Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Domain Quantales | |
Author: Victor Gomes, Georg Struth | |
Maintainer: Victor Gomes <victor.gomes@cl.cam.ac.uk> | |
Georg Struth <g.struth@sheffield.ac.uk> | |
*) | |
section \<open>Component for Recursive Programs\<close> | |
theory Domain_Quantale | |
imports KAD.Modal_Kleene_Algebra | |
begin | |
text \<open>This component supports the verification and step-wise refinement of recursive programs | |
in a partial correctness setting.\<close> | |
notation | |
times (infixl "\<cdot>" 70) and | |
bot ("\<bottom>") and | |
top ("\<top>") and | |
inf (infixl "\<sqinter>" 65) and | |
sup (infixl "\<squnion>" 65) | |
subsection \<open>Lattice-Ordered Monoids with Domain\<close> | |
class bd_lattice_ordered_monoid = bounded_lattice + distrib_lattice + monoid_mult + | |
assumes left_distrib: "x \<cdot> (y \<squnion> z) = x \<cdot> y \<squnion> x \<cdot> z" | |
and right_distrib: "(x \<squnion> y) \<cdot> z = x \<cdot> z \<squnion> y \<cdot> z" | |
and bot_annil [simp]: "\<bottom> \<cdot> x = \<bottom>" | |
and bot_annir [simp]: "x \<cdot> \<bottom> = \<bottom>" | |
begin | |
sublocale semiring_one_zero "(\<squnion>)" "(\<cdot>)" "1" "bot" | |
by (standard, auto simp: sup.assoc sup.commute sup_left_commute left_distrib right_distrib sup_absorb1) | |
sublocale dioid_one_zero "(\<squnion>)" "(\<cdot>)" "1" bot "(\<le>)" "(<)" | |
by (standard, simp add: le_iff_sup, auto) | |
end | |
no_notation ads_d ("d") | |
and ars_r ("r") | |
and antirange_op ("ar _" [999] 1000) | |
class domain_bdlo_monoid = bd_lattice_ordered_monoid + | |
assumes rdv: "(z \<sqinter> x \<cdot> top) \<cdot> y = z \<cdot> y \<sqinter> x \<cdot> top" | |
begin | |
definition "d x = 1 \<sqinter> x \<cdot> \<top>" | |
sublocale ds: domain_semiring "(\<squnion>)" "(\<cdot>)" "1" "\<bottom>" "d" "(\<le>)" "(<)" | |
proof standard | |
fix x y | |
show "x \<squnion> d x \<cdot> x = d x \<cdot> x" | |
by (metis d_def inf_sup_absorb left_distrib mult_1_left mult_1_right rdv sup.absorb_iff1 sup.idem sup.left_commute top_greatest) | |
show "d (x \<cdot> d y) = d (x \<cdot> y)" | |
by (simp add: d_def inf_absorb2 rdv mult_assoc) | |
show "d x \<squnion> 1 = 1" | |
by (simp add: d_def sup.commute) | |
show "d bot = bot" | |
by (simp add: d_def inf.absorb1 inf.commute) | |
show "d (x \<squnion> y) = d x \<squnion> d y" | |
by (simp add: d_def inf_sup_distrib1) | |
qed | |
end | |
subsection\<open>Boolean Monoids with Domain\<close> | |
class boolean_monoid = boolean_algebra + monoid_mult + | |
assumes left_distrib': "x \<cdot> (y \<squnion> z) = x \<cdot> y \<squnion> x \<cdot> z" | |
and right_distrib': "(x \<squnion> y) \<cdot> z = x \<cdot> z \<squnion> y \<cdot> z" | |
and bot_annil' [simp]: "\<bottom> \<cdot> x = \<bottom>" | |
and bot_annir' [simp]: "x \<cdot> \<bottom> = \<bottom>" | |
begin | |
subclass bd_lattice_ordered_monoid | |
by (standard, simp_all add: left_distrib' right_distrib') | |
lemma inf_bot_iff_le: "x \<sqinter> y = \<bottom> \<longleftrightarrow> x \<le> -y" | |
by (metis le_iff_inf inf_sup_distrib1 inf_top_right sup_bot.left_neutral sup_compl_top compl_inf_bot inf.assoc inf_bot_right) | |
end | |
class domain_boolean_monoid = boolean_monoid + | |
assumes rdv': "(z \<sqinter> x \<cdot> \<top>) \<cdot> y = z \<cdot> y \<sqinter> x \<cdot> \<top>" | |
begin | |
sublocale dblo: domain_bdlo_monoid "1" "(\<cdot>)" "(\<sqinter>)" "(\<le>)" "(<)" "(\<squnion>)" "\<bottom>" "\<top>" | |
by (standard, simp add: rdv') | |
definition "a x = 1 \<sqinter> -(dblo.d x)" | |
lemma a_d_iff: "a x = 1 \<sqinter> -(x \<cdot> \<top>)" | |
by (clarsimp simp: a_def dblo.d_def inf_sup_distrib1) | |
lemma topr: "-(x \<cdot> \<top>) \<cdot> \<top> = -(x \<cdot> \<top>)" | |
proof (rule order.antisym) | |
show "-(x \<cdot> \<top>) \<le> -(x \<cdot> \<top>) \<cdot> \<top>" | |
by (metis mult_isol_var mult_oner order_refl top_greatest) | |
have "-(x \<cdot> \<top>) \<sqinter> (x \<cdot> \<top>) = \<bottom>" | |
by simp | |
hence "(-(x \<cdot> \<top>) \<sqinter> (x \<cdot> \<top>)) \<cdot> \<top> = \<bottom>" | |
by simp | |
hence "-(x \<cdot> \<top>) \<cdot> \<top> \<sqinter> (x \<cdot> \<top>) = \<bottom>" | |
by (metis rdv') | |
thus "-(x \<cdot> \<top>) \<cdot> \<top> \<le> -(x \<cdot> \<top>)" | |
by (simp add: inf_bot_iff_le) | |
qed | |
lemma dd_a: "dblo.d x = a (a x)" | |
by (metis a_d_iff dblo.d_def double_compl inf_top.left_neutral mult_1_left rdv' topr) | |
lemma ad_a [simp]: "a (dblo.d x) = a x" | |
by (simp add: a_def) | |
lemma da_a [simp]: "dblo.d (a x) = a x" | |
using ad_a dd_a by auto | |
lemma a1 [simp]: "a x \<cdot> x = \<bottom>" | |
proof - | |
have "a x \<cdot> x \<cdot> \<top> = \<bottom>" | |
by (metis a_d_iff inf_compl_bot mult_1_left rdv' topr) | |
then show ?thesis | |
by (metis (no_types) dblo.d_def dblo.ds.domain_very_strict inf_bot_right) | |
qed | |
lemma a2 [simp]: "a (x \<cdot> y) \<squnion> a (x \<cdot> a (a y)) = a (x \<cdot> a (a y))" | |
by (metis a_def dblo.ds.dsr2 dd_a sup.idem) | |
lemma a3 [simp]: "a (a x) \<squnion> a x = 1" | |
by (metis a_def da_a inf.commute sup.commute sup_compl_top sup_inf_absorb sup_inf_distrib1) | |
subclass domain_bdlo_monoid .. | |
text \<open>The next statement shows that every boolean monoid with domain is an antidomain semiring. | |
In this setting the domain operation has been defined explicitly.\<close> | |
sublocale ad: antidomain_semiring a "(\<squnion>)" "(\<cdot>)" "1" "\<bottom>" "(\<le>)" "(<)" | |
rewrites ad_eq: "ad.ads_d x = d x" | |
proof - | |
show "class.antidomain_semiring a (\<squnion>) (\<cdot>) 1 \<bottom> (\<le>) (<)" | |
by (standard, simp_all) | |
then interpret ad: antidomain_semiring a "(\<squnion>)" "(\<cdot>)" "1" "\<bottom>" "(\<le>)" "(<)" . | |
show "ad.ads_d x = d x" | |
by (simp add: ad.ads_d_def dd_a) | |
qed | |
end | |
subsection\<open>Boolean Monoids with Range\<close> | |
class range_boolean_monoid = boolean_monoid + | |
assumes ldv': "y \<cdot> (z \<sqinter> \<top> \<cdot> x) = y \<cdot> z \<sqinter> \<top> \<cdot> x" | |
begin | |
definition "r x = 1 \<sqinter> \<top> \<cdot> x" | |
definition "ar x = 1 \<sqinter> -(r x)" | |
lemma ar_r_iff: "ar x = 1 \<sqinter> -(\<top> \<cdot> x)" | |
by (simp add: ar_def inf_sup_distrib1 r_def) | |
lemma topl: "\<top>\<cdot>(-(\<top> \<cdot> x)) = -(\<top> \<cdot> x)" | |
proof (rule order.antisym) | |
show "\<top> \<cdot> - (\<top> \<cdot> x) \<le> - (\<top> \<cdot> x)" | |
by (metis bot_annir' compl_inf_bot inf_bot_iff_le ldv') | |
show "- (\<top> \<cdot> x) \<le> \<top> \<cdot> - (\<top> \<cdot> x)" | |
by (metis inf_le2 inf_top.right_neutral mult_1_left mult_isor) | |
qed | |
lemma r_ar: "r x = ar (ar x)" | |
by (metis ar_r_iff double_compl inf.commute inf_top.right_neutral ldv' mult_1_right r_def topl) | |
lemma ar_ar [simp]: "ar (r x) = ar x" | |
by (simp add: ar_def ldv' r_def) | |
lemma rar_ar [simp]: "r (ar x) = ar x" | |
using r_ar ar_ar by force | |
lemma ar1 [simp]: "x \<cdot> ar x = \<bottom>" | |
proof - | |
have "\<top> \<cdot> x \<cdot> ar x = \<bottom>" | |
by (metis ar_r_iff inf_compl_bot ldv' mult_oner topl) | |
then show ?thesis | |
by (metis inf_bot_iff_le inf_le2 inf_top.right_neutral mult_1_left mult_isor mult_oner topl) | |
qed | |
lemma ars: "r (r x \<cdot> y) = r (x \<cdot> y)" | |
by (metis inf.commute inf_top.right_neutral ldv' mult_oner mult_assoc r_def) | |
lemma ar2 [simp]: "ar (x \<cdot> y) \<squnion> ar (ar (ar x) \<cdot> y) = ar (ar (ar x) \<cdot> y)" | |
by (metis ar_def ars r_ar sup.idem) | |
lemma ar3 [simp]: "ar (ar x) \<squnion> ar x = 1 " | |
by (metis ar_def rar_ar inf.commute sup.commute sup_compl_top sup_inf_absorb sup_inf_distrib1) | |
sublocale ar: antirange_semiring "(\<squnion>)" "(\<cdot>)" "1" "\<bottom>" ar "(\<le>)" "(<)" | |
rewrites ar_eq: "ar.ars_r x = r x" | |
proof - | |
show "class.antirange_semiring (\<squnion>) (\<cdot>) 1 \<bottom> ar (\<le>) (<)" | |
by (standard, simp_all) | |
then interpret ar: antirange_semiring "(\<squnion>)" "(\<cdot>)" "1" "\<bottom>" ar "(\<le>)" "(<)" . | |
show "ar.ars_r x = r x" | |
by (simp add: ar.ars_r_def r_ar) | |
qed | |
end | |
subsection \<open>Quantales\<close> | |
text \<open>This part will eventually move into an AFP quantale entry.\<close> | |
class quantale = complete_lattice + monoid_mult + | |
assumes Sup_distr: "Sup X \<cdot> y = Sup {z. \<exists>x \<in> X. z = x \<cdot> y}" | |
and Sup_distl: "x \<cdot> Sup Y = Sup {z. \<exists>y \<in> Y. z = x \<cdot> y}" | |
begin | |
lemma bot_annil'' [simp]: "\<bottom> \<cdot> x = \<bottom>" | |
using Sup_distr[where X="{}"] by auto | |
lemma bot_annirr'' [simp]: "x \<cdot> \<bottom> = \<bottom>" | |
using Sup_distl[where Y="{}"] by auto | |
lemma sup_distl: "x \<cdot> (y \<squnion> z) = x \<cdot> y \<squnion> x \<cdot> z" | |
using Sup_distl[where Y="{y, z}"] by (fastforce intro!: Sup_eqI) | |
lemma sup_distr: "(x \<squnion> y) \<cdot> z = x \<cdot> z \<squnion> y \<cdot> z" | |
using Sup_distr[where X="{x, y}"] by (fastforce intro!: Sup_eqI) | |
sublocale semiring_one_zero "(\<squnion>)" "(\<cdot>)" "1" "\<bottom>" | |
by (standard, auto simp: sup.assoc sup.commute sup_left_commute sup_distl sup_distr) | |
sublocale dioid_one_zero "(\<squnion>)" "(\<cdot>)" "1" "\<bottom>" "(\<le>)" "(<)" | |
by (standard, simp add: le_iff_sup, auto) | |
lemma Sup_sup_pred: "x \<squnion> Sup{y. P y} = Sup{y. y = x \<or> P y}" | |
apply (rule order.antisym) | |
apply (simp add: Collect_mono Sup_subset_mono Sup_upper) | |
using Sup_least Sup_upper le_supI2 by fastforce | |
definition star :: "'a \<Rightarrow> 'a" where | |
"star x = (SUP i. x ^ i)" | |
lemma star_def_var1: "star x = Sup{y. \<exists>i. y = x ^ i}" | |
by (simp add: star_def full_SetCompr_eq) | |
lemma star_def_var2: "star x = Sup{x ^ i |i. True}" | |
by (simp add: star_def full_SetCompr_eq) | |
lemma star_unfoldl' [simp]: "1 \<squnion> x \<cdot> (star x) = star x" | |
proof - | |
have "1 \<squnion> x \<cdot> (star x) = x ^ 0 \<squnion> x \<cdot> Sup{y. \<exists>i. y = x ^ i}" | |
by (simp add: star_def_var1) | |
also have "... = x ^ 0 \<squnion> Sup{y. \<exists>i. y = x ^ (i + 1)}" | |
by (simp add: Sup_distl, metis) | |
also have "... = Sup{y. y = x ^ 0 \<or> (\<exists>i. y = x ^ (i + 1))}" | |
using Sup_sup_pred by simp | |
also have "... = Sup{y. \<exists>i. y = x ^ i}" | |
by (metis Suc_eq_plus1 power.power.power_Suc power.power_eq_if) | |
finally show ?thesis | |
by (simp add: star_def_var1) | |
qed | |
lemma star_unfoldr' [simp]: "1 \<squnion> (star x) \<cdot> x = star x" | |
proof - | |
have "1 \<squnion> (star x) \<cdot> x = x ^ 0 \<squnion> Sup{y. \<exists>i. y = x ^ i} \<cdot> x" | |
by (simp add: star_def_var1) | |
also have "... = x ^ 0 \<squnion> Sup{y. \<exists>i. y = x ^ i \<cdot> x}" | |
by (simp add: Sup_distr, metis) | |
also have "... = x ^ 0 \<squnion> Sup{y. \<exists>i. y = x ^ (i + 1)}" | |
using power_Suc2 by simp | |
also have "... = Sup{y. y = x ^ 0 \<or> (\<exists>i. y = x ^ (i + 1))}" | |
using Sup_sup_pred by simp | |
also have "... = Sup{y. \<exists>i. y = x ^ i}" | |
by (metis Suc_eq_plus1 power.power.power_Suc power.power_eq_if) | |
finally show ?thesis | |
by (simp add: star_def_var1) | |
qed | |
lemma (in dioid_one_zero) power_inductl: "z + x \<cdot> y \<le> y \<Longrightarrow> (x ^ n) \<cdot> z \<le> y" | |
proof (induct n) | |
case 0 show ?case | |
using "0.prems" by simp | |
case Suc thus ?case | |
by (simp, metis mult.assoc mult_isol order_trans) | |
qed | |
lemma (in dioid_one_zero) power_inductr: "z + y \<cdot> x \<le> y \<Longrightarrow> z \<cdot> (x ^ n) \<le> y" | |
proof (induct n) | |
case 0 show ?case | |
using "0.prems" by auto | |
case Suc | |
{ | |
fix n | |
assume "z + y \<cdot> x \<le> y \<Longrightarrow> z \<cdot> x ^ n \<le> y" | |
and "z + y \<cdot> x \<le> y" | |
hence "z \<cdot> x ^ n \<le> y" | |
by simp | |
also have "z \<cdot> x ^ Suc n = z \<cdot> x \<cdot> x ^ n" | |
by (metis mult.assoc power_Suc) | |
moreover have "... = (z \<cdot> x ^ n) \<cdot> x" | |
by (metis mult.assoc power_commutes) | |
moreover have "... \<le> y \<cdot> x" | |
by (metis calculation(1) mult_isor) | |
moreover have "... \<le> y" | |
using \<open>z + y \<cdot> x \<le> y\<close> by simp | |
ultimately have "z \<cdot> x ^ Suc n \<le> y" by simp | |
} | |
thus ?case | |
by (metis Suc) | |
qed | |
lemma star_inductl': "z \<squnion> x \<cdot> y \<le> y \<Longrightarrow> (star x) \<cdot> z \<le> y" | |
proof - | |
assume "z \<squnion> x \<cdot> y \<le> y" | |
hence "\<forall>i. x ^ i \<cdot> z \<le> y" | |
by (simp add: power_inductl) | |
hence "Sup{w. \<exists>i. w = x ^ i \<cdot> z} \<le> y" | |
by (intro Sup_least, fast) | |
hence "Sup{w. \<exists>i. w = x ^ i} \<cdot> z \<le> y" | |
using Sup_distr Sup_le_iff by auto | |
thus "(star x) \<cdot> z \<le> y" | |
by (simp add: star_def_var1) | |
qed | |
lemma star_inductr': "z \<squnion> y \<cdot> x \<le> y \<Longrightarrow> z \<cdot> (star x) \<le> y" | |
proof - | |
assume "z \<squnion> y \<cdot> x \<le> y" | |
hence "\<forall>i. z \<cdot> x ^ i \<le> y" | |
by (simp add: power_inductr) | |
hence "Sup{w. \<exists>i. w = z \<cdot> x ^ i} \<le> y" | |
by (intro Sup_least, fast) | |
hence "z \<cdot> Sup{w. \<exists>i. w = x ^ i} \<le> y" | |
using Sup_distl Sup_le_iff by auto | |
thus "z \<cdot> (star x) \<le> y" | |
by (simp add: star_def_var1) | |
qed | |
sublocale ka: kleene_algebra "(\<squnion>)" "(\<cdot>)" "1" "\<bottom>" "(\<le>)" "(<)" star | |
by standard (simp_all add: star_inductl' star_inductr') | |
end | |
text \<open>Distributive quantales are often assumed to satisfy infinite distributivity laws between | |
joins and meets, but finite ones suffice for our purposes.\<close> | |
class distributive_quantale = quantale + distrib_lattice | |
begin | |
subclass bd_lattice_ordered_monoid | |
by (standard, simp_all add: distrib_left) | |
lemma "(1 \<sqinter> x \<cdot> \<top>) \<cdot> x = x" | |
(* nitpick [expect=genuine]*) | |
oops | |
end | |
subsection \<open>Domain Quantales\<close> | |
class domain_quantale = distributive_quantale + | |
assumes rdv'': "(z \<sqinter> x \<cdot> \<top>) \<cdot> y = z \<cdot> y \<sqinter> x \<cdot> \<top>" | |
begin | |
subclass domain_bdlo_monoid | |
by (standard, simp add: rdv'') | |
end | |
class range_quantale = distributive_quantale + | |
assumes ldv'': "y \<cdot> (z \<sqinter> \<top> \<cdot> x) = y \<cdot> z \<sqinter> \<top> \<cdot> x" | |
class boolean_quantale = quantale + complete_boolean_algebra | |
begin | |
subclass boolean_monoid | |
by (standard, simp_all add: sup_distl) | |
lemma "(1 \<sqinter> x \<cdot> \<top>) \<cdot> x = x" | |
(*nitpick[expect=genuine]*) | |
oops | |
lemma "(1 \<sqinter> -(x \<cdot> \<top>)) \<cdot> x = \<bottom>" | |
(*nitpick[expect=genuine]*) | |
oops | |
end | |
subsection\<open>Boolean Domain Quantales\<close> | |
class domain_boolean_quantale = domain_quantale + boolean_quantale | |
begin | |
subclass domain_boolean_monoid | |
by (standard, simp add: rdv'') | |
lemma fbox_eq: "ad.fbox x q = Sup{d p |p. d p \<cdot> x \<le> x \<cdot> d q}" | |
apply (rule Sup_eqI[symmetric]) | |
apply clarsimp | |
using ad.fbox_demodalisation3 ad.fbox_simp apply auto[1] | |
apply clarsimp | |
by (metis ad.fbox_def ad.fbox_demodalisation3 ad.fbox_simp da_a eq_refl) | |
lemma fdia_eq: "ad.fdia x p = Inf{d q |q. x \<cdot> d p \<le> d q \<cdot> x}" | |
apply (rule Inf_eqI[symmetric]) | |
apply clarsimp | |
using ds.fdemodalisation2 apply auto[1] | |
apply clarsimp | |
by (metis ad.fd_eq_fdia ad.fdia_def da_a double_compl ds.fdemodalisation2 inf_bot_iff_le inf_compl_bot) | |
text \<open>The specification statement can be defined explicitly.\<close> | |
definition R :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
"R p q \<equiv> Sup{x. (d p) \<cdot> x \<le> x \<cdot> d q}" | |
lemma "x \<le> R p q \<Longrightarrow> d p \<le> ad.fbox x (d q)" | |
proof (simp add: R_def ad.kat_1_equiv ad.kat_2_equiv) | |
assume "x \<le> Sup{x. d p \<cdot> x \<cdot> a q = \<bottom>}" | |
hence "d p \<cdot> x \<cdot> a q \<le> d p \<cdot> Sup{x. d p \<cdot> x \<cdot> a q = \<bottom>} \<cdot> a q " | |
using mult_double_iso by blast | |
also have "... = Sup{d p \<cdot> x \<cdot> a q |x. d p \<cdot> x \<cdot> a q = \<bottom>}" | |
apply (subst Sup_distl) | |
apply (subst Sup_distr) | |
apply clarsimp | |
by metis | |
also have "... = \<bottom>" | |
by (auto simp: Sup_eqI) | |
finally show ?thesis | |
using ad.fbox_demodalisation3 ad.kat_3 ad.kat_4 le_bot by blast | |
qed | |
lemma "d p \<le> ad.fbox x (d q) \<Longrightarrow> x \<le> R p q" | |
apply (simp add: R_def) | |
apply (rule Sup_upper) | |
apply simp | |
using ad.fbox_demodalisation3 ad.fbox_simp apply auto[1] | |
done | |
end | |
subsection\<open>Relational Model of Boolean Domain Quantales\<close> | |
interpretation rel_dbq: domain_boolean_quantale | |
\<open>(-)\<close> uminus \<open>(\<inter>)\<close> \<open>(\<subseteq>)\<close> \<open>(\<subset>)\<close> \<open>(\<union>)\<close> \<open>{}\<close> UNIV \<open>\<Inter>\<close> \<open>\<Union>\<close> Id \<open>(O)\<close> | |
by standard auto | |
subsection\<open>Modal Boolean Quantales\<close> | |
class range_boolean_quantale = range_quantale + boolean_quantale | |
begin | |
subclass range_boolean_monoid | |
by (standard, simp add: ldv'') | |
lemma fbox_eq: "ar.bbox x (r q) = Sup{r p |p. x \<cdot> r p \<le> (r q) \<cdot> x}" | |
apply (rule Sup_eqI[symmetric]) | |
apply clarsimp | |
using ar.ardual.fbox_demodalisation3 ar.ardual.fbox_simp apply auto[1] | |
apply clarsimp | |
by (metis ar.ardual.fbox_def ar.ardual.fbox_demodalisation3 eq_refl rar_ar) | |
lemma fdia_eq: "ar.bdia x (r p) = Inf{r q |q. (r p) \<cdot> x \<le> x \<cdot> r q}" | |
apply (rule Inf_eqI[symmetric]) | |
apply clarsimp | |
using ar.ars_r_def ar.ardual.fdemodalisation22 ar.ardual.kat_3_equiv_opp ar.ardual.kat_4_equiv_opp apply auto[1] | |
apply clarsimp | |
using ar.bdia_def ar.ardual.ds.fdemodalisation2 r_ar by fastforce | |
end | |
class modal_boolean_quantale = domain_boolean_quantale + range_boolean_quantale + | |
assumes domrange' [simp]: "d (r x) = r x" | |
and rangedom' [simp]: "r (d x) = d x" | |
begin | |
sublocale mka: modal_kleene_algebra "(\<squnion>)" "(\<cdot>)" 1 \<bottom> "(\<le>)" "(<)" star a ar | |
by standard (simp_all add: ar_eq ad_eq) | |
end | |
no_notation fbox ("( |_] _)" [61,81] 82) | |
and antidomain_semiringl_class.fbox ("( |_] _)" [61,81] 82) | |
notation ad.fbox ("( |_] _)" [61,81] 82) | |
subsection \<open>Recursion Rule\<close> | |
lemma recursion: "mono (f :: 'a \<Rightarrow> 'a :: domain_boolean_quantale) \<Longrightarrow> | |
(\<And>x. d p \<le> |x] d q \<Longrightarrow> d p \<le> |f x] d q) \<Longrightarrow> d p \<le> |lfp f] d q" | |
apply (erule lfp_ordinal_induct [where f=f], simp) | |
by (auto simp: ad.addual.ardual.fbox_demodalisation3 Sup_distr Sup_distl intro: Sup_mono) | |
text \<open>We have already tested this rule in the context of test quantales~\cite{ArmstrongGS15}, which is based | |
on a formalisation of quantales that is currently not in the AFP. The two theories will be merged as | |
soon as the quantale is available in the AFP.\<close> | |
end | |