfp: "lfp f i : L i" | |
by(auto simp: lfp_def intro: Glb_in_L) | |
lemma lfp_lowerbound: | |
"\<lbrakk> a : L i; f a \<le> a \<rbrakk> \<Longrightarrow> lfp f i \<le> a" | |
by (auto simp add: lfp_def intro: Glb_lower) | |
lemma lfp_greatest: | |
"\<lbrakk> a : L i; \<And>u. \<lbrakk> u : L i; f u \<le> u\<rbrakk> \<Longrightarrow> a \<le> u \<rbrakk> \<Longrightarrow> a \<le> lfp f i" | |
by (auto simp add: lfp_def intro: Glb_greatest) | |
lemma lfp_unfold: assumes "\<And>x i. f x : L i \<longleftrightarrow> x : L i" | |
and mono: "mono f" shows "lfp f i = f (lfp f i)" | |
proof- | |
note assms(1)[simp] index_lfp[simp] | |
have 1: "f (lfp f i) \<le> lfp f i" | |
apply(rule lfp_greatest) | |
apply simp | |
by (blast intro: lfp_lowerbound monoD[OF mono] order_trans) | |
have "lfp f i \<le> f (lfp f i)" | |
by (fastforce intro: 1 monoD[OF mono] lfp_lowerbound) | |
with 1 show ?thesis by(blast intro: order_antisym) | |
qed | |
end | |
end | |