Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Inductive definition of Hoare logic | |
Author: Tobias Nipkow, 2001/2006 | |
Maintainer: Tobias Nipkow | |
*) | |
theory PHoare imports PLang begin | |
subsection\<open>Hoare logic for partial correctness\<close> | |
text\<open>Taking auxiliary variables seriously means that assertions must | |
now depend on them as well as on the state. Initially we do not fix | |
the type of auxiliary variables but parameterize the type of | |
assertions with a type variable @{typ 'a}:\<close> | |
type_synonym 'a assn = "'a \<Rightarrow> state \<Rightarrow> bool" | |
text\<open> | |
The second major change is the need to reason about Hoare | |
triples in a context: proofs about recursive procedures are conducted | |
by induction where we assume that all @{term CALL}s satisfy the given | |
pre/postconditions and have to show that the body does as well. The | |
assumption is stored in a context, which is a set of Hoare triples:\<close> | |
type_synonym 'a cntxt = "('a assn \<times> com \<times> 'a assn)set" | |
text\<open>\noindent In the presence of only a single procedure the context will | |
always be empty or a singleton set. With multiple procedures, larger | |
sets can arise. | |
Now that we have contexts, validity becomes more complicated. Ordinary | |
validity (w.r.t.\ partial correctness) is still what it used to be, | |
except that we have to take auxiliary variables into account as well: | |
\<close> | |
definition | |
valid :: "'a assn \<Rightarrow> com \<Rightarrow> 'a assn \<Rightarrow> bool" ("\<Turnstile> {(1_)}/ (_)/ {(1_)}" 50) where | |
"\<Turnstile> {P}c{Q} \<longleftrightarrow> (\<forall>s t. s -c\<rightarrow> t \<longrightarrow> (\<forall>z. P z s \<longrightarrow> Q z t))" | |
text\<open>\noindent Auxiliary variables are always denoted by @{term z}. | |
Validity of a context and validity of a Hoare triple in a context are defined | |
as follows:\<close> | |
definition | |
valids :: "'a cntxt \<Rightarrow> bool" ("|\<Turnstile> _" 50) where | |
[simp]: "|\<Turnstile> C \<equiv> (\<forall>(P,c,Q) \<in> C. \<Turnstile> {P}c{Q})" | |
definition | |
cvalid :: "'a cntxt \<Rightarrow> 'a assn \<Rightarrow> com \<Rightarrow> 'a assn \<Rightarrow> bool" ("_ \<Turnstile>/ {(1_)}/ (_)/ {(1_)}" 50) where | |
"C \<Turnstile> {P}c{Q} \<longleftrightarrow> |\<Turnstile> C \<longrightarrow> \<Turnstile> {P}c{Q}" | |
text\<open>\noindent Note that @{prop"{} \<Turnstile> {P}c{Q}"} is equivalent to | |
@{prop"\<Turnstile> {P}c{Q}"}. | |
Unfortunately, this is not the end of it. As we have two | |
semantics, \<open>-c\<rightarrow>\<close> and \<open>-c-n\<rightarrow>\<close>, we also need a second notion | |
of validity parameterized with the recursion depth @{term n}:\<close> | |
definition | |
nvalid :: "nat \<Rightarrow> 'a assn \<Rightarrow> com \<Rightarrow> 'a assn \<Rightarrow> bool" ("\<Turnstile>_ {(1_)}/ (_)/ {(1_)}" 50) where | |
"\<Turnstile>n {P}c{Q} \<equiv> (\<forall>s t. s -c-n\<rightarrow> t \<longrightarrow> (\<forall>z. P z s \<longrightarrow> Q z t))" | |
definition | |
nvalids :: "nat \<Rightarrow> 'a cntxt \<Rightarrow> bool" ("|\<Turnstile>'__/ _" 50) where | |
"|\<Turnstile>_n C \<equiv> (\<forall>(P,c,Q) \<in> C. \<Turnstile>n {P}c{Q})" | |
definition | |
cnvalid :: "'a cntxt \<Rightarrow> nat \<Rightarrow> 'a assn \<Rightarrow> com \<Rightarrow> 'a assn \<Rightarrow> bool" ("_ \<Turnstile>_/ {(1_)}/ (_)/ {(1_)}" 50) where | |
"C \<Turnstile>n {P}c{Q} \<longleftrightarrow> |\<Turnstile>_n C \<longrightarrow> \<Turnstile>n {P}c{Q}" | |
text\<open>Finally we come to the proof system for deriving triples in a context:\<close> | |
inductive | |
hoare :: "'a cntxt \<Rightarrow> 'a assn \<Rightarrow> com \<Rightarrow> 'a assn \<Rightarrow> bool" ("_ \<turnstile>/ ({(1_)}/ (_)/ {(1_)})" 50) | |
where | |
(*<*)Do:(*>*)"C \<turnstile> {\<lambda>z s. \<forall>t \<in> f s . P z t} Do f {P}" | |
| (*<*)Semi:(*>*)"\<lbrakk> C \<turnstile> {P}c1{Q}; C \<turnstile> {Q}c2{R} \<rbrakk> \<Longrightarrow> C \<turnstile> {P} c1;c2 {R}" | |
| (*<*)If:(*>*)"\<lbrakk> C \<turnstile> {\<lambda>z s. P z s \<and> b s}c1{Q}; C \<turnstile> {\<lambda>z s. P z s \<and> \<not>b s}c2{Q} \<rbrakk> | |
\<Longrightarrow> C \<turnstile> {P} IF b THEN c1 ELSE c2 {Q}" | |
| (*<*)While:(*>*)"C \<turnstile> {\<lambda>z s. P z s \<and> b s} c {P} | |
\<Longrightarrow> C \<turnstile> {P} WHILE b DO c {\<lambda>z s. P z s \<and> \<not>b s}" | |
| (*<*)Conseq:(*>*)"\<lbrakk> C \<turnstile> {P'}c{Q'}; \<forall>s t. (\<forall>z. P' z s \<longrightarrow> Q' z t) \<longrightarrow> (\<forall>z. P z s \<longrightarrow> Q z t) \<rbrakk> | |
\<Longrightarrow> C \<turnstile> {P}c{Q}" | |
| (*<*)Call:(*>*)"{(P,CALL,Q)} \<turnstile> {P}body{Q} \<Longrightarrow> {} \<turnstile> {P} CALL {Q}" | |
| (*<*)Asm:(*>*)"{(P,CALL,Q)} \<turnstile> {P} CALL {Q}" | |
| (*<*)Local:(*>*) "\<lbrakk> \<forall>s'. C \<turnstile> {\<lambda>z s. P z s' \<and> s = f s'} c {\<lambda>z t. Q z (g s' t)} \<rbrakk> \<Longrightarrow> | |
C \<turnstile> {P} LOCAL f;c;g {Q}" | |
abbreviation hoare1 :: "'a cntxt \<Rightarrow> 'a assn \<times> com \<times> 'a assn \<Rightarrow> bool" ("_ \<turnstile> _") where | |
"C \<turnstile> x \<equiv> C \<turnstile> {fst x}fst (snd x){snd (snd x)}" | |
text\<open>\noindent The first four rules are familiar, except for their adaptation | |
to auxiliary variables. The @{term CALL} rule embodies induction and | |
has already been motivated above. Note that it is only applicable if | |
the context is empty. This shows that we never need nested induction. | |
For the same reason the assumption rule (the last rule) is stated with | |
just a singleton context. | |
The rule of consequence is explained in the accompanying paper. | |
\<close> | |
lemma strengthen_pre: | |
"\<lbrakk> \<forall>z s. P' z s \<longrightarrow> P z s; C\<turnstile> {P}c{Q} \<rbrakk> \<Longrightarrow> C\<turnstile> {P'}c{Q}" | |
by(rule hoare.Conseq, assumption, blast) | |
lemmas valid_defs = valid_def valids_def cvalid_def | |
nvalid_def nvalids_def cnvalid_def | |
theorem hoare_sound: "C \<turnstile> {P}c{Q} \<Longrightarrow> C \<Turnstile> {P}c{Q}" | |
txt\<open>\noindent requires a generalization: @{prop"\<forall>n. C \<Turnstile>n | |
{P}c{Q}"} is proved instead, from which the actual theorem follows | |
directly via lemma @{thm[source]exec_iff_execn} in \S\ref{sec:proc1-lang}. | |
The generalization | |
is proved by induction on @{term c}. The reason for the generalization | |
is that soundness of the @{term CALL} rule is proved by induction on the | |
maximal call depth, i.e.\ @{term n}.\<close> | |
apply(subgoal_tac "\<forall>n. C \<Turnstile>n {P}c{Q}") | |
apply(unfold valid_defs exec_iff_execn) | |
apply fast | |
apply(erule hoare.induct) | |
apply simp | |
apply fast | |
apply simp | |
apply clarify | |
apply(drule while_rule) | |
prefer 3 | |
apply (assumption, assumption) | |
apply fast | |
apply fast | |
prefer 2 | |
apply simp | |
apply(rule allI, rule impI) | |
apply(induct_tac n) | |
apply blast | |
apply clarify | |
apply (simp(no_asm_use)) | |
apply blast | |
apply auto | |
done | |
text\<open> | |
The completeness proof employs the notion of a \emph{most general triple} (or | |
\emph{most general formula}):\<close> | |
definition | |
MGT :: "com \<Rightarrow> state assn \<times> com \<times> state assn" where | |
"MGT c = (\<lambda>z s. z = s, c, \<lambda>z t. z -c\<rightarrow> t)" | |
declare MGT_def[simp] | |
text\<open>\noindent Note that the type of @{term z} has been identified with | |
@{typ state}. This means that for every state variable there is an auxiliary | |
variable, which is simply there to record the value of the program variables | |
before execution of a command. This is exactly what, for example, VDM offers | |
by allowing you to refer to the pre-value of a variable in a | |
postcondition. The intuition behind @{term"MGT c"} is | |
that it completely describes the operational behaviour of @{term c}. It is | |
easy to see that, in the presence of the new consequence rule, | |
\mbox{@{prop"{} \<turnstile> MGT c"}} implies completeness:\<close> | |
lemma MGT_implies_complete: | |
"{} \<turnstile> MGT c \<Longrightarrow> {} \<Turnstile> {P}c{Q} \<Longrightarrow> {} \<turnstile> {P}c{Q::state assn}" | |
apply(simp add: MGT_def) | |
apply (erule hoare.Conseq) | |
apply(simp add: valid_defs) | |
done | |
text\<open>In order to discharge @{prop"{} \<turnstile> MGT c"} one proves\<close> | |
lemma MGT_lemma: "C \<turnstile> MGT CALL \<Longrightarrow> C \<turnstile> MGT c" | |
apply (simp) | |
apply(induct_tac c) | |
apply (rule strengthen_pre[OF _ hoare.Do]) | |
apply blast | |
apply(blast intro:hoare.Semi hoare.Conseq) | |
apply(rule hoare.If) | |
apply(erule hoare.Conseq) | |
apply simp | |
apply(erule hoare.Conseq) | |
apply simp | |
prefer 2 | |
apply simp | |
apply(rename_tac b c) | |
apply(rule hoare.Conseq) | |
apply(rule_tac P = "\<lambda>z s. (z,s) \<in> ({(s,t). b s \<and> s -c\<rightarrow> t})^*" | |
in hoare.While) | |
apply(erule hoare.Conseq) | |
apply(blast intro:rtrancl_into_rtrancl) | |
apply clarsimp | |
apply(rename_tac s t) | |
apply(erule_tac x = s in allE) | |
apply clarsimp | |
apply(erule converse_rtrancl_induct) | |
apply simp | |
apply(fast elim:exec.WhileTrue) | |
apply(fastforce intro: hoare.Local elim!: hoare.Conseq) | |
done | |
text\<open>\noindent The proof is by induction on @{term c}. In the @{term | |
While}-case it is easy to show that @{term"\<lambda>z t. (z,t) \<in> ({(s,t). b | |
s \<and> s -c\<rightarrow> t})^*"} is invariant. The precondition \mbox{@{term[source]"\<lambda>z s. z=s"}} | |
establishes the invariant and a reflexive transitive closure | |
induction shows that the invariant conjoined with @{prop"\<not>b t"} | |
implies the postcondition \mbox{@{term"\<lambda>z t. z -WHILE b DO c\<rightarrow> t"}}. The | |
remaining cases are trivial. | |
Using the @{thm[source]MGT_lemma} (together with the \<open>CALL\<close> and the | |
assumption rule) one can easily derive\<close> | |
lemma MGT_CALL: "{} \<turnstile> MGT CALL" | |
apply(simp add: MGT_def) | |
apply (rule hoare.Call) | |
apply (rule hoare.Conseq[OF MGT_lemma[simplified], OF hoare.Asm]) | |
apply (fast intro:exec.intros) | |
done | |
text\<open>\noindent Using the @{thm[source]MGT_lemma} once more we obtain | |
@{prop"{} \<turnstile> MGT c"} and thus by @{thm[source]MGT_implies_complete} | |
completeness.\<close> | |
theorem "{} \<Turnstile> {P}c{Q} \<Longrightarrow> {} \<turnstile> {P}c{Q::state assn}" | |
apply(erule MGT_implies_complete[OF MGT_lemma[OF MGT_CALL]]) | |
done | |
end | |