Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
41 kB
(*
Title: Allen's qualitative temporal calculus
Author: Fadoua Ghourabi (fadouaghourabi@gmail.com)
Affiliation: Ochanomizu University, Japan
*)
theory nest
imports
Main jointly_exhaustive examples
"HOL-Eisbach.Eisbach_Tools"
begin
section \<open>Nests\<close>
text\<open>Nests are sets of intervals that share a meeting point. We define relation before between nests that give the ordering properties of points.\<close>
subsection \<open>Definitions\<close>
type_synonym 'a nest = "'a set"
definition (in arelations) BEGIN :: "'a \<Rightarrow> 'a nest"
where "BEGIN i = {j | j. (j,i) \<in> ov \<union> s \<union> m \<union> f^-1 \<union> d^-1 \<union> e \<union> s^-1}"
definition (in arelations) END :: "'a \<Rightarrow> 'a nest"
where "END i = {j | j. (j,i) \<in> e \<union> ov^-1 \<union> s^-1 \<union> d^-1 \<union> f \<union> f^-1 \<union> m^-1}"
definition (in arelations) NEST ::"'a nest \<Rightarrow> bool"
where "NEST S \<equiv> \<exists>i. \<I> i \<and> (S = BEGIN i \<or> S = END i)"
definition (in arelations) before :: "'a nest \<Rightarrow> 'a nest \<Rightarrow> bool" (infix "\<lless>" 100)
where "before N M \<equiv> NEST N \<and> NEST M \<and> (\<exists>n m. \<^cancel>\<open>\<I> m \<and> \<I> n \<and>\<close> n \<in> N \<and> m \<in> M \<and> (n,m) \<in> b)"
subsection \<open>Properties of Nests\<close>
lemma intv1:
assumes "\<I> i"
shows "i \<in> BEGIN i"
unfolding BEGIN_def
by (simp add:e assms)
lemma intv2:
assumes "\<I> i"
shows "i \<in> END i"
unfolding END_def
by (simp add: e assms)
lemma NEST_nonempty:
assumes "NEST S"
shows "S \<noteq> {}"
using assms unfolding NEST_def
by (insert intv1 intv2, auto)
lemma NEST_BEGIN:
assumes "\<I> i"
shows "NEST (BEGIN i)"
using NEST_def assms by auto
lemma NEST_END:
assumes "\<I> i"
shows "NEST (END i)"
using NEST_def assms by auto
lemma before:
assumes a:"\<I> i"
shows "BEGIN i \<lless> END i"
proof -
obtain p where pi:"(p,i) \<in> m"
using a M3 m by blast
then have p:"p \<in> BEGIN i" using BEGIN_def by auto
obtain q where qi:"(q,i) \<in> m^-1"
using a M3 m by blast
then have q:"q \<in> END i" using END_def by auto
from pi qi have c1:"(p,q) \<in> b" using b m
by blast
with c1 p q assms show ?thesis by (auto simp:NEST_def before_def)
qed
lemma meets:
fixes i j
assumes "\<I> i" and "\<I> j"
shows "(i,j) \<in> m = ((END i) = (BEGIN j))"
proof
assume ij:"(i,j) \<in> m" then have ibj:"i \<in> (BEGIN j)" unfolding BEGIN_def by auto
from ij have ji:"(j,i) \<in> m^-1" by simp
then have jeo:"j \<in> (END i)" unfolding END_def by simp
show "((END i) = (BEGIN j))"
proof
{fix x::"'a" assume a:"x \<in> (END i)"
then have asimp:"(x,i) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> m\<inverse> \<union> f^-1"
unfolding END_def by auto
then have "x \<in> (BEGIN j)" using ij eovisidifmifiOm
by (auto simp:BEGIN_def)
}
thus conc1:"END i \<subseteq> BEGIN j" by auto
next
{fix x assume b:"x \<in> (BEGIN j)"
then have bsimp:"(x,j) \<in> ov \<union> s\<union> m \<union> f^-1 \<union> d^-1 \<union> e \<union> s^-1"
unfolding BEGIN_def by auto
then have "x \<in> (END i)" using ij ovsmfidiesiOmi
by (auto simp:END_def)
}thus conc2:"BEGIN j \<subseteq> END i" by auto
qed
next
assume a0:"END (i::'a) = BEGIN (j::'a)" show "(i,j) \<in> m"
proof (rule ccontr)
assume a:"(i,j) \<notin> m" then have "\<not>i\<parallel>j" using m by auto
from a have "(i,j) \<in> b \<union> ov \<union> s \<union> d \<union> f^-1 \<union> e \<union> f \<union> s^-1 \<union> d^-1 \<union> ov^-1 \<union> m^-1 \<union> b^-1" using assms JE by auto
thus False
proof (auto)
{assume ij:"(i,j) \<in> e"
obtain p where ip:"i\<parallel>p" using M3 assms(1) by auto
then have pi:"(p,i)\<in> m^-1" using m by auto
then have "p \<in> END i" using END_def by auto
with a0 have pj:"p \<in> (BEGIN j) " by auto
from ij pi have "(p,j) \<in> m^-1" by (simp add: e)
with pj show ?thesis
apply (auto simp:BEGIN_def)
using m_rules by auto[7] }
next
{assume ij: "(j,i) \<in> m"
obtain p where ip:"i\<parallel>p" using M3 assms(1) by auto
then have pi:"(p,i)\<in> m^-1" using m by auto
then have "p \<in> END i" using END_def by auto
with a0 have pj:"p \<in> (BEGIN j) " by auto
from ij have "(i,j) \<in> m^-1" by simp
with pi have "(p,j) \<in> b^-1" using cmimi by auto
with pj show ?thesis
apply (auto simp:BEGIN_def)
using b_rules by auto
}
next
{assume ij:"(i,j)\<in> b"
have ii:"(i,i)\<in>e" and "i \<in> END i" using assms intv2 e by auto
with a0 have j:"i \<in> BEGIN j" by simp
with ij show ?thesis
apply (auto simp:BEGIN_def)
using b_rules by auto
}
next
{ assume ji:"(j,i) \<in> b" then have ij:"(i,j) \<in> b^-1" by simp
have ii:"(i,i)\<in>e" and "i \<in> END i" using assms intv2 e by auto
with a0 have j:"i \<in> BEGIN j" by simp
with ij show ?thesis
apply (auto simp:BEGIN_def)
using b_rules by auto}
next
{assume ij:"(i,j)\<in>ov"
then obtain u v::"'a" where iu:"i\<parallel>u" and uv:"u\<parallel>v" and uv:"u\<parallel>v" using ov by blast
from iu have "u \<in> END i" using m END_def by auto
with a0 have u:"u \<in> BEGIN j" by simp
from iu have "(u,i) \<in> m^-1" using m by auto
with ij have uj:"(u,j) \<in> ov^-1 \<union> d \<union> f" using covim by auto
show ?thesis using u uj
apply (auto simp:BEGIN_def)
using ov_rules eovi apply auto[9]
using s_rules apply auto[2]
using d_rules apply auto[5]
using f_rules by auto[5]
}
next
{assume "(j,i) \<in> ov" then have ij:"(i,j)\<in>ov^-1" by simp let ?p = i
from ij have pi:"(?p, i) \<in> e" by (simp add:e)
from ij have pj:"(?p,j) \<in> ov^-1" by simp
from pi have "?p \<in> END i" using END_def by auto
with a0 have "?p \<in> (BEGIN j) " by auto
with pj show ?thesis
apply (auto simp:BEGIN_def)
using ov_rules by auto
}
next
{assume ij:"(i,j) \<in> s"
then obtain p q t where ip:"i\<parallel>p" and pq:"p\<parallel>q" and jq:"j\<parallel>q" and ti:"t\<parallel>i" and tj:"t\<parallel>j" using s by blast
from ip have "(p,i) \<in> m^-1" using m by auto
then have "p \<in> END i" using END_def by auto
with a0 have p:"p \<in> BEGIN j" by simp
from ti ip pq tj jq have "(p,j) \<in> f" using f by blast
with p show ?thesis
apply (auto simp:BEGIN_def)
using f_rules by auto
}
next
{assume "(j,i) \<in> s" then have ij:"(i,j) \<in> s^-1" by simp
then obtain u v where ju:"j\<parallel>u" and uv:"u\<parallel>v" and iv:"i\<parallel>v" using s by blast
from iv have "(v,i) \<in> m^-1" using m by blast
then have "v \<in> END i" using END_def by auto
with a0 have v:"v \<in> BEGIN j" by simp
from ju uv have "(v,j) \<in> b^-1" using b by auto
with v show ?thesis
apply (auto simp:BEGIN_def)
using b_rules by auto}
next
{assume ij:"(i,j) \<in> f"
have "(i,i) \<in> e" and "i \<in> END i"
by (simp add: e) (auto simp: assms intv2 )
with a0 have "i \<in> BEGIN j" by simp
with ij show ?thesis
apply (auto simp:BEGIN_def)
using f_rules by auto
}
next
{assume "(j,i) \<in> f" then have "(i,j)\<in>f^-1" by simp
then obtain u where ju:"j\<parallel>u" and iu:"i\<parallel>u" using f by auto
then have ui:"(u,i) \<in> m^-1" and "u \<in> END i"
apply (simp add: converse.intros m)
using END_def iu m by auto
with a0 have ubj:"u \<in> BEGIN j" by simp
from ju have "(u,j) \<in> m^-1" by (simp add: converse.intros m)
with ubj show ?thesis
apply (auto simp:BEGIN_def)
using m_rules by auto
}
next
{assume ij:"(i,j) \<in> d" then
have "(i,i) \<in> e" and "i \<in> END i" using assms e by (blast, simp add: intv2)
with a0 have "i \<in> BEGIN j" by simp
with ij show ?thesis
apply (auto simp:BEGIN_def)
using d_rules by auto}
next
{assume ji:"(j,i) \<in> d" then have "(i,j) \<in> d^-1" using d by simp
then obtain u v where ju:"j\<parallel>u" and uv:"u\<parallel>v" and iv:"i\<parallel>v" using d using ji by blast
then have "(v,i) \<in> m^-1" and "v \<in> END i" using m END_def by auto
with a0 ju uv have vj:"(v,j) \<in> b^-1" and "v \<in> BEGIN j" using b by auto
with vj show ?thesis
apply (auto simp:BEGIN_def)
using b_rules by auto}
qed
qed
qed
lemma starts:
fixes i j
assumes "\<I> i" and "\<I> j"
shows "((i,j) \<in> s \<union> s^-1 \<union> e) = (BEGIN i = BEGIN j)"
proof
assume a3:"(i,j) \<in> s \<union> s^-1 \<union> e" show "BEGIN i = BEGIN j"
proof -
{ fix x assume "x \<in> BEGIN i" then have "(x,i) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>" unfolding BEGIN_def by auto
hence "x \<in> BEGIN j" using a3 ovsmfidiesiOssie
by (auto simp:BEGIN_def)
} note c1 = this
{ fix x assume "x \<in> BEGIN j" then have xj:"(x,j) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>" unfolding BEGIN_def by auto
then have "x \<in> BEGIN i"
apply (insert converseI[OF a3] xj)
apply (subst (asm) converse_Un)+
apply (subst (asm) converse_converse)
using ovsmfidiesiOssie
by (auto simp:BEGIN_def)
} note c2 = this
from c1 have "BEGIN i \<subseteq> BEGIN j" by auto
moreover with c2 have "BEGIN j \<subseteq> BEGIN i" by auto
ultimately show ?thesis by auto
qed
next
assume a4:"BEGIN i = BEGIN j"
with assms have "i \<in> BEGIN j" and "j \<in> BEGIN i" using intv1 by auto
then have ij:"(i,j) \<in> ov \<union> s \<union> m \<union> f^-1 \<union> d^-1 \<union> e \<union> s^-1" and ji:"(j,i) \<in> ov \<union> s \<union> m \<union> f^-1 \<union> d^-1 \<union> e \<union> s^-1"
unfolding BEGIN_def by auto
then have ijov:"(i,j) \<notin> ov"
apply auto
using ov_rules by auto
from ij ji have ijm:"(i,j) \<notin> m"
apply (simp_all, elim disjE, simp_all)
using ov_rules apply auto[13]
using s_rules apply auto[11]
using m_rules apply auto[9]
using f_rules apply auto[7]
using d_rules apply auto[5]
using m_rules by auto[4]
from ij ji have ijfi:"(i,j) \<notin> f^-1"
apply (simp_all, elim disjE, simp_all)
using ov_rules apply auto[13]
using s_rules apply auto[11]
using m_rules apply auto[9]
using f_rules apply auto[7]
using d_rules apply auto[5]
using f_rules by auto[4]
from ij ji have ijdi:"(i,j) \<notin> d^-1"
apply (simp_all, elim disjE, simp_all)
using ov_rules apply auto[13]
using s_rules apply auto[11]
using m_rules apply auto[9]
using f_rules apply auto[7]
using d_rules apply auto[5]
using d_rules by auto[4]
from ij ijm ijov ijfi ijdi show "(i, j) \<in> s \<union> s\<inverse> \<union> e" by auto
qed
lemma xj_set:"x \<in> {a |a. (a, j) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>} = ((x,j) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>)"
by blast
lemma ends:
fixes i j
assumes "\<I> i" and "\<I> j"
shows "((i,j) \<in> f \<union> f^-1 \<union> e) = (END i = END j)"
proof
assume a3:"(i,j) \<in> f \<union> f^-1 \<union> e" show "END i = END j"
proof -
{ fix x assume "x \<in> END i" then have "(x,i) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" unfolding END_def by auto
then have "x \<in> END j" using a3 unfolding END_def
apply (subst xj_set)
using ceovisidiffimi_ffie_simp by simp
} note c1 =this
{ fix x assume "x \<in> END j" then have "(x,j) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" unfolding END_def by auto
then have "x \<in> END i" using a3 unfolding END_def
by (metis Un_iff ceovisidiffimi_ffie_simp converse_iff eei mem_Collect_eq)
} note c2 = this
from c1 have "END i \<subseteq> END j" by auto
moreover with c2 have "END j \<subseteq> END i" by auto
ultimately show ?thesis by auto
qed (*} note conc = this *)
next
assume a4:"END i = END j"
with assms have "i \<in> END j" and "j \<in> END i" using intv2 by auto
then have ij:"(i,j) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" and ji:"(j,i) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>"
unfolding END_def by auto
then have ijov:"(i,j) \<notin> ov^-1"
apply (simp_all, elim disjE, simp_all)
using eov es ed efi ef em eov apply auto[13]
using ov_rules apply auto[11]
using s_rules apply auto[9]
using d_rules apply auto[7]
using f_rules apply auto[8]
using movi by auto
from ij ji have ijm:"(i,j) \<notin> m^-1"
apply (simp_all, elim disjE, simp_all)
using m_rules by auto
from ij ji have ijfi:"(i,j) \<notin> s^-1"
apply (simp_all, elim disjE, simp_all)
using s_rules by auto
from ij ji have ijdi:"(i,j) \<notin> d^-1"
apply (simp_all, elim disjE, simp_all)
using d_rules by auto
from ij ijm ijov ijfi ijdi show "(i, j) \<in> f \<union> f\<inverse> \<union> e" by auto
qed
lemma before_irrefl:
fixes a
shows "\<not> a \<lless> a"
proof (rule ccontr, auto)
assume a0:"a \<lless> a"
then have "NEST a" unfolding before_def by auto
then obtain i where i:"a = BEGIN i \<or> a = END i" unfolding NEST_def by auto
from i show False
proof
assume "a = BEGIN i"
with a0 have "BEGIN i \<lless> BEGIN i" by simp
then obtain p q where "p\<in> BEGIN i" and "q \<in> BEGIN i" and b:"(p,q) \<in> b" unfolding before_def by auto
then have a1:"(p,i) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>" and a2:"(i,q) \<in> ov^-1 \<union> s^-1 \<union> m^-1 \<union> f \<union> d \<union> e \<union> s" unfolding BEGIN_def
apply auto
using eei apply fastforce
by (simp add: e)+
with b show False
using piiq[of p i q]
using b_rules by safe fast+
next
assume "a = END i"
with a0 have "END i \<lless> END i" by simp
then obtain p q where "p\<in> END i" and "q \<in> END i" and b:"(p,q) \<in> b" unfolding before_def by auto
then have a1:"(p,i) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" and a2:"(q,i) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" unfolding END_def
by auto
with b show False
apply (subst (asm) converse_iff[THEN sym])
using cbi_alpha1ialpha4mi neq_bi_alpha1ialpha4mi relcomp.relcompI subsetCE by blast
qed
qed
lemma BEGIN_before:
fixes i j
assumes "\<I> i" and "\<I> j"
shows "BEGIN i \<lless> BEGIN j = ((i,j) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>)"
proof
assume a3:"BEGIN i \<lless> BEGIN j"
from a3 obtain p q where pa:"p \<in> BEGIN i" and qc:"q \<in> BEGIN j" and pq:"(p,q) \<in> b" unfolding before_def by auto
then obtain r where "p\<parallel>r" and "r\<parallel>q" using b by auto
then have pr:"(p,r) \<in> m" and rq:"(r,q) \<in> m" using m by auto
from pa have pi:"(p,i) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>" unfolding BEGIN_def by auto
moreover with pr have "(r,p) \<in> m^-1" by simp
ultimately have "(r,i) \<in> d \<union> f \<union> ov^-1 \<union> e \<union> f^-1 \<union> m^-1 \<union> b^-1 \<union> s \<union> s^-1"
using cmiov cmis cmim cmifi cmidi cmisi
apply ( simp_all,elim disjE, auto)
by (simp add: e)
then have ir:"(i,r) \<in> d^-1 \<union> f^-1 \<union> ov \<union> e \<union> f \<union> m \<union> b \<union> s^-1 \<union> s"
by (metis (mono_tags, lifting) converseD converse_Un converse_converse eei)
from qc have "(q,j) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>" unfolding BEGIN_def by auto
with rq have rj:"(r,j) \<in> b \<union> s \<union> m "
using m_ovsmfidiesi using contra_subsetD relcomp.relcompI by blast
with ir have c1:"(i,j) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse> \<union> d \<union> e \<union> s \<union> s\<inverse>"
using difibs by blast
{assume "(i,j) \<in> s\<or> (i,j)\<in>s^-1 \<or> (i,j) \<in> e" then have "BEGIN i = BEGIN j"
using starts Un_iff assms(1) assms(2) by blast
with a3 have False by (simp add: before_irrefl)}
from c1 have c1':"(i,j) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse> \<union> d "
using \<open>(i, j) \<in> s \<or> (i, j) \<in> s\<inverse> \<or> (i, j) \<in> e \<Longrightarrow> False\<close> by blast
{assume "(i,j) \<in> d" with pi have "(p,j) \<in> e \<union> s \<union> d \<union> ov \<union> ov^-1 \<union> s^-1 \<union> f \<union> f^-1 \<union> d^-1"
using ovsmfidiesi_d using relcomp.relcompI subsetCE by blast
with pq have "(q,j) \<in> b^-1 \<union> d \<union> f \<union> ov^-1 \<union> m^-1"
apply (subst (asm) converse_iff[THEN sym])
using cbi_esdovovisiffidi by blast
with qc have False unfolding BEGIN_def
apply (subgoal_tac "(q, j) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>")
prefer 2
apply simp
using neq_beta2i_alpha2alpha5m by auto
}
with c1' show "((i, j) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>)" by auto
next
assume "(i, j) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>"
then show "BEGIN i \<lless> BEGIN j"
proof ( simp_all,elim disjE, simp_all)
assume "(i,j) \<in> b" thus ?thesis using intv1 using before_def NEST_BEGIN assms by metis
next
assume iu:"(i,j) \<in> m"
obtain l where li:"(l,i) \<in> m" using M3 m meets_wd assms by blast
with iu have "(l,j) \<in> b" using cmm by auto
moreover from li have "l \<in> (BEGIN i)" using BEGIN_def by auto
ultimately show ?thesis using intv1 before_def NEST_BEGIN assms by blast
next
assume iu:"(i,j) \<in> ov"
obtain l where li:"(l,i) \<in> m" using M3 m meets_wd assms by blast
with iu have "(l,j) \<in> b" using cmov by auto
moreover from li have "l \<in> (BEGIN i)" using BEGIN_def by auto
ultimately show ?thesis using intv1 before_def NEST_BEGIN assms by blast
next
assume iu:"(j,i) \<in> f"
obtain l where li:"(l,i) \<in> m" using M3 m meets_wd assms by blast
with iu have "(l,j) \<in> b" using cmfi by auto
moreover from li have "l \<in> (BEGIN i)" using BEGIN_def by auto
ultimately show ?thesis using intv1 before_def NEST_BEGIN assms by blast
next
assume iu:"(j,i) \<in> d"
obtain l where li:"(l,i) \<in> m" using M3 m meets_wd assms by blast
with iu have "(l,j) \<in> b" using cmdi by auto
moreover from li have "l \<in> (BEGIN i)" using BEGIN_def by auto
ultimately show ?thesis using intv1 before_def NEST_BEGIN assms by blast
qed
qed
lemma BEGIN_END_before:
fixes i j
assumes "\<I> i" and "\<I> j"
shows "BEGIN i \<lless> END j = ((i,j) \<in> e \<union> b \<union> m \<union> ov \<union> ov^-1 \<union> s \<union> s^-1 \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>) "
proof
assume a3:"BEGIN i \<lless> END j"
then obtain p q where pa:"p \<in> BEGIN i" and qc:"q \<in> END j" and pq:"(p,q) \<in> b" unfolding before_def by auto
then obtain r where "p\<parallel>r" and "r\<parallel>q" using b by auto
then have pr:"(p,r) \<in> m" and rq:"(r,q) \<in> m" using m by auto
from pa have pi:"(p,i) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>" unfolding BEGIN_def by auto
moreover with pr have "(r,p) \<in> m^-1" by simp
ultimately have "(r,i) \<in> d \<union> f \<union> ov^-1 \<union> e \<union> f^-1 \<union> m^-1 \<union> b^-1 \<union> s \<union> s^-1" using cmiov cmis cmim cmifi cmidi e cmisi
by ( simp_all,elim disjE, auto simp:e)
then have ir:"(i,r) \<in> d^-1 \<union> f^-1 \<union> ov \<union> e \<union> f \<union> m \<union> b \<union> s^-1 \<union> s"
by (metis (mono_tags, lifting) converseD converse_Un converse_converse eei)
from qc have "(q,j) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" unfolding END_def by auto
with rq have rj:"(r,j) \<in> m \<union> ov \<union> s \<union> d \<union> b \<union> f^-1 \<union> f \<union> e" using cm_alpha1ialpha4mi by blast
with ir show c1:"(i,j) \<in> e \<union> b \<union> m \<union> ov \<union> ov^-1 \<union> s \<union> s^-1 \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>"
using difimov by blast
next
assume a4:"(i, j) \<in> e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>"
then show "BEGIN i \<lless> END j"
proof ( simp_all,elim disjE, simp_all)
assume "(i,j) \<in> e"
obtain l k where l:"l\<parallel>i" and "i\<parallel>k" using M3 meets_wd assms by blast
with \<open>(i,j) \<in> e\<close> have k:"j\<parallel>k" by (simp add: e)
from l k have "(l,i) \<in> m" and "(k,j) \<in> m^-1" using m by auto
then have "l \<in> BEGIN i" and "k \<in> END j" using BEGIN_def END_def by auto
moreover from l \<open>i\<parallel>k\<close> have "(l,k) \<in> b" using b by auto
ultimately show ?thesis using before_def assms NEST_BEGIN NEST_END by blast
next
assume "(i,j) \<in> b"
then show ?thesis using before_def assms NEST_BEGIN NEST_END intv1[of i] intv2[of j] by auto
next
assume "(i,j) \<in> m"
obtain l where "l\<parallel>i" using M3 assms by blast
then have "l\<in>BEGIN i" using m BEGIN_def by auto
moreover from \<open>(i,j)\<in>m\<close> \<open>l\<parallel>i\<close> have "(l,j) \<in> b" using b m by blast
ultimately show ?thesis using intv2[of j] assms NEST_BEGIN NEST_END before_def by blast
next
assume "(i,j) \<in> ov"
then obtain l k where li:"l\<parallel>i" and lk:"l\<parallel>k" and ku:"k\<parallel>j" using ov by blast
from li have "l \<in> BEGIN i" using m BEGIN_def by auto
moreover from lk ku have "(l,j) \<in> b" using b by auto
ultimately show ?thesis using intv2[of j] assms NEST_BEGIN NEST_END before_def by blast
next
assume "(j,i) \<in> ov"
then obtain l k v where uv:"j\<parallel>v" and lk:"l\<parallel>k" and kv:"k\<parallel>v" and li:"l\<parallel>i" using ov by blast
from li have "l \<in> BEGIN i" using m BEGIN_def by auto
moreover from uv have "v \<in> END j" using m END_def by auto
moreover from lk kv have "(l,v) \<in> b" using b by auto
ultimately show ?thesis using assms NEST_BEGIN NEST_END before_def by blast
next
assume "(i,j) \<in> s"
then obtain v v' where iv:"i\<parallel>v" and vvp:"v\<parallel>v'" and "j\<parallel>v'" using s by blast
then have "v' \<in> END j" using END_def m by auto
moreover from iv vvp have "(i,v') \<in> b" using b by auto
ultimately show ?thesis using intv1[of i] assms NEST_BEGIN NEST_END before_def by blast
next
assume "(j,i) \<in> s"
then obtain l v where li:"l\<parallel>i" and lu:"l\<parallel>j" and "j\<parallel>v" using s by blast
then have "v \<in> END j" using m END_def by auto
moreover from li have "l \<in> BEGIN i" using m BEGIN_def by auto
moreover from lu \<open>j\<parallel>v\<close> have "(l,v) \<in> b" using b by auto
ultimately show ?thesis using assms NEST_BEGIN NEST_END before_def by blast
next
assume "(i,j) : f"
then obtain l v where li:"l\<parallel>i" and iv:"i\<parallel>v" and "j\<parallel>v" using f by blast
then have "v \<in> END j" using m END_def by auto
moreover from li have "l \<in> BEGIN i" using m BEGIN_def by auto
moreover from iv li have "(l,v) \<in> b" using b by auto
ultimately show ?thesis using assms NEST_BEGIN NEST_END before_def by blast
next
assume "(j,i) \<in> f"
then obtain l v where li:"l\<parallel>i" and iv:"i\<parallel>v" and "j\<parallel>v" using f by blast
then have "v \<in> END j" using m END_def by auto
moreover from li have "l \<in> BEGIN i" using m BEGIN_def by auto
moreover from iv li have "(l,v) \<in> b" using b by auto
ultimately show ?thesis using assms NEST_BEGIN NEST_END before_def by blast
next
assume "(i,j) : d"
then obtain k v where ik:"i\<parallel>k" and kv:"k\<parallel>v" and "j\<parallel>v" using d by blast
then have "v \<in> END j" using END_def m by auto
moreover from ik kv have "(i,v) \<in> b" using b by auto
ultimately show ?thesis using intv1[of i] assms NEST_BEGIN NEST_END before_def by blast
next
assume "(j,i) \<in> d"
then obtain l k where "l\<parallel>i" and lk:"l\<parallel>k" and ku:"k\<parallel>j" using d by blast
then have "l \<in> BEGIN i" using BEGIN_def m by auto
moreover from lk ku have "(l,j) \<in> b" using b by auto
ultimately show ?thesis using intv2[of j] assms NEST_BEGIN NEST_END before_def by blast
qed
qed
lemma END_BEGIN_before:
fixes i j
assumes "\<I> i" and "\<I> j"
shows "END i \<lless> BEGIN j = ((i,j) \<in> b) "
proof
assume a3:"END i \<lless> BEGIN j"
from a3 obtain p q where pa:"p \<in> END i" and qc:"q \<in> BEGIN j" and pq:"(p,q) \<in> b" unfolding before_def by auto
then obtain r where "p\<parallel>r" and "r\<parallel>q" using b by auto
then have pr:"(p,r) \<in> m" and rq:"(r,q) \<in> m" using m by auto
from pa have pi:"(p,i) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" unfolding END_def by auto
moreover with pr have "(r,p) \<in> m^-1" by simp
ultimately have "(r,i) \<in> m^-1 \<union> b^-1" using e cmiovi cmisi cmidi cmif cmifi cmimi
by ( simp_all,elim disjE, auto simp:e)
then have ir:"(i,r) \<in> m \<union> b" by simp
from qc have "(q,j) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>" unfolding BEGIN_def by auto
with rq have rj:"(r,j) \<in> b \<union> m " using cmov cms cmm cmfi cmdi e cmsi
by (simp_all, elim disjE, auto simp:e)
with ir show "(i,j) \<in> b" using cmb cmm cbm cbb by auto
next
assume "(i,j) \<in> b" thus "END i \<lless> BEGIN j" using intv1[of j] intv2[of i] assms before_def NEST_END NEST_BEGIN by auto
qed
lemma END_END_before:
fixes i j
assumes "\<I> i" and "\<I> j"
shows "END i \<lless> END j = ((i,j) \<in> b \<union> m \<union> ov \<union> s \<union> d) "
proof
assume a3:"END i \<lless> END j"
from a3 obtain p q where pa:"p \<in> END i" and qc:"q \<in> END j" and pq:"(p,q) \<in> b" unfolding before_def by auto
then obtain r where "p\<parallel>r" and "r\<parallel>q" using b by auto
then have pr:"(p,r) \<in> m" and rq:"(r,q) \<in> m" using m by auto
from pa have pi:"(p,i) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" unfolding END_def by auto
moreover with pr have "(r,p) \<in> m^-1" by simp
ultimately have "(r,i) \<in> m^-1 \<union> b^-1" using e cmiovi cmisi cmidi cmif cmifi cmimi
by ( simp_all,elim disjE, auto simp:e)
then have ir:"(i,r) \<in> m \<union> b" by simp
from qc have "(q,j) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" unfolding END_def by auto
with rq have rj:"(r,j) \<in> m \<union> ov \<union> s \<union> d \<union> b \<union> f^-1 \<union> e \<union> f " using e cmovi cmsi cmdi cmf cmfi cmmi
by (simp_all, elim disjE, auto simp:e)
with ir show "(i,j) \<in> b \<union> m \<union> ov \<union> s \<union> d" using cmm cmov cms cmd cmb cmfi e cmf cbm cbov cbs cbd cbb cbfi cbf
by (simp_all, elim disjE, auto simp:e)
next
assume "(i, j) \<in> b \<union> m \<union> ov \<union> s \<union> d"
then show "END i \<lless> END j"
proof ( simp_all,elim disjE, simp_all)
assume "(i,j) \<in> b" thus ?thesis using intv2[of i] intv2[of j] assms NEST_END before_def by blast
next
assume "(i,j) \<in> m"
obtain v where "j\<parallel>v" using M3 assms by blast
with \<open>(i,j) \<in> m\<close> have "(i,v) \<in>b" using b m by blast
moreover from \<open>j\<parallel>v\<close> have "v \<in> END j" using m END_def by auto
ultimately show ?thesis using intv2[of i] assms NEST_END before_def by blast
next
assume "(i,j) : ov"
then obtain v v' where iv:"i\<parallel>v" and vvp:"v\<parallel>v'" and "j\<parallel>v'" using ov by blast
then have "v' \<in> END j" using m END_def by auto
moreover from iv vvp have "(i,v') \<in> b" using b by auto
ultimately show ?thesis using intv2[of i] assms NEST_END before_def by blast
next
assume "(i,j) \<in> s"
then obtain v v' where iv:"i\<parallel>v" and vvp:"v\<parallel>v'" and "j\<parallel>v'" using s by blast
then have "v' \<in> END j" using m END_def by auto
moreover from iv vvp have "(i,v') \<in> b" using b by auto
ultimately show ?thesis using intv2[of i] assms NEST_END before_def by blast
next
assume "(i,j) \<in> d"
then obtain v v' where iv:"i\<parallel>v" and vvp:"v\<parallel>v'" and "j\<parallel>v'" using d by blast
then have "v' \<in> END j" using m END_def by auto
moreover from iv vvp have "(i,v') \<in> b" using b by auto
ultimately show ?thesis using intv2[of i] assms NEST_END before_def by blast
qed
qed
lemma overlaps:
assumes "\<I> i" and "\<I> j"
shows "(i,j) \<in> ov = ((BEGIN i \<lless> BEGIN j) \<and> (BEGIN j \<lless> END i) \<and> (END i \<lless> END j))"
proof
assume a:"(i,j) \<in> ov"
then obtain n t q u v where nt:"n\<parallel>t" and tj:"t\<parallel>j" and tq:"t\<parallel>q" and qu:"q\<parallel>u" and iu:"i\<parallel>u" and uv:"u\<parallel>v" and jv:"j\<parallel>v" and "n\<parallel>i" using ov by blast
then have ni:"(n,i) \<in> m" using m by blast
then have n:"n \<in> BEGIN i" unfolding BEGIN_def by auto
from nt tj have nj:"(n,j) \<in> b" using b by auto
have "j \<in> BEGIN j" using assms(2) by (simp add: intv1)
with assms n nj have c1:"BEGIN i \<lless> BEGIN j" unfolding before_def using NEST_BEGIN by blast
from tj have a1:"(t,j) \<in> m" and a2:"t \<in> BEGIN j" using m BEGIN_def by auto
from iu have "(u,i) \<in> m^-1" and "u \<in> END i" using m END_def by auto
with assms tq qu a2 have c2:"BEGIN j \<lless> END i" unfolding before_def using b NEST_BEGIN NEST_END by blast
have "i \<in> END i" by (simp add: assms intv2)
moreover with jv have "v \<in> END j" using m END_def by auto
moreover with iu uv have "(i,v) \<in> b" using b by auto
ultimately have c3:"END i \<lless> END j" using assms NEST_END before_def by blast
show "((BEGIN i \<lless> BEGIN j) \<and> (BEGIN j \<lless> END i) \<and> (END i \<lless> END j))" using c1 c2 c3 by simp
next
assume a0:"((BEGIN i \<lless> BEGIN j) \<and> (BEGIN j \<lless> END i) \<and> (END i \<lless> END j))"
then have "(i,j) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse> \<and> (i,j) \<in> e \<union> b^-1 \<union> m^-1 \<union> ov^-1 \<union> ov \<union> s^-1 \<union> s \<union> f^-1 \<union> f \<union> d^-1 \<union> d
\<and> (i,j) \<in> b \<union> m \<union> ov \<union> s \<union> d"
using BEGIN_before BEGIN_END_before END_END_before assms
by (metis (no_types, lifting) converseD converse_Un converse_converse eei)
then have "(i,j) \<in> (b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>) \<inter> (e \<union> b^-1 \<union> m^-1 \<union> ov^-1 \<union> ov \<union> s^-1 \<union> s \<union> f^-1 \<union> f \<union> d^-1 \<union> d) \<inter> (b \<union> m \<union> ov \<union> s \<union> d)"
by (auto)
then show "(i,j) \<in> ov"
using inter_ov by blast
qed
subsection \<open>Ordering of nests\<close>
class strict_order =
fixes ls::"'a nest \<Rightarrow> 'a nest \<Rightarrow> bool"
assumes
irrefl:"\<not> ls a a" and
trans:"ls a c \<Longrightarrow> ls c g \<Longrightarrow> ls a g" and
asym:"ls a c \<Longrightarrow> \<not> ls c a"
class total_strict_order = strict_order +
assumes trichotomy: "a = c \<Longrightarrow> (\<not> (ls a c) \<and> \<not> (ls c a))"
interpretation nest:total_strict_order "(\<lless>) "
proof
{ fix a::"'a nest"
show "\<not> a \<lless> a"
by (simp add: before_irrefl) } note irrefl_nest = this
{fix a c::"'a nest"
assume "a = c"
show "\<not> a \<lless> c \<and> \<not> c \<lless> a"
by (simp add: \<open>a = c\<close> irrefl_nest)} note trichotomy_nest = this
{fix a c g::"'a nest"
assume a:"a \<lless> c" and c:" c \<lless> g"
show " a \<lless> g"
proof -
from a c have na:"NEST a" and nc:"NEST c" and ng:"NEST g" unfolding before_def by auto
from na obtain i where i:"a = BEGIN i \<or> a = END i" and wdi:"\<I> i" unfolding NEST_def by auto
from nc obtain j where j:"c = BEGIN j \<or> c = END j" and wdj:"\<I> j" unfolding NEST_def by auto
from ng obtain u where u:"g = BEGIN u \<or> g = END u" and wdu:"\<I> u" unfolding NEST_def by auto
from i j u show ?thesis
proof (elim disjE, auto)
assume abi:"a = BEGIN i" and cbj:"c = BEGIN j" and gbu:"g = BEGIN u"
from abi cbj a wdi wdj have "(i,j) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse> " using BEGIN_before by auto
moreover from cbj gbu c wdj wdu have "(j,u) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>" using BEGIN_before by auto
ultimately have c1:"(i,u) \<in> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
using cbeta2_beta2 by blast
then have "a \<lless> g" by (simp add: BEGIN_before abi gbu wdi wdu)
thus "BEGIN i \<lless> BEGIN u" using abi gbu by auto
next
assume abi:"a = BEGIN i" and cbj:"c = BEGIN j" and geu:"g = END u"
from abi cbj a wdi wdj have "(i,j) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse> " using BEGIN_before by auto
moreover from cbj geu c wdj wdu have "(j,u) : e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>" using BEGIN_END_before by auto
ultimately have "(i,u) \<in> e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>"
using cbeta2_gammabm by blast
then have "a \<lless> g"
by (simp add: BEGIN_END_before abi geu wdi wdj wdu)
thus "BEGIN i \<lless> END u" using abi geu by auto
next
assume abi:"a = BEGIN i" and cej:"c = END j" and gbu:"g = BEGIN u"
from abi cej a wdi wdj have ij:"(i,j) : e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>" using BEGIN_END_before by auto
from cej gbu c wdj wdu have "(j,u) \<in> b " using END_BEGIN_before by auto
with ij have "(i,u) \<in> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
using ebmovovissifsiddib by ( auto)
thus "BEGIN i \<lless> BEGIN u"
by (simp add: BEGIN_before abi gbu wdi wdu)
next
assume abi:"a = BEGIN i" and cej:"c = END j" and geu:"g = END u"
with a have "(i,j) \<in> e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>"
using BEGIN_END_before wdi wdj by auto
moreover from cej geu c wdj wdu have "(j,u) \<in> b \<union> m \<union> ov \<union> s \<union> d"
using END_END_before by auto
ultimately have "(i,u) \<in> b \<union> m \<union> ov \<union> s \<union> d \<union> f^-1 \<union> d^-1 \<union> ov^-1 \<union> s\<inverse> \<union> f \<union> e"
using ebmovovissiffiddibmovsd by blast
thus "BEGIN i \<lless> END u" using BEGIN_END_before wdi wdu by auto
next
assume aei:"a = END i" and cbj:"c = BEGIN j" and gbu:"g = BEGIN u"
from a aei cbj wdi wdj have "(i,j) \<in> b"
using END_BEGIN_before by auto
moreover from c cbj gbu wdj wdu have "(j,u) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>"
using BEGIN_before by auto
ultimately have "(i,u) : b" using cbb cbm cbov cbfi cbdi
by (simp_all, elim disjE, auto)
thus "END i \<lless> BEGIN u" using END_BEGIN_before wdi wdu by auto
next
assume aei:"a = END i" and cbj:"c = BEGIN j" and geu:"g = END u"
from a aei cbj wdi wdj have "(i,j) \<in> b"
using END_BEGIN_before by auto
moreover from c cbj geu wdj wdu have "(j,u) \<in> e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>"
using BEGIN_END_before by auto
ultimately have "(i,u) \<in> b \<union> m \<union> ov \<union> s \<union> d"
using bebmovovissiffiddi by blast
thus "END i \<lless> END u" using END_END_before wdi wdu by auto
next
assume aei:"a = END i" and cej:"c = END j" and gbu:"g = BEGIN u"
from aei cej wdi wdj have "(i,j) \<in> b \<union> m \<union> ov \<union> s \<union> d" using END_END_before a by auto
moreover from cej gbu c wdj wdu have "(j,u) \<in> b" using END_BEGIN_before by auto
ultimately have "(i,u) \<in> b"
using cbb cmb covb csb cdb
by (simp_all, elim disjE, auto)
thus "END i \<lless> BEGIN u" using END_BEGIN_before wdi wdu by auto
next
assume aei:"a = END i" and cej:"c = END j" and geu:"g = END u"
from aei cej wdi wdj have "(i,j) \<in> b \<union> m \<union> ov \<union> s \<union> d" using END_END_before a by auto
moreover from cej geu c wdj wdu have "(j,u) \<in> b \<union> m \<union> ov \<union> s \<union> d" using END_END_before by auto
ultimately have "(i,u) \<in> b \<union> m \<union> ov \<union> s \<union> d"
using calpha1_alpha1 by auto
thus "END i \<lless> END u" using END_END_before wdi wdu by auto
qed
qed} note trans_nest = this
{ fix a c::"'a nest"
assume a:"a \<lless> c"
show "\<not> c \<lless> a"
apply (rule ccontr, auto)
using a irrefl_nest trans_nest by blast}
qed
end