Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Author: René Thiemann | |
Akihisa Yamada | |
License: BSD | |
*) | |
subsection \<open>Compare Instance for Complex Numbers\<close> | |
text \<open>We define some code equations for complex numbers, provide a comparator for complex | |
numbers, and register complex numbers for the container framework.\<close> | |
theory Compare_Complex | |
imports | |
HOL.Complex | |
Polynomial_Interpolation.Missing_Unsorted | |
Deriving.Compare_Real | |
Containers.Set_Impl | |
begin | |
declare [[code drop: Gcd_fin]] | |
declare [[code drop: Lcm_fin]] | |
definition gcds :: "'a::semiring_gcd list \<Rightarrow> 'a" | |
where [simp, code_abbrev]: "gcds xs = gcd_list xs" | |
lemma [code]: | |
"gcds xs = fold gcd xs 0" | |
by (simp add: Gcd_fin.set_eq_fold) | |
definition lcms :: "'a::semiring_gcd list \<Rightarrow> 'a" | |
where [simp, code_abbrev]: "lcms xs = lcm_list xs" | |
lemma [code]: | |
"lcms xs = fold lcm xs 1" | |
by (simp add: Lcm_fin.set_eq_fold) | |
lemma in_reals_code [code_unfold]: | |
"x \<in> \<real> \<longleftrightarrow> Im x = 0" | |
by (fact complex_is_Real_iff) | |
definition is_norm_1 :: "complex \<Rightarrow> bool" where | |
"is_norm_1 z = ((Re z)\<^sup>2 + (Im z)\<^sup>2 = 1)" | |
lemma is_norm_1[simp]: "is_norm_1 x = (norm x = 1)" | |
unfolding is_norm_1_def norm_complex_def by simp | |
definition is_norm_le_1 :: "complex \<Rightarrow> bool" where | |
"is_norm_le_1 z = ((Re z)\<^sup>2 + (Im z)\<^sup>2 \<le> 1)" | |
lemma is_norm_le_1[simp]: "is_norm_le_1 x = (norm x \<le> 1)" | |
unfolding is_norm_le_1_def norm_complex_def by simp | |
instantiation complex :: finite_UNIV | |
begin | |
definition "finite_UNIV = Phantom(complex) False" | |
instance | |
by (intro_classes, unfold finite_UNIV_complex_def, simp add: infinite_UNIV_char_0) | |
end | |
instantiation complex :: compare | |
begin | |
definition compare_complex :: "complex \<Rightarrow> complex \<Rightarrow> order" where | |
"compare_complex x y = compare (Re x, Im x) (Re y, Im y)" | |
instance | |
proof (intro_classes, unfold_locales; unfold compare_complex_def) | |
fix x y z :: complex | |
let ?c = "compare :: (real \<times> real) comparator" | |
interpret comparator ?c by (rule comparator_compare) | |
show "invert_order (?c (Re x, Im x) (Re y, Im y)) = ?c (Re y, Im y) (Re x, Im x)" | |
by (rule sym) | |
{ | |
assume "?c (Re x, Im x) (Re y, Im y) = Lt" | |
"?c (Re y, Im y) (Re z, Im z) = Lt" | |
thus "?c (Re x, Im x) (Re z, Im z) = Lt" | |
by (rule comp_trans) | |
} | |
{ | |
assume "?c (Re x, Im x) (Re y, Im y) = Eq" | |
from weak_eq[OF this] show "x = y" unfolding complex_eq_iff by auto | |
} | |
qed | |
end | |
derive (eq) ceq complex real | |
derive (compare) ccompare complex | |
derive (compare) ccompare real | |
derive (dlist) set_impl complex real | |
end | |