Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Algebras for Aggregation and Minimisation with a Linear Order | |
Author: Walter Guttmann | |
Maintainer: Walter Guttmann <walter.guttmann at canterbury.ac.nz> | |
*) | |
section \<open>Algebras for Aggregation and Minimisation with a Linear Order\<close> | |
text \<open> | |
This theory gives several classes of instances of linear aggregation lattices as described in \cite{Guttmann2018a}. | |
Each of these instances can be used as edge weights and the resulting graphs will form s-algebras and m-algebras as shown in a separate theory. | |
\<close> | |
theory Linear_Aggregation_Algebras | |
imports Matrix_Aggregation_Algebras HOL.Real | |
begin | |
no_notation | |
inf (infixl "\<sqinter>" 70) | |
and uminus ("- _" [81] 80) | |
subsection \<open>Linearly Ordered Commutative Semigroups\<close> | |
text \<open> | |
Any linearly ordered commutative semigroup extended by new least and greatest elements forms a linear aggregation lattice. | |
The extension is done so that the new least element is a unit of aggregation and the new greatest element is a zero of aggregation. | |
\<close> | |
datatype 'a ext = | |
Bot | |
| Val 'a | |
| Top | |
instantiation ext :: (linordered_ab_semigroup_add) linear_aggregation_kleene_algebra | |
begin | |
fun plus_ext :: "'a ext \<Rightarrow> 'a ext \<Rightarrow> 'a ext" where | |
"plus_ext Bot x = x" | |
| "plus_ext (Val x) Bot = Val x" | |
| "plus_ext (Val x) (Val y) = Val (x + y)" | |
| "plus_ext (Val _) Top = Top" | |
| "plus_ext Top _ = Top" | |
fun sup_ext :: "'a ext \<Rightarrow> 'a ext \<Rightarrow> 'a ext" where | |
"sup_ext Bot x = x" | |
| "sup_ext (Val x) Bot = Val x" | |
| "sup_ext (Val x) (Val y) = Val (max x y)" | |
| "sup_ext (Val _) Top = Top" | |
| "sup_ext Top _ = Top" | |
fun inf_ext :: "'a ext \<Rightarrow> 'a ext \<Rightarrow> 'a ext" where | |
"inf_ext Bot _ = Bot" | |
| "inf_ext (Val _) Bot = Bot" | |
| "inf_ext (Val x) (Val y) = Val (min x y)" | |
| "inf_ext (Val x) Top = Val x" | |
| "inf_ext Top x = x" | |
fun times_ext :: "'a ext \<Rightarrow> 'a ext \<Rightarrow> 'a ext" where "times_ext x y = x \<sqinter> y" | |
fun uminus_ext :: "'a ext \<Rightarrow> 'a ext" where | |
"uminus_ext Bot = Top" | |
| "uminus_ext (Val _) = Bot" | |
| "uminus_ext Top = Bot" | |
fun star_ext :: "'a ext \<Rightarrow> 'a ext" where "star_ext _ = Top" | |
fun conv_ext :: "'a ext \<Rightarrow> 'a ext" where "conv_ext x = x" | |
definition bot_ext :: "'a ext" where "bot_ext \<equiv> Bot" | |
definition one_ext :: "'a ext" where "one_ext \<equiv> Top" | |
definition top_ext :: "'a ext" where "top_ext \<equiv> Top" | |
fun less_eq_ext :: "'a ext \<Rightarrow> 'a ext \<Rightarrow> bool" where | |
"less_eq_ext Bot _ = True" | |
| "less_eq_ext (Val _) Bot = False" | |
| "less_eq_ext (Val x) (Val y) = (x \<le> y)" | |
| "less_eq_ext (Val _) Top = True" | |
| "less_eq_ext Top Bot = False" | |
| "less_eq_ext Top (Val _) = False" | |
| "less_eq_ext Top Top = True" | |
fun less_ext :: "'a ext \<Rightarrow> 'a ext \<Rightarrow> bool" where "less_ext x y = (x \<le> y \<and> \<not> y \<le> x)" | |
instance | |
proof | |
fix x y z :: "'a ext" | |
show "(x + y) + z = x + (y + z)" | |
by (cases x; cases y; cases z) (simp_all add: add.assoc) | |
show "x + y = y + x" | |
by (cases x; cases y) (simp_all add: add.commute) | |
show "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" | |
by simp | |
show "x \<le> x" | |
using less_eq_ext.elims(3) by fastforce | |
show "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
by (cases x; cases y; cases z) simp_all | |
show "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
by (cases x; cases y) simp_all | |
show "x \<sqinter> y \<le> x" | |
by (cases x; cases y) simp_all | |
show "x \<sqinter> y \<le> y" | |
by (cases x; cases y) simp_all | |
show "x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<sqinter> z" | |
by (cases x; cases y; cases z) simp_all | |
show "x \<le> x \<squnion> y" | |
by (cases x; cases y) simp_all | |
show "y \<le> x \<squnion> y" | |
by (cases x; cases y) simp_all | |
show "y \<le> x \<Longrightarrow> z \<le> x \<Longrightarrow> y \<squnion> z \<le> x" | |
by (cases x; cases y; cases z) simp_all | |
show "bot \<le> x" | |
by (simp add: bot_ext_def) | |
show "x \<le> top" | |
by (cases x) (simp_all add: top_ext_def) | |
show "x \<noteq> bot \<and> x + bot \<le> y + bot \<longrightarrow> x + z \<le> y + z" | |
by (cases x; cases y; cases z) (simp_all add: bot_ext_def add_right_mono) | |
show "x + y + bot = x + y" | |
by (cases x; cases y) (simp_all add: bot_ext_def) | |
show "x + y = bot \<longrightarrow> x = bot" | |
by (cases x; cases y) (simp_all add: bot_ext_def) | |
show "x \<le> y \<or> y \<le> x" | |
by (cases x; cases y) (simp_all add: linear) | |
show "-x = (if x = bot then top else bot)" | |
by (cases x) (simp_all add: bot_ext_def top_ext_def) | |
show "(1::'a ext) = top" | |
by (simp add: one_ext_def top_ext_def) | |
show "x * y = x \<sqinter> y" | |
by simp | |
show "x\<^sup>T = x" | |
by simp | |
show "x\<^sup>\<star> = top" | |
by (simp add: top_ext_def) | |
qed | |
end | |
text \<open> | |
An example of a linearly ordered commutative semigroup is the set of real numbers with standard addition as aggregation. | |
\<close> | |
lemma example_real_ext_matrix: | |
fixes x :: "('a::enum,real ext) square" | |
shows "minarc\<^sub>M x \<preceq> \<ominus>\<ominus>x" | |
by (rule agg_square_m_algebra.minarc_below) | |
text \<open> | |
Another example of a linearly ordered commutative semigroup is the set of real numbers with maximum as aggregation. | |
\<close> | |
datatype real_max = Rmax real | |
instantiation real_max :: linordered_ab_semigroup_add | |
begin | |
fun less_eq_real_max where "less_eq_real_max (Rmax x) (Rmax y) = (x \<le> y)" | |
fun less_real_max where "less_real_max (Rmax x) (Rmax y) = (x < y)" | |
fun plus_real_max where "plus_real_max (Rmax x) (Rmax y) = Rmax (max x y)" | |
instance | |
proof | |
fix x y z :: real_max | |
show "(x + y) + z = x + (y + z)" | |
by (cases x; cases y; cases z) simp | |
show "x + y = y + x" | |
by (cases x; cases y) simp | |
show "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" | |
by (cases x; cases y) auto | |
show "x \<le> x" | |
by (cases x) simp | |
show "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
by (cases x; cases y; cases z) simp | |
show "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
by (cases x; cases y) simp | |
show "x \<le> y \<Longrightarrow> z + x \<le> z + y" | |
by (cases x; cases y; cases z) simp | |
show "x \<le> y \<or> y \<le> x" | |
by (cases x; cases y) auto | |
qed | |
end | |
lemma example_real_max_ext_matrix: | |
fixes x :: "('a::enum,real_max ext) square" | |
shows "minarc\<^sub>M x \<preceq> \<ominus>\<ominus>x" | |
by (rule agg_square_m_algebra.minarc_below) | |
text \<open> | |
A third example of a linearly ordered commutative semigroup is the set of real numbers with minimum as aggregation. | |
\<close> | |
datatype real_min = Rmin real | |
instantiation real_min :: linordered_ab_semigroup_add | |
begin | |
fun less_eq_real_min where "less_eq_real_min (Rmin x) (Rmin y) = (x \<le> y)" | |
fun less_real_min where "less_real_min (Rmin x) (Rmin y) = (x < y)" | |
fun plus_real_min where "plus_real_min (Rmin x) (Rmin y) = Rmin (min x y)" | |
instance | |
proof | |
fix x y z :: real_min | |
show "(x + y) + z = x + (y + z)" | |
by (cases x; cases y; cases z) simp | |
show "x + y = y + x" | |
by (cases x; cases y) simp | |
show "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" | |
by (cases x; cases y) auto | |
show "x \<le> x" | |
by (cases x) simp | |
show "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
by (cases x; cases y; cases z) simp | |
show "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
by (cases x; cases y) simp | |
show "x \<le> y \<Longrightarrow> z + x \<le> z + y" | |
by (cases x; cases y; cases z) simp | |
show "x \<le> y \<or> y \<le> x" | |
by (cases x; cases y) auto | |
qed | |
end | |
lemma example_real_min_ext_matrix: | |
fixes x :: "('a::enum,real_min ext) square" | |
shows "minarc\<^sub>M x \<preceq> \<ominus>\<ominus>x" | |
by (rule agg_square_m_algebra.minarc_below) | |
subsection \<open>Linearly Ordered Commutative Monoids\<close> | |
text \<open> | |
Any linearly ordered commutative monoid extended by new least and greatest elements forms a linear aggregation lattice. | |
This is similar to linearly ordered commutative semigroups except that the aggregation $\bot + \bot$ produces the unit of the monoid instead of the least element. | |
Applied to weighted graphs, this means that the aggregation of the empty graph will be the unit of the monoid (for example, $ for real numbers under standard addition, instead of $\bot$). | |
\<close> | |
class linordered_comm_monoid_add = linordered_ab_semigroup_add + comm_monoid_add | |
datatype 'a ext0 = | |
Bot | |
| Val 'a | |
| Top | |
instantiation ext0 :: (linordered_comm_monoid_add) linear_aggregation_kleene_algebra | |
begin | |
fun plus_ext0 :: "'a ext0 \<Rightarrow> 'a ext0 \<Rightarrow> 'a ext0" where | |
"plus_ext0 Bot Bot = Val 0" | |
| "plus_ext0 Bot x = x" | |
| "plus_ext0 (Val x) Bot = Val x" | |
| "plus_ext0 (Val x) (Val y) = Val (x + y)" | |
| "plus_ext0 (Val _) Top = Top" | |
| "plus_ext0 Top _ = Top" | |
fun sup_ext0 :: "'a ext0 \<Rightarrow> 'a ext0 \<Rightarrow> 'a ext0" where | |
"sup_ext0 Bot x = x" | |
| "sup_ext0 (Val x) Bot = Val x" | |
| "sup_ext0 (Val x) (Val y) = Val (max x y)" | |
| "sup_ext0 (Val _) Top = Top" | |
| "sup_ext0 Top _ = Top" | |
fun inf_ext0 :: "'a ext0 \<Rightarrow> 'a ext0 \<Rightarrow> 'a ext0" where | |
"inf_ext0 Bot _ = Bot" | |
| "inf_ext0 (Val _) Bot = Bot" | |
| "inf_ext0 (Val x) (Val y) = Val (min x y)" | |
| "inf_ext0 (Val x) Top = Val x" | |
| "inf_ext0 Top x = x" | |
fun times_ext0 :: "'a ext0 \<Rightarrow> 'a ext0 \<Rightarrow> 'a ext0" where "times_ext0 x y = x \<sqinter> y" | |
fun uminus_ext0 :: "'a ext0 \<Rightarrow> 'a ext0" where | |
"uminus_ext0 Bot = Top" | |
| "uminus_ext0 (Val _) = Bot" | |
| "uminus_ext0 Top = Bot" | |
fun star_ext0 :: "'a ext0 \<Rightarrow> 'a ext0" where "star_ext0 _ = Top" | |
fun conv_ext0 :: "'a ext0 \<Rightarrow> 'a ext0" where "conv_ext0 x = x" | |
definition bot_ext0 :: "'a ext0" where "bot_ext0 \<equiv> Bot" | |
definition one_ext0 :: "'a ext0" where "one_ext0 \<equiv> Top" | |
definition top_ext0 :: "'a ext0" where "top_ext0 \<equiv> Top" | |
fun less_eq_ext0 :: "'a ext0 \<Rightarrow> 'a ext0 \<Rightarrow> bool" where | |
"less_eq_ext0 Bot _ = True" | |
| "less_eq_ext0 (Val _) Bot = False" | |
| "less_eq_ext0 (Val x) (Val y) = (x \<le> y)" | |
| "less_eq_ext0 (Val _) Top = True" | |
| "less_eq_ext0 Top Bot = False" | |
| "less_eq_ext0 Top (Val _) = False" | |
| "less_eq_ext0 Top Top = True" | |
fun less_ext0 :: "'a ext0 \<Rightarrow> 'a ext0 \<Rightarrow> bool" where "less_ext0 x y = (x \<le> y \<and> \<not> y \<le> x)" | |
instance | |
proof | |
fix x y z :: "'a ext0" | |
show "(x + y) + z = x + (y + z)" | |
by (cases x; cases y; cases z) (simp_all add: add.assoc) | |
show "x + y = y + x" | |
by (cases x; cases y) (simp_all add: add.commute) | |
show "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" | |
by simp | |
show "x \<le> x" | |
using less_eq_ext0.elims(3) by fastforce | |
show "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
by (cases x; cases y; cases z) simp_all | |
show "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
by (cases x; cases y) simp_all | |
show "x \<sqinter> y \<le> x" | |
by (cases x; cases y) simp_all | |
show "x \<sqinter> y \<le> y" | |
by (cases x; cases y) simp_all | |
show "x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<sqinter> z" | |
by (cases x; cases y; cases z) simp_all | |
show "x \<le> x \<squnion> y" | |
by (cases x; cases y) simp_all | |
show "y \<le> x \<squnion> y" | |
by (cases x; cases y) simp_all | |
show "y \<le> x \<Longrightarrow> z \<le> x \<Longrightarrow> y \<squnion> z \<le> x" | |
by (cases x; cases y; cases z) simp_all | |
show "bot \<le> x" | |
by (simp add: bot_ext0_def) | |
show "x \<le> top" | |
by (cases x) (simp_all add: top_ext0_def) | |
show "x \<noteq> bot \<and> x + bot \<le> y + bot \<longrightarrow> x + z \<le> y + z" | |
apply (cases x; cases y; cases z) | |
prefer 11 using add_right_mono bot_ext0_def apply fastforce | |
by (simp_all add: bot_ext0_def add_right_mono) | |
show "x + y + bot = x + y" | |
by (cases x; cases y) (simp_all add: bot_ext0_def) | |
show "x + y = bot \<longrightarrow> x = bot" | |
by (cases x; cases y) (simp_all add: bot_ext0_def) | |
show "x \<le> y \<or> y \<le> x" | |
by (cases x; cases y) (simp_all add: linear) | |
show "-x = (if x = bot then top else bot)" | |
by (cases x) (simp_all add: bot_ext0_def top_ext0_def) | |
show "(1::'a ext0) = top" | |
by (simp add: one_ext0_def top_ext0_def) | |
show "x * y = x \<sqinter> y" | |
by simp | |
show "x\<^sup>T = x" | |
by simp | |
show "x\<^sup>\<star> = top" | |
by (simp add: top_ext0_def) | |
qed | |
end | |
text \<open> | |
An example of a linearly ordered commutative monoid is the set of real numbers with standard addition and unit $. | |
\<close> | |
instantiation real :: linordered_comm_monoid_add | |
begin | |
instance .. | |
end | |
subsection \<open>Linearly Ordered Commutative Monoids with a Least Element\<close> | |
text \<open> | |
If a linearly ordered commutative monoid already contains a least element which is a unit of aggregation, only a new greatest element has to be added to obtain a linear aggregation lattice. | |
\<close> | |
class linordered_comm_monoid_add_bot = linordered_ab_semigroup_add + order_bot + | |
assumes bot_zero [simp]: "bot + x = x" | |
begin | |
sublocale linordered_comm_monoid_add where zero = bot | |
apply unfold_locales | |
by simp | |
end | |
datatype 'a extT = | |
Val 'a | |
| Top | |
instantiation extT :: (linordered_comm_monoid_add_bot) linear_aggregation_kleene_algebra | |
begin | |
fun plus_extT :: "'a extT \<Rightarrow> 'a extT \<Rightarrow> 'a extT" where | |
"plus_extT (Val x) (Val y) = Val (x + y)" | |
| "plus_extT (Val _) Top = Top" | |
| "plus_extT Top _ = Top" | |
fun sup_extT :: "'a extT \<Rightarrow> 'a extT \<Rightarrow> 'a extT" where | |
"sup_extT (Val x) (Val y) = Val (max x y)" | |
| "sup_extT (Val _) Top = Top" | |
| "sup_extT Top _ = Top" | |
fun inf_extT :: "'a extT \<Rightarrow> 'a extT \<Rightarrow> 'a extT" where | |
"inf_extT (Val x) (Val y) = Val (min x y)" | |
| "inf_extT (Val x) Top = Val x" | |
| "inf_extT Top x = x" | |
fun times_extT :: "'a extT \<Rightarrow> 'a extT \<Rightarrow> 'a extT" where "times_extT x y = x \<sqinter> y" | |
fun uminus_extT :: "'a extT \<Rightarrow> 'a extT" where "uminus_extT x = (if x = Val bot then Top else Val bot)" | |
fun star_extT :: "'a extT \<Rightarrow> 'a extT" where "star_extT _ = Top" | |
fun conv_extT :: "'a extT \<Rightarrow> 'a extT" where "conv_extT x = x" | |
definition bot_extT :: "'a extT" where "bot_extT \<equiv> Val bot" | |
definition one_extT :: "'a extT" where "one_extT \<equiv> Top" | |
definition top_extT :: "'a extT" where "top_extT \<equiv> Top" | |
fun less_eq_extT :: "'a extT \<Rightarrow> 'a extT \<Rightarrow> bool" where | |
"less_eq_extT (Val x) (Val y) = (x \<le> y)" | |
| "less_eq_extT Top (Val _) = False" | |
| "less_eq_extT _ Top = True" | |
fun less_extT :: "'a extT \<Rightarrow> 'a extT \<Rightarrow> bool" where "less_extT x y = (x \<le> y \<and> \<not> y \<le> x)" | |
instance | |
proof | |
fix x y z :: "'a extT" | |
show "(x + y) + z = x + (y + z)" | |
by (cases x; cases y; cases z) (simp_all add: add.assoc) | |
show "x + y = y + x" | |
by (cases x; cases y) (simp_all add: add.commute) | |
show "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" | |
by simp | |
show "x \<le> x" | |
by (cases x) simp_all | |
show "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
by (cases x; cases y; cases z) simp_all | |
show "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
by (cases x; cases y) simp_all | |
show "x \<sqinter> y \<le> x" | |
by (cases x; cases y) simp_all | |
show "x \<sqinter> y \<le> y" | |
by (cases x; cases y) simp_all | |
show "x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<sqinter> z" | |
by (cases x; cases y; cases z) simp_all | |
show "x \<le> x \<squnion> y" | |
by (cases x; cases y) simp_all | |
show "y \<le> x \<squnion> y" | |
by (cases x; cases y) simp_all | |
show "y \<le> x \<Longrightarrow> z \<le> x \<Longrightarrow> y \<squnion> z \<le> x" | |
by (cases x; cases y; cases z) simp_all | |
show "bot \<le> x" | |
by (cases x) (simp_all add: bot_extT_def) | |
show "x \<le> top" | |
by (cases x) (simp_all add: top_extT_def) | |
show "x \<noteq> bot \<and> x + bot \<le> y + bot \<longrightarrow> x + z \<le> y + z" | |
by (cases x; cases y; cases z) (simp_all add: bot_extT_def add_right_mono) | |
show "x + y + bot = x + y" | |
by (cases x; cases y) (simp_all add: bot_extT_def) | |
show "x + y = bot \<longrightarrow> x = bot" | |
apply (cases x; cases y) | |
apply (metis (mono_tags) add.commute add_right_mono bot.extremum bot.extremum_uniqueI bot_zero extT.inject plus_extT.simps(1) bot_extT_def) | |
by (simp_all add: bot_extT_def) | |
show "x \<le> y \<or> y \<le> x" | |
by (cases x; cases y) (simp_all add: linear) | |
show "-x = (if x = bot then top else bot)" | |
by (cases x) (simp_all add: bot_extT_def top_extT_def) | |
show "(1::'a extT) = top" | |
by (simp add: one_extT_def top_extT_def) | |
show "x * y = x \<sqinter> y" | |
by simp | |
show "x\<^sup>T = x" | |
by simp | |
show "x\<^sup>\<star> = top" | |
by (simp add: top_extT_def) | |
qed | |
end | |
text \<open> | |
An example of a linearly ordered commutative monoid with a least element is the set of real numbers extended by minus infinity with maximum as aggregation. | |
\<close> | |
datatype real_max_bot = | |
MInfty | |
| R real | |
instantiation real_max_bot :: linordered_comm_monoid_add_bot | |
begin | |
definition "bot_real_max_bot \<equiv> MInfty" | |
fun less_eq_real_max_bot where | |
"less_eq_real_max_bot MInfty _ = True" | |
| "less_eq_real_max_bot (R _) MInfty = False" | |
| "less_eq_real_max_bot (R x) (R y) = (x \<le> y)" | |
fun less_real_max_bot where | |
"less_real_max_bot _ MInfty = False" | |
| "less_real_max_bot MInfty (R _) = True" | |
| "less_real_max_bot (R x) (R y) = (x < y)" | |
fun plus_real_max_bot where | |
"plus_real_max_bot MInfty y = y" | |
| "plus_real_max_bot x MInfty = x" | |
| "plus_real_max_bot (R x) (R y) = R (max x y)" | |
instance | |
proof | |
fix x y z :: real_max_bot | |
show "(x + y) + z = x + (y + z)" | |
by (cases x; cases y; cases z) simp_all | |
show "x + y = y + x" | |
by (cases x; cases y) simp_all | |
show "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" | |
by (cases x; cases y) auto | |
show "x \<le> x" | |
by (cases x) simp_all | |
show "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
by (cases x; cases y; cases z) simp_all | |
show "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
by (cases x; cases y) simp_all | |
show "x \<le> y \<Longrightarrow> z + x \<le> z + y" | |
by (cases x; cases y; cases z) simp_all | |
show "x \<le> y \<or> y \<le> x" | |
by (cases x; cases y) auto | |
show "bot \<le> x" | |
by (cases x) (simp_all add: bot_real_max_bot_def) | |
show "bot + x = x" | |
by (cases x) (simp_all add: bot_real_max_bot_def) | |
qed | |
end | |
subsection \<open>Linearly Ordered Commutative Monoids with a Greatest Element\<close> | |
text \<open> | |
If a linearly ordered commutative monoid already contains a greatest element which is a unit of aggregation, only a new least element has to be added to obtain a linear aggregation lattice. | |
\<close> | |
class linordered_comm_monoid_add_top = linordered_ab_semigroup_add + order_top + | |
assumes top_zero [simp]: "top + x = x" | |
begin | |
sublocale linordered_comm_monoid_add where zero = top | |
apply unfold_locales | |
by simp | |
lemma add_decreasing: "x + y \<le> x" | |
using add_left_mono top.extremum by fastforce | |
lemma t_min: "x + y \<le> min x y" | |
using add_commute add_decreasing by force | |
end | |
datatype 'a extB = | |
Bot | |
| Val 'a | |
instantiation extB :: (linordered_comm_monoid_add_top) linear_aggregation_kleene_algebra | |
begin | |
fun plus_extB :: "'a extB \<Rightarrow> 'a extB \<Rightarrow> 'a extB" where | |
"plus_extB Bot Bot = Val top" | |
| "plus_extB Bot (Val x) = Val x" | |
| "plus_extB (Val x) Bot = Val x" | |
| "plus_extB (Val x) (Val y) = Val (x + y)" | |
fun sup_extB :: "'a extB \<Rightarrow> 'a extB \<Rightarrow> 'a extB" where | |
"sup_extB Bot x = x" | |
| "sup_extB (Val x) Bot = Val x" | |
| "sup_extB (Val x) (Val y) = Val (max x y)" | |
fun inf_extB :: "'a extB \<Rightarrow> 'a extB \<Rightarrow> 'a extB" where | |
"inf_extB Bot _ = Bot" | |
| "inf_extB (Val _) Bot = Bot" | |
| "inf_extB (Val x) (Val y) = Val (min x y)" | |
fun times_extB :: "'a extB \<Rightarrow> 'a extB \<Rightarrow> 'a extB" where "times_extB x y = x \<sqinter> y" | |
fun uminus_extB :: "'a extB \<Rightarrow> 'a extB" where | |
"uminus_extB Bot = Val top" | |
| "uminus_extB (Val _) = Bot" | |
fun star_extB :: "'a extB \<Rightarrow> 'a extB" where "star_extB _ = Val top" | |
fun conv_extB :: "'a extB \<Rightarrow> 'a extB" where "conv_extB x = x" | |
definition bot_extB :: "'a extB" where "bot_extB \<equiv> Bot" | |
definition one_extB :: "'a extB" where "one_extB \<equiv> Val top" | |
definition top_extB :: "'a extB" where "top_extB \<equiv> Val top" | |
fun less_eq_extB :: "'a extB \<Rightarrow> 'a extB \<Rightarrow> bool" where | |
"less_eq_extB Bot _ = True" | |
| "less_eq_extB (Val _) Bot = False" | |
| "less_eq_extB (Val x) (Val y) = (x \<le> y)" | |
fun less_extB :: "'a extB \<Rightarrow> 'a extB \<Rightarrow> bool" where "less_extB x y = (x \<le> y \<and> \<not> y \<le> x)" | |
instance | |
proof | |
fix x y z :: "'a extB" | |
show "(x + y) + z = x + (y + z)" | |
by (cases x; cases y; cases z) (simp_all add: add.assoc) | |
show "x + y = y + x" | |
by (cases x; cases y) (simp_all add: add.commute) | |
show "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" | |
by simp | |
show "x \<le> x" | |
by (cases x) simp_all | |
show "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
by (cases x; cases y; cases z) simp_all | |
show "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
by (cases x; cases y) simp_all | |
show "x \<sqinter> y \<le> x" | |
by (cases x; cases y) simp_all | |
show "x \<sqinter> y \<le> y" | |
by (cases x; cases y) simp_all | |
show "x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<sqinter> z" | |
by (cases x; cases y; cases z) simp_all | |
show "x \<le> x \<squnion> y" | |
by (cases x; cases y) simp_all | |
show "y \<le> x \<squnion> y" | |
by (cases x; cases y) simp_all | |
show "y \<le> x \<Longrightarrow> z \<le> x \<Longrightarrow> y \<squnion> z \<le> x" | |
by (cases x; cases y; cases z) simp_all | |
show "bot \<le> x" | |
by (simp add: bot_extB_def) | |
show 1: "x \<le> top" | |
by (cases x) (simp_all add: top_extB_def) | |
show "x \<noteq> bot \<and> x + bot \<le> y + bot \<longrightarrow> x + z \<le> y + z" | |
apply (cases x; cases y; cases z) | |
prefer 6 using 1 apply (metis (mono_tags, lifting) plus_extB.simps(2,4) top_extB_def add_right_mono less_eq_extB.simps(3) top_zero) | |
by (simp_all add: bot_extB_def add_right_mono) | |
show "x + y + bot = x + y" | |
by (cases x; cases y) (simp_all add: bot_extB_def) | |
show "x + y = bot \<longrightarrow> x = bot" | |
by (cases x; cases y) (simp_all add: bot_extB_def) | |
show "x \<le> y \<or> y \<le> x" | |
by (cases x; cases y) (simp_all add: linear) | |
show "-x = (if x = bot then top else bot)" | |
by (cases x) (simp_all add: bot_extB_def top_extB_def) | |
show "(1::'a extB) = top" | |
by (simp add: one_extB_def top_extB_def) | |
show "x * y = x \<sqinter> y" | |
by simp | |
show "x\<^sup>T = x" | |
by simp | |
show "x\<^sup>\<star> = top" | |
by (simp add: top_extB_def) | |
qed | |
end | |
text \<open> | |
An example of a linearly ordered commutative monoid with a greatest element is the set of real numbers extended by infinity with minimum as aggregation. | |
\<close> | |
datatype real_min_top = | |
R real | |
| PInfty | |
instantiation real_min_top :: linordered_comm_monoid_add_top | |
begin | |
definition "top_real_min_top \<equiv> PInfty" | |
fun less_eq_real_min_top where | |
"less_eq_real_min_top _ PInfty = True" | |
| "less_eq_real_min_top PInfty (R _) = False" | |
| "less_eq_real_min_top (R x) (R y) = (x \<le> y)" | |
fun less_real_min_top where | |
"less_real_min_top PInfty _ = False" | |
| "less_real_min_top (R _) PInfty = True" | |
| "less_real_min_top (R x) (R y) = (x < y)" | |
fun plus_real_min_top where | |
"plus_real_min_top PInfty y = y" | |
| "plus_real_min_top x PInfty = x" | |
| "plus_real_min_top (R x) (R y) = R (min x y)" | |
instance | |
proof | |
fix x y z :: real_min_top | |
show "(x + y) + z = x + (y + z)" | |
by (cases x; cases y; cases z) simp_all | |
show "x + y = y + x" | |
by (cases x; cases y) simp_all | |
show "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" | |
by (cases x; cases y) auto | |
show "x \<le> x" | |
by (cases x) simp_all | |
show "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
by (cases x; cases y; cases z) simp_all | |
show "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
by (cases x; cases y) simp_all | |
show "x \<le> y \<Longrightarrow> z + x \<le> z + y" | |
by (cases x; cases y; cases z) simp_all | |
show "x \<le> y \<or> y \<le> x" | |
by (cases x; cases y) auto | |
show "x \<le> top" | |
by (cases x) (simp_all add: top_real_min_top_def) | |
show "top + x = x" | |
by (cases x) (simp_all add: top_real_min_top_def) | |
qed | |
end | |
text \<open> | |
Another example of a linearly ordered commutative monoid with a greatest element is the unit interval of real numbers with any triangular norm (t-norm) as aggregation. | |
Ideally, we would like to show that the unit interval is an instance of \<open>linordered_comm_monoid_add_top\<close>. | |
However, this class has an addition operation, so the instantiation would require dependent types. | |
We therefore show only the order property in general and a particular instance of the class. | |
\<close> | |
typedef (overloaded) unit = "{0..1} :: real set" | |
by auto | |
setup_lifting type_definition_unit | |
instantiation unit :: bounded_linorder | |
begin | |
lift_definition bot_unit :: unit is 0 | |
by simp | |
lift_definition top_unit :: unit is 1 | |
by simp | |
lift_definition less_eq_unit :: "unit \<Rightarrow> unit \<Rightarrow> bool" is less_eq . | |
lift_definition less_unit :: "unit \<Rightarrow> unit \<Rightarrow> bool" is less . | |
instance | |
apply intro_classes | |
using bot_unit.rep_eq top_unit.rep_eq less_eq_unit.rep_eq less_unit.rep_eq unit.Rep_unit_inject unit.Rep_unit by auto | |
end | |
text \<open> | |
We give the \L{}ukasiewicz t-norm as a particular instance. | |
\<close> | |
instantiation unit :: linordered_comm_monoid_add_top | |
begin | |
abbreviation tl :: "real \<Rightarrow> real \<Rightarrow> real" where | |
"tl x y \<equiv> max (x + y - 1) 0" | |
lemma tl_assoc: | |
"x \<in> {0..1} \<Longrightarrow> z \<in> {0..1} \<Longrightarrow> tl (tl x y) z = tl x (tl y z)" | |
by auto | |
lemma tl_top_zero: | |
"x \<in> {0..1} \<Longrightarrow> tl 1 x = x" | |
by auto | |
lift_definition plus_unit :: "unit \<Rightarrow> unit \<Rightarrow> unit" is tl | |
by simp | |
instance | |
apply intro_classes | |
apply (metis (mono_tags, lifting) plus_unit.rep_eq unit.Rep_unit_inject unit.Rep_unit tl_assoc) | |
using unit.Rep_unit_inject plus_unit.rep_eq apply fastforce | |
apply (simp add: less_eq_unit.rep_eq plus_unit.rep_eq) | |
by (metis (mono_tags, lifting) top_unit.rep_eq unit.Rep_unit_inject unit.Rep_unit plus_unit.rep_eq tl_top_zero) | |
end | |
subsection \<open>Linearly Ordered Commutative Monoids with a Least Element and a Greatest Element\<close> | |
text \<open> | |
If a linearly ordered commutative monoid already contains a least element which is a unit of aggregation and a greatest element, it forms a linear aggregation lattice. | |
\<close> | |
class linordered_bounded_comm_monoid_add_bot = linordered_comm_monoid_add_bot + order_top | |
begin | |
subclass bounded_linorder .. | |
subclass aggregation_order | |
apply unfold_locales | |
apply (simp add: add_right_mono) | |
apply simp | |
by (metis add_0_right add_left_mono bot.extremum bot.extremum_unique) | |
sublocale linear_aggregation_kleene_algebra where sup = max and inf = min and times = min and conv = id and one = top and star = "\<lambda>x . top" and uminus = "\<lambda>x . if x = bot then top else bot" | |
apply unfold_locales | |
by simp_all | |
lemma t_top: "x + top = top" | |
by (metis add_right_mono bot.extremum bot_zero top_unique) | |
lemma add_increasing: "x \<le> x + y" | |
using add_left_mono bot.extremum by fastforce | |
lemma t_max: "max x y \<le> x + y" | |
using add_commute add_increasing by force | |
end | |
text \<open> | |
An example of a linearly ordered commutative monoid with a least and a greatest element is the unit interval of real numbers with any triangular conorm (t-conorm) as aggregation. | |
For the reason outlined above, we show just a particular instance of \<open>linordered_bounded_comm_monoid_add_bot\<close>. | |
Because the \<open>plus\<close> functions in the two instances given for the unit type are different, we work on a copy of the unit type. | |
\<close> | |
typedef (overloaded) unit2 = "{0..1} :: real set" | |
by auto | |
setup_lifting type_definition_unit2 | |
instantiation unit2 :: bounded_linorder | |
begin | |
lift_definition bot_unit2 :: unit2 is 0 | |
by simp | |
lift_definition top_unit2 :: unit2 is 1 | |
by simp | |
lift_definition less_eq_unit2 :: "unit2 \<Rightarrow> unit2 \<Rightarrow> bool" is less_eq . | |
lift_definition less_unit2 :: "unit2 \<Rightarrow> unit2 \<Rightarrow> bool" is less . | |
instance | |
apply intro_classes | |
using bot_unit2.rep_eq top_unit2.rep_eq less_eq_unit2.rep_eq less_unit2.rep_eq unit2.Rep_unit2_inject unit2.Rep_unit2 by auto | |
end | |
text \<open> | |
We give the product t-conorm as a particular instance. | |
\<close> | |
instantiation unit2 :: linordered_bounded_comm_monoid_add_bot | |
begin | |
abbreviation sp :: "real \<Rightarrow> real \<Rightarrow> real" where | |
"sp x y \<equiv> x + y - x * y" | |
lemma sp_assoc: | |
"sp (sp x y) z = sp x (sp y z)" | |
by (unfold left_diff_distrib right_diff_distrib distrib_left distrib_right) simp | |
lemma sp_mono: | |
assumes "z \<in> {0..1}" | |
and "x \<le> y" | |
shows "sp z x \<le> sp z y" | |
proof - | |
have "z + (1 - z) * x \<le> z + (1 - z) * y" | |
using assms mult_left_mono by fastforce | |
thus ?thesis | |
by (unfold left_diff_distrib right_diff_distrib distrib_left distrib_right) simp | |
qed | |
lift_definition plus_unit2 :: "unit2 \<Rightarrow> unit2 \<Rightarrow> unit2" is sp | |
proof - | |
fix x y :: real | |
assume 1: "x \<in> {0..1}" | |
assume 2: "y \<in> {0..1}" | |
have "x - x * y \<le> 1 - y" | |
using 1 2 by (metis (full_types) atLeastAtMost_iff diff_ge_0_iff_ge left_diff_distrib' mult.commute mult.left_neutral mult_left_le) | |
hence 3: "x + y - x * y \<le> 1" | |
by simp | |
have "y * (x - 1) \<le> 0" | |
using 1 2 by (meson atLeastAtMost_iff le_iff_diff_le_0 mult_nonneg_nonpos) | |
hence "x + y - x * y \<ge> 0" | |
using 1 by (metis (no_types) atLeastAtMost_iff diff_diff_eq2 diff_ge_0_iff_ge left_diff_distrib mult.commute mult.left_neutral order_trans) | |
thus "x + y - x * y \<in> {0..1}" | |
using 3 by simp | |
qed | |
instance | |
apply intro_classes | |
apply (metis (mono_tags, lifting) plus_unit2.rep_eq unit2.Rep_unit2_inject sp_assoc) | |
using unit2.Rep_unit2_inject plus_unit2.rep_eq apply fastforce | |
using sp_mono unit2.Rep_unit2 less_eq_unit2.rep_eq plus_unit2.rep_eq apply simp | |
using bot_unit2.rep_eq unit2.Rep_unit2_inject plus_unit2.rep_eq by fastforce | |
end | |
subsection \<open>Constant Aggregation\<close> | |
text \<open> | |
Any linear order with a constant element extended by new least and greatest elements forms a linear aggregation lattice where the aggregation returns the given constant. | |
\<close> | |
class pointed_linorder = linorder + | |
fixes const :: 'a | |
datatype 'a extC = | |
Bot | |
| Val 'a | |
| Top | |
instantiation extC :: (pointed_linorder) linear_aggregation_kleene_algebra | |
begin | |
fun plus_extC :: "'a extC \<Rightarrow> 'a extC \<Rightarrow> 'a extC" where "plus_extC x y = Val const" | |
fun sup_extC :: "'a extC \<Rightarrow> 'a extC \<Rightarrow> 'a extC" where | |
"sup_extC Bot x = x" | |
| "sup_extC (Val x) Bot = Val x" | |
| "sup_extC (Val x) (Val y) = Val (max x y)" | |
| "sup_extC (Val _) Top = Top" | |
| "sup_extC Top _ = Top" | |
fun inf_extC :: "'a extC \<Rightarrow> 'a extC \<Rightarrow> 'a extC" where | |
"inf_extC Bot _ = Bot" | |
| "inf_extC (Val _) Bot = Bot" | |
| "inf_extC (Val x) (Val y) = Val (min x y)" | |
| "inf_extC (Val x) Top = Val x" | |
| "inf_extC Top x = x" | |
fun times_extC :: "'a extC \<Rightarrow> 'a extC \<Rightarrow> 'a extC" where "times_extC x y = x \<sqinter> y" | |
fun uminus_extC :: "'a extC \<Rightarrow> 'a extC" where | |
"uminus_extC Bot = Top" | |
| "uminus_extC (Val _) = Bot" | |
| "uminus_extC Top = Bot" | |
fun star_extC :: "'a extC \<Rightarrow> 'a extC" where "star_extC _ = Top" | |
fun conv_extC :: "'a extC \<Rightarrow> 'a extC" where "conv_extC x = x" | |
definition bot_extC :: "'a extC" where "bot_extC \<equiv> Bot" | |
definition one_extC :: "'a extC" where "one_extC \<equiv> Top" | |
definition top_extC :: "'a extC" where "top_extC \<equiv> Top" | |
fun less_eq_extC :: "'a extC \<Rightarrow> 'a extC \<Rightarrow> bool" where | |
"less_eq_extC Bot _ = True" | |
| "less_eq_extC (Val _) Bot = False" | |
| "less_eq_extC (Val x) (Val y) = (x \<le> y)" | |
| "less_eq_extC (Val _) Top = True" | |
| "less_eq_extC Top Bot = False" | |
| "less_eq_extC Top (Val _) = False" | |
| "less_eq_extC Top Top = True" | |
fun less_extC :: "'a extC \<Rightarrow> 'a extC \<Rightarrow> bool" where "less_extC x y = (x \<le> y \<and> \<not> y \<le> x)" | |
instance | |
proof | |
fix x y z :: "'a extC" | |
show "(x + y) + z = x + (y + z)" | |
by simp | |
show "x + y = y + x" | |
by simp | |
show "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" | |
by simp | |
show "x \<le> x" | |
by (cases x) simp_all | |
show "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
by (cases x; cases y; cases z) simp_all | |
show "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
by (cases x; cases y) simp_all | |
show "x \<sqinter> y \<le> x" | |
by (cases x; cases y) simp_all | |
show "x \<sqinter> y \<le> y" | |
by (cases x; cases y) simp_all | |
show "x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<sqinter> z" | |
by (cases x; cases y; cases z) simp_all | |
show "x \<le> x \<squnion> y" | |
by (cases x; cases y) simp_all | |
show "y \<le> x \<squnion> y" | |
by (cases x; cases y) simp_all | |
show "y \<le> x \<Longrightarrow> z \<le> x \<Longrightarrow> y \<squnion> z \<le> x" | |
by (cases x; cases y; cases z) simp_all | |
show "bot \<le> x" | |
by (simp add: bot_extC_def) | |
show "x \<le> top" | |
by (cases x) (simp_all add: top_extC_def) | |
show "x \<noteq> bot \<and> x + bot \<le> y + bot \<longrightarrow> x + z \<le> y + z" | |
by simp | |
show "x + y + bot = x + y" | |
by simp | |
show "x + y = bot \<longrightarrow> x = bot" | |
by (simp add: bot_extC_def) | |
show "x \<le> y \<or> y \<le> x" | |
by (cases x; cases y) (simp_all add: linear) | |
show "-x = (if x = bot then top else bot)" | |
by (cases x) (simp_all add: bot_extC_def top_extC_def) | |
show "(1::'a extC) = top" | |
by (simp add: one_extC_def top_extC_def) | |
show "x * y = x \<sqinter> y" | |
by simp | |
show "x\<^sup>T = x" | |
by simp | |
show "x\<^sup>\<star> = top" | |
by (simp add: top_extC_def) | |
qed | |
end | |
text \<open> | |
An example of a linear order is the set of real numbers. | |
Any real number can be chosen as the constant. | |
\<close> | |
instantiation real :: pointed_linorder | |
begin | |
instance .. | |
end | |
text \<open> | |
The following instance shows that any linear order with a constant forms a linearly ordered commutative semigroup with the alpha-median operation as aggregation. | |
The alpha-median of two elements is the median of these elements and the given constant. | |
\<close> | |
fun median3 :: "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
"median3 x y z = | |
(if x \<le> y \<and> y \<le> z then y else | |
if x \<le> z \<and> z \<le> y then z else | |
if y \<le> x \<and> x \<le> z then x else | |
if y \<le> z \<and> z \<le> x then z else | |
if z \<le> x \<and> x \<le> y then x else y)" | |
interpretation alpha_median: linordered_ab_semigroup_add where plus = "median3 const" and less_eq = less_eq and less = less | |
proof | |
fix a b c :: 'a | |
show "median3 const (median3 const a b) c = median3 const a (median3 const b c)" | |
by (cases "const \<le> a"; cases "const \<le> b"; cases "const \<le> c"; cases "a \<le> b"; cases "a \<le> c"; cases "b \<le> c") auto | |
show "median3 const a b = median3 const b a" | |
by (cases "const \<le> a"; cases "const \<le> b"; cases "a \<le> b") auto | |
assume "a \<le> b" | |
thus "median3 const c a \<le> median3 const c b" | |
by (cases "const \<le> a"; cases "const \<le> b"; cases "const \<le> c"; cases "a \<le> c"; cases "b \<le> c") auto | |
qed | |
subsection \<open>Counting Aggregation\<close> | |
text \<open> | |
Any linear order extended by new least and greatest elements and a copy of the natural numbers forms a linear aggregation lattice where the aggregation counts non-$\bot$ elements using the copy of the natural numbers. | |
\<close> | |
datatype 'a extN = | |
Bot | |
| Val 'a | |
| N nat | |
| Top | |
instantiation extN :: (linorder) linear_aggregation_kleene_algebra | |
begin | |
fun plus_extN :: "'a extN \<Rightarrow> 'a extN \<Rightarrow> 'a extN" where | |
"plus_extN Bot Bot = N 0" | |
| "plus_extN Bot (Val _) = N 1" | |
| "plus_extN Bot (N y) = N y" | |
| "plus_extN Bot Top = N 1" | |
| "plus_extN (Val _) Bot = N 1" | |
| "plus_extN (Val _) (Val _) = N 2" | |
| "plus_extN (Val _) (N y) = N (y + 1)" | |
| "plus_extN (Val _) Top = N 2" | |
| "plus_extN (N x) Bot = N x" | |
| "plus_extN (N x) (Val _) = N (x + 1)" | |
| "plus_extN (N x) (N y) = N (x + y)" | |
| "plus_extN (N x) Top = N (x + 1)" | |
| "plus_extN Top Bot = N 1" | |
| "plus_extN Top (Val _) = N 2" | |
| "plus_extN Top (N y) = N (y + 1)" | |
| "plus_extN Top Top = N 2" | |
fun sup_extN :: "'a extN \<Rightarrow> 'a extN \<Rightarrow> 'a extN" where | |
"sup_extN Bot x = x" | |
| "sup_extN (Val x) Bot = Val x" | |
| "sup_extN (Val x) (Val y) = Val (max x y)" | |
| "sup_extN (Val _) (N y) = N y" | |
| "sup_extN (Val _) Top = Top" | |
| "sup_extN (N x) Bot = N x" | |
| "sup_extN (N x) (Val _) = N x" | |
| "sup_extN (N x) (N y) = N (max x y)" | |
| "sup_extN (N _) Top = Top" | |
| "sup_extN Top _ = Top" | |
fun inf_extN :: "'a extN \<Rightarrow> 'a extN \<Rightarrow> 'a extN" where | |
"inf_extN Bot _ = Bot" | |
| "inf_extN (Val _) Bot = Bot" | |
| "inf_extN (Val x) (Val y) = Val (min x y)" | |
| "inf_extN (Val x) (N _) = Val x" | |
| "inf_extN (Val x) Top = Val x" | |
| "inf_extN (N _) Bot = Bot" | |
| "inf_extN (N _) (Val y) = Val y" | |
| "inf_extN (N x) (N y) = N (min x y)" | |
| "inf_extN (N x) Top = N x" | |
| "inf_extN Top y = y" | |
fun times_extN :: "'a extN \<Rightarrow> 'a extN \<Rightarrow> 'a extN" where "times_extN x y = x \<sqinter> y" | |
fun uminus_extN :: "'a extN \<Rightarrow> 'a extN" where | |
"uminus_extN Bot = Top" | |
| "uminus_extN (Val _) = Bot" | |
| "uminus_extN (N _) = Bot" | |
| "uminus_extN Top = Bot" | |
fun star_extN :: "'a extN \<Rightarrow> 'a extN" where "star_extN _ = Top" | |
fun conv_extN :: "'a extN \<Rightarrow> 'a extN" where "conv_extN x = x" | |
definition bot_extN :: "'a extN" where "bot_extN \<equiv> Bot" | |
definition one_extN :: "'a extN" where "one_extN \<equiv> Top" | |
definition top_extN :: "'a extN" where "top_extN \<equiv> Top" | |
fun less_eq_extN :: "'a extN \<Rightarrow> 'a extN \<Rightarrow> bool" where | |
"less_eq_extN Bot _ = True" | |
| "less_eq_extN (Val _) Bot = False" | |
| "less_eq_extN (Val x) (Val y) = (x \<le> y)" | |
| "less_eq_extN (Val _) (N _) = True" | |
| "less_eq_extN (Val _) Top = True" | |
| "less_eq_extN (N _) Bot = False" | |
| "less_eq_extN (N _) (Val _) = False" | |
| "less_eq_extN (N x) (N y) = (x \<le> y)" | |
| "less_eq_extN (N _) Top = True" | |
| "less_eq_extN Top Bot = False" | |
| "less_eq_extN Top (Val _) = False" | |
| "less_eq_extN Top (N _) = False" | |
| "less_eq_extN Top Top = True" | |
fun less_extN :: "'a extN \<Rightarrow> 'a extN \<Rightarrow> bool" where "less_extN x y = (x \<le> y \<and> \<not> y \<le> x)" | |
instance | |
proof | |
fix x y z :: "'a extN" | |
show "(x + y) + z = x + (y + z)" | |
by (cases x; cases y; cases z) simp_all | |
show "x + y = y + x" | |
by (cases x; cases y) simp_all | |
show "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" | |
by simp | |
show "x \<le> x" | |
by (cases x) simp_all | |
show "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
by (cases x; cases y; cases z) simp_all | |
show "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
by (cases x; cases y) simp_all | |
show "x \<sqinter> y \<le> x" | |
by (cases x; cases y) simp_all | |
show "x \<sqinter> y \<le> y" | |
by (cases x; cases y) simp_all | |
show "x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<sqinter> z" | |
by (cases x; cases y; cases z) simp_all | |
show "x \<le> x \<squnion> y" | |
by (cases x; cases y) simp_all | |
show "y \<le> x \<squnion> y" | |
by (cases x; cases y) simp_all | |
show "y \<le> x \<Longrightarrow> z \<le> x \<Longrightarrow> y \<squnion> z \<le> x" | |
by (cases x; cases y; cases z) simp_all | |
show "bot \<le> x" | |
by (simp add: bot_extN_def) | |
show "x \<le> top" | |
by (cases x) (simp_all add: top_extN_def) | |
show "x \<noteq> bot \<and> x + bot \<le> y + bot \<longrightarrow> x + z \<le> y + z" | |
by (cases x; cases y; cases z) (simp_all add: bot_extN_def) | |
show "x + y + bot = x + y" | |
by (cases x; cases y) (simp_all add: bot_extN_def) | |
show "x + y = bot \<longrightarrow> x = bot" | |
by (cases x; cases y) (simp_all add: bot_extN_def) | |
show "x \<le> y \<or> y \<le> x" | |
by (cases x; cases y) (simp_all add: linear) | |
show "-x = (if x = bot then top else bot)" | |
by (cases x) (simp_all add: bot_extN_def top_extN_def) | |
show "(1::'a extN) = top" | |
by (simp add: one_extN_def top_extN_def) | |
show "x * y = x \<sqinter> y" | |
by simp | |
show "x\<^sup>T = x" | |
by simp | |
show "x\<^sup>\<star> = top" | |
by (simp add: top_extN_def) | |
qed | |
end | |
end | |