Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Title: Allen's qualitative temporal calculus | |
Author: Fadoua Ghourabi (fadouaghourabi@gmail.com) | |
Affiliation: Ochanomizu University, Japan | |
*) | |
theory nest | |
imports | |
Main jointly_exhaustive examples | |
"HOL-Eisbach.Eisbach_Tools" | |
begin | |
section \<open>Nests\<close> | |
text\<open>Nests are sets of intervals that share a meeting point. We define relation before between nests that give the ordering properties of points.\<close> | |
subsection \<open>Definitions\<close> | |
type_synonym 'a nest = "'a set" | |
definition (in arelations) BEGIN :: "'a \<Rightarrow> 'a nest" | |
where "BEGIN i = {j | j. (j,i) \<in> ov \<union> s \<union> m \<union> f^-1 \<union> d^-1 \<union> e \<union> s^-1}" | |
definition (in arelations) END :: "'a \<Rightarrow> 'a nest" | |
where "END i = {j | j. (j,i) \<in> e \<union> ov^-1 \<union> s^-1 \<union> d^-1 \<union> f \<union> f^-1 \<union> m^-1}" | |
definition (in arelations) NEST ::"'a nest \<Rightarrow> bool" | |
where "NEST S \<equiv> \<exists>i. \<I> i \<and> (S = BEGIN i \<or> S = END i)" | |
definition (in arelations) before :: "'a nest \<Rightarrow> 'a nest \<Rightarrow> bool" (infix "\<lless>" 100) | |
where "before N M \<equiv> NEST N \<and> NEST M \<and> (\<exists>n m. \<^cancel>\<open>\<I> m \<and> \<I> n \<and>\<close> n \<in> N \<and> m \<in> M \<and> (n,m) \<in> b)" | |
subsection \<open>Properties of Nests\<close> | |
lemma intv1: | |
assumes "\<I> i" | |
shows "i \<in> BEGIN i" | |
unfolding BEGIN_def | |
by (simp add:e assms) | |
lemma intv2: | |
assumes "\<I> i" | |
shows "i \<in> END i" | |
unfolding END_def | |
by (simp add: e assms) | |
lemma NEST_nonempty: | |
assumes "NEST S" | |
shows "S \<noteq> {}" | |
using assms unfolding NEST_def | |
by (insert intv1 intv2, auto) | |
lemma NEST_BEGIN: | |
assumes "\<I> i" | |
shows "NEST (BEGIN i)" | |
using NEST_def assms by auto | |
lemma NEST_END: | |
assumes "\<I> i" | |
shows "NEST (END i)" | |
using NEST_def assms by auto | |
lemma before: | |
assumes a:"\<I> i" | |
shows "BEGIN i \<lless> END i" | |
proof - | |
obtain p where pi:"(p,i) \<in> m" | |
using a M3 m by blast | |
then have p:"p \<in> BEGIN i" using BEGIN_def by auto | |
obtain q where qi:"(q,i) \<in> m^-1" | |
using a M3 m by blast | |
then have q:"q \<in> END i" using END_def by auto | |
from pi qi have c1:"(p,q) \<in> b" using b m | |
by blast | |
with c1 p q assms show ?thesis by (auto simp:NEST_def before_def) | |
qed | |
lemma meets: | |
fixes i j | |
assumes "\<I> i" and "\<I> j" | |
shows "(i,j) \<in> m = ((END i) = (BEGIN j))" | |
proof | |
assume ij:"(i,j) \<in> m" then have ibj:"i \<in> (BEGIN j)" unfolding BEGIN_def by auto | |
from ij have ji:"(j,i) \<in> m^-1" by simp | |
then have jeo:"j \<in> (END i)" unfolding END_def by simp | |
show "((END i) = (BEGIN j))" | |
proof | |
{fix x::"'a" assume a:"x \<in> (END i)" | |
then have asimp:"(x,i) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> m\<inverse> \<union> f^-1" | |
unfolding END_def by auto | |
then have "x \<in> (BEGIN j)" using ij eovisidifmifiOm | |
by (auto simp:BEGIN_def) | |
} | |
thus conc1:"END i \<subseteq> BEGIN j" by auto | |
next | |
{fix x assume b:"x \<in> (BEGIN j)" | |
then have bsimp:"(x,j) \<in> ov \<union> s\<union> m \<union> f^-1 \<union> d^-1 \<union> e \<union> s^-1" | |
unfolding BEGIN_def by auto | |
then have "x \<in> (END i)" using ij ovsmfidiesiOmi | |
by (auto simp:END_def) | |
}thus conc2:"BEGIN j \<subseteq> END i" by auto | |
qed | |
next | |
assume a0:"END (i::'a) = BEGIN (j::'a)" show "(i,j) \<in> m" | |
proof (rule ccontr) | |
assume a:"(i,j) \<notin> m" then have "\<not>i\<parallel>j" using m by auto | |
from a have "(i,j) \<in> b \<union> ov \<union> s \<union> d \<union> f^-1 \<union> e \<union> f \<union> s^-1 \<union> d^-1 \<union> ov^-1 \<union> m^-1 \<union> b^-1" using assms JE by auto | |
thus False | |
proof (auto) | |
{assume ij:"(i,j) \<in> e" | |
obtain p where ip:"i\<parallel>p" using M3 assms(1) by auto | |
then have pi:"(p,i)\<in> m^-1" using m by auto | |
then have "p \<in> END i" using END_def by auto | |
with a0 have pj:"p \<in> (BEGIN j) " by auto | |
from ij pi have "(p,j) \<in> m^-1" by (simp add: e) | |
with pj show ?thesis | |
apply (auto simp:BEGIN_def) | |
using m_rules by auto[7] } | |
next | |
{assume ij: "(j,i) \<in> m" | |
obtain p where ip:"i\<parallel>p" using M3 assms(1) by auto | |
then have pi:"(p,i)\<in> m^-1" using m by auto | |
then have "p \<in> END i" using END_def by auto | |
with a0 have pj:"p \<in> (BEGIN j) " by auto | |
from ij have "(i,j) \<in> m^-1" by simp | |
with pi have "(p,j) \<in> b^-1" using cmimi by auto | |
with pj show ?thesis | |
apply (auto simp:BEGIN_def) | |
using b_rules by auto | |
} | |
next | |
{assume ij:"(i,j)\<in> b" | |
have ii:"(i,i)\<in>e" and "i \<in> END i" using assms intv2 e by auto | |
with a0 have j:"i \<in> BEGIN j" by simp | |
with ij show ?thesis | |
apply (auto simp:BEGIN_def) | |
using b_rules by auto | |
} | |
next | |
{ assume ji:"(j,i) \<in> b" then have ij:"(i,j) \<in> b^-1" by simp | |
have ii:"(i,i)\<in>e" and "i \<in> END i" using assms intv2 e by auto | |
with a0 have j:"i \<in> BEGIN j" by simp | |
with ij show ?thesis | |
apply (auto simp:BEGIN_def) | |
using b_rules by auto} | |
next | |
{assume ij:"(i,j)\<in>ov" | |
then obtain u v::"'a" where iu:"i\<parallel>u" and uv:"u\<parallel>v" and uv:"u\<parallel>v" using ov by blast | |
from iu have "u \<in> END i" using m END_def by auto | |
with a0 have u:"u \<in> BEGIN j" by simp | |
from iu have "(u,i) \<in> m^-1" using m by auto | |
with ij have uj:"(u,j) \<in> ov^-1 \<union> d \<union> f" using covim by auto | |
show ?thesis using u uj | |
apply (auto simp:BEGIN_def) | |
using ov_rules eovi apply auto[9] | |
using s_rules apply auto[2] | |
using d_rules apply auto[5] | |
using f_rules by auto[5] | |
} | |
next | |
{assume "(j,i) \<in> ov" then have ij:"(i,j)\<in>ov^-1" by simp let ?p = i | |
from ij have pi:"(?p, i) \<in> e" by (simp add:e) | |
from ij have pj:"(?p,j) \<in> ov^-1" by simp | |
from pi have "?p \<in> END i" using END_def by auto | |
with a0 have "?p \<in> (BEGIN j) " by auto | |
with pj show ?thesis | |
apply (auto simp:BEGIN_def) | |
using ov_rules by auto | |
} | |
next | |
{assume ij:"(i,j) \<in> s" | |
then obtain p q t where ip:"i\<parallel>p" and pq:"p\<parallel>q" and jq:"j\<parallel>q" and ti:"t\<parallel>i" and tj:"t\<parallel>j" using s by blast | |
from ip have "(p,i) \<in> m^-1" using m by auto | |
then have "p \<in> END i" using END_def by auto | |
with a0 have p:"p \<in> BEGIN j" by simp | |
from ti ip pq tj jq have "(p,j) \<in> f" using f by blast | |
with p show ?thesis | |
apply (auto simp:BEGIN_def) | |
using f_rules by auto | |
} | |
next | |
{assume "(j,i) \<in> s" then have ij:"(i,j) \<in> s^-1" by simp | |
then obtain u v where ju:"j\<parallel>u" and uv:"u\<parallel>v" and iv:"i\<parallel>v" using s by blast | |
from iv have "(v,i) \<in> m^-1" using m by blast | |
then have "v \<in> END i" using END_def by auto | |
with a0 have v:"v \<in> BEGIN j" by simp | |
from ju uv have "(v,j) \<in> b^-1" using b by auto | |
with v show ?thesis | |
apply (auto simp:BEGIN_def) | |
using b_rules by auto} | |
next | |
{assume ij:"(i,j) \<in> f" | |
have "(i,i) \<in> e" and "i \<in> END i" | |
by (simp add: e) (auto simp: assms intv2 ) | |
with a0 have "i \<in> BEGIN j" by simp | |
with ij show ?thesis | |
apply (auto simp:BEGIN_def) | |
using f_rules by auto | |
} | |
next | |
{assume "(j,i) \<in> f" then have "(i,j)\<in>f^-1" by simp | |
then obtain u where ju:"j\<parallel>u" and iu:"i\<parallel>u" using f by auto | |
then have ui:"(u,i) \<in> m^-1" and "u \<in> END i" | |
apply (simp add: converse.intros m) | |
using END_def iu m by auto | |
with a0 have ubj:"u \<in> BEGIN j" by simp | |
from ju have "(u,j) \<in> m^-1" by (simp add: converse.intros m) | |
with ubj show ?thesis | |
apply (auto simp:BEGIN_def) | |
using m_rules by auto | |
} | |
next | |
{assume ij:"(i,j) \<in> d" then | |
have "(i,i) \<in> e" and "i \<in> END i" using assms e by (blast, simp add: intv2) | |
with a0 have "i \<in> BEGIN j" by simp | |
with ij show ?thesis | |
apply (auto simp:BEGIN_def) | |
using d_rules by auto} | |
next | |
{assume ji:"(j,i) \<in> d" then have "(i,j) \<in> d^-1" using d by simp | |
then obtain u v where ju:"j\<parallel>u" and uv:"u\<parallel>v" and iv:"i\<parallel>v" using d using ji by blast | |
then have "(v,i) \<in> m^-1" and "v \<in> END i" using m END_def by auto | |
with a0 ju uv have vj:"(v,j) \<in> b^-1" and "v \<in> BEGIN j" using b by auto | |
with vj show ?thesis | |
apply (auto simp:BEGIN_def) | |
using b_rules by auto} | |
qed | |
qed | |
qed | |
lemma starts: | |
fixes i j | |
assumes "\<I> i" and "\<I> j" | |
shows "((i,j) \<in> s \<union> s^-1 \<union> e) = (BEGIN i = BEGIN j)" | |
proof | |
assume a3:"(i,j) \<in> s \<union> s^-1 \<union> e" show "BEGIN i = BEGIN j" | |
proof - | |
{ fix x assume "x \<in> BEGIN i" then have "(x,i) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>" unfolding BEGIN_def by auto | |
hence "x \<in> BEGIN j" using a3 ovsmfidiesiOssie | |
by (auto simp:BEGIN_def) | |
} note c1 = this | |
{ fix x assume "x \<in> BEGIN j" then have xj:"(x,j) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>" unfolding BEGIN_def by auto | |
then have "x \<in> BEGIN i" | |
apply (insert converseI[OF a3] xj) | |
apply (subst (asm) converse_Un)+ | |
apply (subst (asm) converse_converse) | |
using ovsmfidiesiOssie | |
by (auto simp:BEGIN_def) | |
} note c2 = this | |
from c1 have "BEGIN i \<subseteq> BEGIN j" by auto | |
moreover with c2 have "BEGIN j \<subseteq> BEGIN i" by auto | |
ultimately show ?thesis by auto | |
qed | |
next | |
assume a4:"BEGIN i = BEGIN j" | |
with assms have "i \<in> BEGIN j" and "j \<in> BEGIN i" using intv1 by auto | |
then have ij:"(i,j) \<in> ov \<union> s \<union> m \<union> f^-1 \<union> d^-1 \<union> e \<union> s^-1" and ji:"(j,i) \<in> ov \<union> s \<union> m \<union> f^-1 \<union> d^-1 \<union> e \<union> s^-1" | |
unfolding BEGIN_def by auto | |
then have ijov:"(i,j) \<notin> ov" | |
apply auto | |
using ov_rules by auto | |
from ij ji have ijm:"(i,j) \<notin> m" | |
apply (simp_all, elim disjE, simp_all) | |
using ov_rules apply auto[13] | |
using s_rules apply auto[11] | |
using m_rules apply auto[9] | |
using f_rules apply auto[7] | |
using d_rules apply auto[5] | |
using m_rules by auto[4] | |
from ij ji have ijfi:"(i,j) \<notin> f^-1" | |
apply (simp_all, elim disjE, simp_all) | |
using ov_rules apply auto[13] | |
using s_rules apply auto[11] | |
using m_rules apply auto[9] | |
using f_rules apply auto[7] | |
using d_rules apply auto[5] | |
using f_rules by auto[4] | |
from ij ji have ijdi:"(i,j) \<notin> d^-1" | |
apply (simp_all, elim disjE, simp_all) | |
using ov_rules apply auto[13] | |
using s_rules apply auto[11] | |
using m_rules apply auto[9] | |
using f_rules apply auto[7] | |
using d_rules apply auto[5] | |
using d_rules by auto[4] | |
from ij ijm ijov ijfi ijdi show "(i, j) \<in> s \<union> s\<inverse> \<union> e" by auto | |
qed | |
lemma xj_set:"x \<in> {a |a. (a, j) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>} = ((x,j) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>)" | |
by blast | |
lemma ends: | |
fixes i j | |
assumes "\<I> i" and "\<I> j" | |
shows "((i,j) \<in> f \<union> f^-1 \<union> e) = (END i = END j)" | |
proof | |
assume a3:"(i,j) \<in> f \<union> f^-1 \<union> e" show "END i = END j" | |
proof - | |
{ fix x assume "x \<in> END i" then have "(x,i) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" unfolding END_def by auto | |
then have "x \<in> END j" using a3 unfolding END_def | |
apply (subst xj_set) | |
using ceovisidiffimi_ffie_simp by simp | |
} note c1 =this | |
{ fix x assume "x \<in> END j" then have "(x,j) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" unfolding END_def by auto | |
then have "x \<in> END i" using a3 unfolding END_def | |
by (metis Un_iff ceovisidiffimi_ffie_simp converse_iff eei mem_Collect_eq) | |
} note c2 = this | |
from c1 have "END i \<subseteq> END j" by auto | |
moreover with c2 have "END j \<subseteq> END i" by auto | |
ultimately show ?thesis by auto | |
qed (*} note conc = this *) | |
next | |
assume a4:"END i = END j" | |
with assms have "i \<in> END j" and "j \<in> END i" using intv2 by auto | |
then have ij:"(i,j) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" and ji:"(j,i) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" | |
unfolding END_def by auto | |
then have ijov:"(i,j) \<notin> ov^-1" | |
apply (simp_all, elim disjE, simp_all) | |
using eov es ed efi ef em eov apply auto[13] | |
using ov_rules apply auto[11] | |
using s_rules apply auto[9] | |
using d_rules apply auto[7] | |
using f_rules apply auto[8] | |
using movi by auto | |
from ij ji have ijm:"(i,j) \<notin> m^-1" | |
apply (simp_all, elim disjE, simp_all) | |
using m_rules by auto | |
from ij ji have ijfi:"(i,j) \<notin> s^-1" | |
apply (simp_all, elim disjE, simp_all) | |
using s_rules by auto | |
from ij ji have ijdi:"(i,j) \<notin> d^-1" | |
apply (simp_all, elim disjE, simp_all) | |
using d_rules by auto | |
from ij ijm ijov ijfi ijdi show "(i, j) \<in> f \<union> f\<inverse> \<union> e" by auto | |
qed | |
lemma before_irrefl: | |
fixes a | |
shows "\<not> a \<lless> a" | |
proof (rule ccontr, auto) | |
assume a0:"a \<lless> a" | |
then have "NEST a" unfolding before_def by auto | |
then obtain i where i:"a = BEGIN i \<or> a = END i" unfolding NEST_def by auto | |
from i show False | |
proof | |
assume "a = BEGIN i" | |
with a0 have "BEGIN i \<lless> BEGIN i" by simp | |
then obtain p q where "p\<in> BEGIN i" and "q \<in> BEGIN i" and b:"(p,q) \<in> b" unfolding before_def by auto | |
then have a1:"(p,i) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>" and a2:"(i,q) \<in> ov^-1 \<union> s^-1 \<union> m^-1 \<union> f \<union> d \<union> e \<union> s" unfolding BEGIN_def | |
apply auto | |
using eei apply fastforce | |
by (simp add: e)+ | |
with b show False | |
using piiq[of p i q] | |
using b_rules by safe fast+ | |
next | |
assume "a = END i" | |
with a0 have "END i \<lless> END i" by simp | |
then obtain p q where "p\<in> END i" and "q \<in> END i" and b:"(p,q) \<in> b" unfolding before_def by auto | |
then have a1:"(p,i) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" and a2:"(q,i) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" unfolding END_def | |
by auto | |
with b show False | |
apply (subst (asm) converse_iff[THEN sym]) | |
using cbi_alpha1ialpha4mi neq_bi_alpha1ialpha4mi relcomp.relcompI subsetCE by blast | |
qed | |
qed | |
lemma BEGIN_before: | |
fixes i j | |
assumes "\<I> i" and "\<I> j" | |
shows "BEGIN i \<lless> BEGIN j = ((i,j) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>)" | |
proof | |
assume a3:"BEGIN i \<lless> BEGIN j" | |
from a3 obtain p q where pa:"p \<in> BEGIN i" and qc:"q \<in> BEGIN j" and pq:"(p,q) \<in> b" unfolding before_def by auto | |
then obtain r where "p\<parallel>r" and "r\<parallel>q" using b by auto | |
then have pr:"(p,r) \<in> m" and rq:"(r,q) \<in> m" using m by auto | |
from pa have pi:"(p,i) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>" unfolding BEGIN_def by auto | |
moreover with pr have "(r,p) \<in> m^-1" by simp | |
ultimately have "(r,i) \<in> d \<union> f \<union> ov^-1 \<union> e \<union> f^-1 \<union> m^-1 \<union> b^-1 \<union> s \<union> s^-1" | |
using cmiov cmis cmim cmifi cmidi cmisi | |
apply ( simp_all,elim disjE, auto) | |
by (simp add: e) | |
then have ir:"(i,r) \<in> d^-1 \<union> f^-1 \<union> ov \<union> e \<union> f \<union> m \<union> b \<union> s^-1 \<union> s" | |
by (metis (mono_tags, lifting) converseD converse_Un converse_converse eei) | |
from qc have "(q,j) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>" unfolding BEGIN_def by auto | |
with rq have rj:"(r,j) \<in> b \<union> s \<union> m " | |
using m_ovsmfidiesi using contra_subsetD relcomp.relcompI by blast | |
with ir have c1:"(i,j) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse> \<union> d \<union> e \<union> s \<union> s\<inverse>" | |
using difibs by blast | |
{assume "(i,j) \<in> s\<or> (i,j)\<in>s^-1 \<or> (i,j) \<in> e" then have "BEGIN i = BEGIN j" | |
using starts Un_iff assms(1) assms(2) by blast | |
with a3 have False by (simp add: before_irrefl)} | |
from c1 have c1':"(i,j) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse> \<union> d " | |
using \<open>(i, j) \<in> s \<or> (i, j) \<in> s\<inverse> \<or> (i, j) \<in> e \<Longrightarrow> False\<close> by blast | |
{assume "(i,j) \<in> d" with pi have "(p,j) \<in> e \<union> s \<union> d \<union> ov \<union> ov^-1 \<union> s^-1 \<union> f \<union> f^-1 \<union> d^-1" | |
using ovsmfidiesi_d using relcomp.relcompI subsetCE by blast | |
with pq have "(q,j) \<in> b^-1 \<union> d \<union> f \<union> ov^-1 \<union> m^-1" | |
apply (subst (asm) converse_iff[THEN sym]) | |
using cbi_esdovovisiffidi by blast | |
with qc have False unfolding BEGIN_def | |
apply (subgoal_tac "(q, j) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>") | |
prefer 2 | |
apply simp | |
using neq_beta2i_alpha2alpha5m by auto | |
} | |
with c1' show "((i, j) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>)" by auto | |
next | |
assume "(i, j) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>" | |
then show "BEGIN i \<lless> BEGIN j" | |
proof ( simp_all,elim disjE, simp_all) | |
assume "(i,j) \<in> b" thus ?thesis using intv1 using before_def NEST_BEGIN assms by metis | |
next | |
assume iu:"(i,j) \<in> m" | |
obtain l where li:"(l,i) \<in> m" using M3 m meets_wd assms by blast | |
with iu have "(l,j) \<in> b" using cmm by auto | |
moreover from li have "l \<in> (BEGIN i)" using BEGIN_def by auto | |
ultimately show ?thesis using intv1 before_def NEST_BEGIN assms by blast | |
next | |
assume iu:"(i,j) \<in> ov" | |
obtain l where li:"(l,i) \<in> m" using M3 m meets_wd assms by blast | |
with iu have "(l,j) \<in> b" using cmov by auto | |
moreover from li have "l \<in> (BEGIN i)" using BEGIN_def by auto | |
ultimately show ?thesis using intv1 before_def NEST_BEGIN assms by blast | |
next | |
assume iu:"(j,i) \<in> f" | |
obtain l where li:"(l,i) \<in> m" using M3 m meets_wd assms by blast | |
with iu have "(l,j) \<in> b" using cmfi by auto | |
moreover from li have "l \<in> (BEGIN i)" using BEGIN_def by auto | |
ultimately show ?thesis using intv1 before_def NEST_BEGIN assms by blast | |
next | |
assume iu:"(j,i) \<in> d" | |
obtain l where li:"(l,i) \<in> m" using M3 m meets_wd assms by blast | |
with iu have "(l,j) \<in> b" using cmdi by auto | |
moreover from li have "l \<in> (BEGIN i)" using BEGIN_def by auto | |
ultimately show ?thesis using intv1 before_def NEST_BEGIN assms by blast | |
qed | |
qed | |
lemma BEGIN_END_before: | |
fixes i j | |
assumes "\<I> i" and "\<I> j" | |
shows "BEGIN i \<lless> END j = ((i,j) \<in> e \<union> b \<union> m \<union> ov \<union> ov^-1 \<union> s \<union> s^-1 \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>) " | |
proof | |
assume a3:"BEGIN i \<lless> END j" | |
then obtain p q where pa:"p \<in> BEGIN i" and qc:"q \<in> END j" and pq:"(p,q) \<in> b" unfolding before_def by auto | |
then obtain r where "p\<parallel>r" and "r\<parallel>q" using b by auto | |
then have pr:"(p,r) \<in> m" and rq:"(r,q) \<in> m" using m by auto | |
from pa have pi:"(p,i) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>" unfolding BEGIN_def by auto | |
moreover with pr have "(r,p) \<in> m^-1" by simp | |
ultimately have "(r,i) \<in> d \<union> f \<union> ov^-1 \<union> e \<union> f^-1 \<union> m^-1 \<union> b^-1 \<union> s \<union> s^-1" using cmiov cmis cmim cmifi cmidi e cmisi | |
by ( simp_all,elim disjE, auto simp:e) | |
then have ir:"(i,r) \<in> d^-1 \<union> f^-1 \<union> ov \<union> e \<union> f \<union> m \<union> b \<union> s^-1 \<union> s" | |
by (metis (mono_tags, lifting) converseD converse_Un converse_converse eei) | |
from qc have "(q,j) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" unfolding END_def by auto | |
with rq have rj:"(r,j) \<in> m \<union> ov \<union> s \<union> d \<union> b \<union> f^-1 \<union> f \<union> e" using cm_alpha1ialpha4mi by blast | |
with ir show c1:"(i,j) \<in> e \<union> b \<union> m \<union> ov \<union> ov^-1 \<union> s \<union> s^-1 \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>" | |
using difimov by blast | |
next | |
assume a4:"(i, j) \<in> e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>" | |
then show "BEGIN i \<lless> END j" | |
proof ( simp_all,elim disjE, simp_all) | |
assume "(i,j) \<in> e" | |
obtain l k where l:"l\<parallel>i" and "i\<parallel>k" using M3 meets_wd assms by blast | |
with \<open>(i,j) \<in> e\<close> have k:"j\<parallel>k" by (simp add: e) | |
from l k have "(l,i) \<in> m" and "(k,j) \<in> m^-1" using m by auto | |
then have "l \<in> BEGIN i" and "k \<in> END j" using BEGIN_def END_def by auto | |
moreover from l \<open>i\<parallel>k\<close> have "(l,k) \<in> b" using b by auto | |
ultimately show ?thesis using before_def assms NEST_BEGIN NEST_END by blast | |
next | |
assume "(i,j) \<in> b" | |
then show ?thesis using before_def assms NEST_BEGIN NEST_END intv1[of i] intv2[of j] by auto | |
next | |
assume "(i,j) \<in> m" | |
obtain l where "l\<parallel>i" using M3 assms by blast | |
then have "l\<in>BEGIN i" using m BEGIN_def by auto | |
moreover from \<open>(i,j)\<in>m\<close> \<open>l\<parallel>i\<close> have "(l,j) \<in> b" using b m by blast | |
ultimately show ?thesis using intv2[of j] assms NEST_BEGIN NEST_END before_def by blast | |
next | |
assume "(i,j) \<in> ov" | |
then obtain l k where li:"l\<parallel>i" and lk:"l\<parallel>k" and ku:"k\<parallel>j" using ov by blast | |
from li have "l \<in> BEGIN i" using m BEGIN_def by auto | |
moreover from lk ku have "(l,j) \<in> b" using b by auto | |
ultimately show ?thesis using intv2[of j] assms NEST_BEGIN NEST_END before_def by blast | |
next | |
assume "(j,i) \<in> ov" | |
then obtain l k v where uv:"j\<parallel>v" and lk:"l\<parallel>k" and kv:"k\<parallel>v" and li:"l\<parallel>i" using ov by blast | |
from li have "l \<in> BEGIN i" using m BEGIN_def by auto | |
moreover from uv have "v \<in> END j" using m END_def by auto | |
moreover from lk kv have "(l,v) \<in> b" using b by auto | |
ultimately show ?thesis using assms NEST_BEGIN NEST_END before_def by blast | |
next | |
assume "(i,j) \<in> s" | |
then obtain v v' where iv:"i\<parallel>v" and vvp:"v\<parallel>v'" and "j\<parallel>v'" using s by blast | |
then have "v' \<in> END j" using END_def m by auto | |
moreover from iv vvp have "(i,v') \<in> b" using b by auto | |
ultimately show ?thesis using intv1[of i] assms NEST_BEGIN NEST_END before_def by blast | |
next | |
assume "(j,i) \<in> s" | |
then obtain l v where li:"l\<parallel>i" and lu:"l\<parallel>j" and "j\<parallel>v" using s by blast | |
then have "v \<in> END j" using m END_def by auto | |
moreover from li have "l \<in> BEGIN i" using m BEGIN_def by auto | |
moreover from lu \<open>j\<parallel>v\<close> have "(l,v) \<in> b" using b by auto | |
ultimately show ?thesis using assms NEST_BEGIN NEST_END before_def by blast | |
next | |
assume "(i,j) : f" | |
then obtain l v where li:"l\<parallel>i" and iv:"i\<parallel>v" and "j\<parallel>v" using f by blast | |
then have "v \<in> END j" using m END_def by auto | |
moreover from li have "l \<in> BEGIN i" using m BEGIN_def by auto | |
moreover from iv li have "(l,v) \<in> b" using b by auto | |
ultimately show ?thesis using assms NEST_BEGIN NEST_END before_def by blast | |
next | |
assume "(j,i) \<in> f" | |
then obtain l v where li:"l\<parallel>i" and iv:"i\<parallel>v" and "j\<parallel>v" using f by blast | |
then have "v \<in> END j" using m END_def by auto | |
moreover from li have "l \<in> BEGIN i" using m BEGIN_def by auto | |
moreover from iv li have "(l,v) \<in> b" using b by auto | |
ultimately show ?thesis using assms NEST_BEGIN NEST_END before_def by blast | |
next | |
assume "(i,j) : d" | |
then obtain k v where ik:"i\<parallel>k" and kv:"k\<parallel>v" and "j\<parallel>v" using d by blast | |
then have "v \<in> END j" using END_def m by auto | |
moreover from ik kv have "(i,v) \<in> b" using b by auto | |
ultimately show ?thesis using intv1[of i] assms NEST_BEGIN NEST_END before_def by blast | |
next | |
assume "(j,i) \<in> d" | |
then obtain l k where "l\<parallel>i" and lk:"l\<parallel>k" and ku:"k\<parallel>j" using d by blast | |
then have "l \<in> BEGIN i" using BEGIN_def m by auto | |
moreover from lk ku have "(l,j) \<in> b" using b by auto | |
ultimately show ?thesis using intv2[of j] assms NEST_BEGIN NEST_END before_def by blast | |
qed | |
qed | |
lemma END_BEGIN_before: | |
fixes i j | |
assumes "\<I> i" and "\<I> j" | |
shows "END i \<lless> BEGIN j = ((i,j) \<in> b) " | |
proof | |
assume a3:"END i \<lless> BEGIN j" | |
from a3 obtain p q where pa:"p \<in> END i" and qc:"q \<in> BEGIN j" and pq:"(p,q) \<in> b" unfolding before_def by auto | |
then obtain r where "p\<parallel>r" and "r\<parallel>q" using b by auto | |
then have pr:"(p,r) \<in> m" and rq:"(r,q) \<in> m" using m by auto | |
from pa have pi:"(p,i) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" unfolding END_def by auto | |
moreover with pr have "(r,p) \<in> m^-1" by simp | |
ultimately have "(r,i) \<in> m^-1 \<union> b^-1" using e cmiovi cmisi cmidi cmif cmifi cmimi | |
by ( simp_all,elim disjE, auto simp:e) | |
then have ir:"(i,r) \<in> m \<union> b" by simp | |
from qc have "(q,j) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>" unfolding BEGIN_def by auto | |
with rq have rj:"(r,j) \<in> b \<union> m " using cmov cms cmm cmfi cmdi e cmsi | |
by (simp_all, elim disjE, auto simp:e) | |
with ir show "(i,j) \<in> b" using cmb cmm cbm cbb by auto | |
next | |
assume "(i,j) \<in> b" thus "END i \<lless> BEGIN j" using intv1[of j] intv2[of i] assms before_def NEST_END NEST_BEGIN by auto | |
qed | |
lemma END_END_before: | |
fixes i j | |
assumes "\<I> i" and "\<I> j" | |
shows "END i \<lless> END j = ((i,j) \<in> b \<union> m \<union> ov \<union> s \<union> d) " | |
proof | |
assume a3:"END i \<lless> END j" | |
from a3 obtain p q where pa:"p \<in> END i" and qc:"q \<in> END j" and pq:"(p,q) \<in> b" unfolding before_def by auto | |
then obtain r where "p\<parallel>r" and "r\<parallel>q" using b by auto | |
then have pr:"(p,r) \<in> m" and rq:"(r,q) \<in> m" using m by auto | |
from pa have pi:"(p,i) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" unfolding END_def by auto | |
moreover with pr have "(r,p) \<in> m^-1" by simp | |
ultimately have "(r,i) \<in> m^-1 \<union> b^-1" using e cmiovi cmisi cmidi cmif cmifi cmimi | |
by ( simp_all,elim disjE, auto simp:e) | |
then have ir:"(i,r) \<in> m \<union> b" by simp | |
from qc have "(q,j) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" unfolding END_def by auto | |
with rq have rj:"(r,j) \<in> m \<union> ov \<union> s \<union> d \<union> b \<union> f^-1 \<union> e \<union> f " using e cmovi cmsi cmdi cmf cmfi cmmi | |
by (simp_all, elim disjE, auto simp:e) | |
with ir show "(i,j) \<in> b \<union> m \<union> ov \<union> s \<union> d" using cmm cmov cms cmd cmb cmfi e cmf cbm cbov cbs cbd cbb cbfi cbf | |
by (simp_all, elim disjE, auto simp:e) | |
next | |
assume "(i, j) \<in> b \<union> m \<union> ov \<union> s \<union> d" | |
then show "END i \<lless> END j" | |
proof ( simp_all,elim disjE, simp_all) | |
assume "(i,j) \<in> b" thus ?thesis using intv2[of i] intv2[of j] assms NEST_END before_def by blast | |
next | |
assume "(i,j) \<in> m" | |
obtain v where "j\<parallel>v" using M3 assms by blast | |
with \<open>(i,j) \<in> m\<close> have "(i,v) \<in>b" using b m by blast | |
moreover from \<open>j\<parallel>v\<close> have "v \<in> END j" using m END_def by auto | |
ultimately show ?thesis using intv2[of i] assms NEST_END before_def by blast | |
next | |
assume "(i,j) : ov" | |
then obtain v v' where iv:"i\<parallel>v" and vvp:"v\<parallel>v'" and "j\<parallel>v'" using ov by blast | |
then have "v' \<in> END j" using m END_def by auto | |
moreover from iv vvp have "(i,v') \<in> b" using b by auto | |
ultimately show ?thesis using intv2[of i] assms NEST_END before_def by blast | |
next | |
assume "(i,j) \<in> s" | |
then obtain v v' where iv:"i\<parallel>v" and vvp:"v\<parallel>v'" and "j\<parallel>v'" using s by blast | |
then have "v' \<in> END j" using m END_def by auto | |
moreover from iv vvp have "(i,v') \<in> b" using b by auto | |
ultimately show ?thesis using intv2[of i] assms NEST_END before_def by blast | |
next | |
assume "(i,j) \<in> d" | |
then obtain v v' where iv:"i\<parallel>v" and vvp:"v\<parallel>v'" and "j\<parallel>v'" using d by blast | |
then have "v' \<in> END j" using m END_def by auto | |
moreover from iv vvp have "(i,v') \<in> b" using b by auto | |
ultimately show ?thesis using intv2[of i] assms NEST_END before_def by blast | |
qed | |
qed | |
lemma overlaps: | |
assumes "\<I> i" and "\<I> j" | |
shows "(i,j) \<in> ov = ((BEGIN i \<lless> BEGIN j) \<and> (BEGIN j \<lless> END i) \<and> (END i \<lless> END j))" | |
proof | |
assume a:"(i,j) \<in> ov" | |
then obtain n t q u v where nt:"n\<parallel>t" and tj:"t\<parallel>j" and tq:"t\<parallel>q" and qu:"q\<parallel>u" and iu:"i\<parallel>u" and uv:"u\<parallel>v" and jv:"j\<parallel>v" and "n\<parallel>i" using ov by blast | |
then have ni:"(n,i) \<in> m" using m by blast | |
then have n:"n \<in> BEGIN i" unfolding BEGIN_def by auto | |
from nt tj have nj:"(n,j) \<in> b" using b by auto | |
have "j \<in> BEGIN j" using assms(2) by (simp add: intv1) | |
with assms n nj have c1:"BEGIN i \<lless> BEGIN j" unfolding before_def using NEST_BEGIN by blast | |
from tj have a1:"(t,j) \<in> m" and a2:"t \<in> BEGIN j" using m BEGIN_def by auto | |
from iu have "(u,i) \<in> m^-1" and "u \<in> END i" using m END_def by auto | |
with assms tq qu a2 have c2:"BEGIN j \<lless> END i" unfolding before_def using b NEST_BEGIN NEST_END by blast | |
have "i \<in> END i" by (simp add: assms intv2) | |
moreover with jv have "v \<in> END j" using m END_def by auto | |
moreover with iu uv have "(i,v) \<in> b" using b by auto | |
ultimately have c3:"END i \<lless> END j" using assms NEST_END before_def by blast | |
show "((BEGIN i \<lless> BEGIN j) \<and> (BEGIN j \<lless> END i) \<and> (END i \<lless> END j))" using c1 c2 c3 by simp | |
next | |
assume a0:"((BEGIN i \<lless> BEGIN j) \<and> (BEGIN j \<lless> END i) \<and> (END i \<lless> END j))" | |
then have "(i,j) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse> \<and> (i,j) \<in> e \<union> b^-1 \<union> m^-1 \<union> ov^-1 \<union> ov \<union> s^-1 \<union> s \<union> f^-1 \<union> f \<union> d^-1 \<union> d | |
\<and> (i,j) \<in> b \<union> m \<union> ov \<union> s \<union> d" | |
using BEGIN_before BEGIN_END_before END_END_before assms | |
by (metis (no_types, lifting) converseD converse_Un converse_converse eei) | |
then have "(i,j) \<in> (b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>) \<inter> (e \<union> b^-1 \<union> m^-1 \<union> ov^-1 \<union> ov \<union> s^-1 \<union> s \<union> f^-1 \<union> f \<union> d^-1 \<union> d) \<inter> (b \<union> m \<union> ov \<union> s \<union> d)" | |
by (auto) | |
then show "(i,j) \<in> ov" | |
using inter_ov by blast | |
qed | |
subsection \<open>Ordering of nests\<close> | |
class strict_order = | |
fixes ls::"'a nest \<Rightarrow> 'a nest \<Rightarrow> bool" | |
assumes | |
irrefl:"\<not> ls a a" and | |
trans:"ls a c \<Longrightarrow> ls c g \<Longrightarrow> ls a g" and | |
asym:"ls a c \<Longrightarrow> \<not> ls c a" | |
class total_strict_order = strict_order + | |
assumes trichotomy: "a = c \<Longrightarrow> (\<not> (ls a c) \<and> \<not> (ls c a))" | |
interpretation nest:total_strict_order "(\<lless>) " | |
proof | |
{ fix a::"'a nest" | |
show "\<not> a \<lless> a" | |
by (simp add: before_irrefl) } note irrefl_nest = this | |
{fix a c::"'a nest" | |
assume "a = c" | |
show "\<not> a \<lless> c \<and> \<not> c \<lless> a" | |
by (simp add: \<open>a = c\<close> irrefl_nest)} note trichotomy_nest = this | |
{fix a c g::"'a nest" | |
assume a:"a \<lless> c" and c:" c \<lless> g" | |
show " a \<lless> g" | |
proof - | |
from a c have na:"NEST a" and nc:"NEST c" and ng:"NEST g" unfolding before_def by auto | |
from na obtain i where i:"a = BEGIN i \<or> a = END i" and wdi:"\<I> i" unfolding NEST_def by auto | |
from nc obtain j where j:"c = BEGIN j \<or> c = END j" and wdj:"\<I> j" unfolding NEST_def by auto | |
from ng obtain u where u:"g = BEGIN u \<or> g = END u" and wdu:"\<I> u" unfolding NEST_def by auto | |
from i j u show ?thesis | |
proof (elim disjE, auto) | |
assume abi:"a = BEGIN i" and cbj:"c = BEGIN j" and gbu:"g = BEGIN u" | |
from abi cbj a wdi wdj have "(i,j) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse> " using BEGIN_before by auto | |
moreover from cbj gbu c wdj wdu have "(j,u) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>" using BEGIN_before by auto | |
ultimately have c1:"(i,u) \<in> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1" | |
using cbeta2_beta2 by blast | |
then have "a \<lless> g" by (simp add: BEGIN_before abi gbu wdi wdu) | |
thus "BEGIN i \<lless> BEGIN u" using abi gbu by auto | |
next | |
assume abi:"a = BEGIN i" and cbj:"c = BEGIN j" and geu:"g = END u" | |
from abi cbj a wdi wdj have "(i,j) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse> " using BEGIN_before by auto | |
moreover from cbj geu c wdj wdu have "(j,u) : e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>" using BEGIN_END_before by auto | |
ultimately have "(i,u) \<in> e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>" | |
using cbeta2_gammabm by blast | |
then have "a \<lless> g" | |
by (simp add: BEGIN_END_before abi geu wdi wdj wdu) | |
thus "BEGIN i \<lless> END u" using abi geu by auto | |
next | |
assume abi:"a = BEGIN i" and cej:"c = END j" and gbu:"g = BEGIN u" | |
from abi cej a wdi wdj have ij:"(i,j) : e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>" using BEGIN_END_before by auto | |
from cej gbu c wdj wdu have "(j,u) \<in> b " using END_BEGIN_before by auto | |
with ij have "(i,u) \<in> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1" | |
using ebmovovissifsiddib by ( auto) | |
thus "BEGIN i \<lless> BEGIN u" | |
by (simp add: BEGIN_before abi gbu wdi wdu) | |
next | |
assume abi:"a = BEGIN i" and cej:"c = END j" and geu:"g = END u" | |
with a have "(i,j) \<in> e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>" | |
using BEGIN_END_before wdi wdj by auto | |
moreover from cej geu c wdj wdu have "(j,u) \<in> b \<union> m \<union> ov \<union> s \<union> d" | |
using END_END_before by auto | |
ultimately have "(i,u) \<in> b \<union> m \<union> ov \<union> s \<union> d \<union> f^-1 \<union> d^-1 \<union> ov^-1 \<union> s\<inverse> \<union> f \<union> e" | |
using ebmovovissiffiddibmovsd by blast | |
thus "BEGIN i \<lless> END u" using BEGIN_END_before wdi wdu by auto | |
next | |
assume aei:"a = END i" and cbj:"c = BEGIN j" and gbu:"g = BEGIN u" | |
from a aei cbj wdi wdj have "(i,j) \<in> b" | |
using END_BEGIN_before by auto | |
moreover from c cbj gbu wdj wdu have "(j,u) \<in> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>" | |
using BEGIN_before by auto | |
ultimately have "(i,u) : b" using cbb cbm cbov cbfi cbdi | |
by (simp_all, elim disjE, auto) | |
thus "END i \<lless> BEGIN u" using END_BEGIN_before wdi wdu by auto | |
next | |
assume aei:"a = END i" and cbj:"c = BEGIN j" and geu:"g = END u" | |
from a aei cbj wdi wdj have "(i,j) \<in> b" | |
using END_BEGIN_before by auto | |
moreover from c cbj geu wdj wdu have "(j,u) \<in> e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>" | |
using BEGIN_END_before by auto | |
ultimately have "(i,u) \<in> b \<union> m \<union> ov \<union> s \<union> d" | |
using bebmovovissiffiddi by blast | |
thus "END i \<lless> END u" using END_END_before wdi wdu by auto | |
next | |
assume aei:"a = END i" and cej:"c = END j" and gbu:"g = BEGIN u" | |
from aei cej wdi wdj have "(i,j) \<in> b \<union> m \<union> ov \<union> s \<union> d" using END_END_before a by auto | |
moreover from cej gbu c wdj wdu have "(j,u) \<in> b" using END_BEGIN_before by auto | |
ultimately have "(i,u) \<in> b" | |
using cbb cmb covb csb cdb | |
by (simp_all, elim disjE, auto) | |
thus "END i \<lless> BEGIN u" using END_BEGIN_before wdi wdu by auto | |
next | |
assume aei:"a = END i" and cej:"c = END j" and geu:"g = END u" | |
from aei cej wdi wdj have "(i,j) \<in> b \<union> m \<union> ov \<union> s \<union> d" using END_END_before a by auto | |
moreover from cej geu c wdj wdu have "(j,u) \<in> b \<union> m \<union> ov \<union> s \<union> d" using END_END_before by auto | |
ultimately have "(i,u) \<in> b \<union> m \<union> ov \<union> s \<union> d" | |
using calpha1_alpha1 by auto | |
thus "END i \<lless> END u" using END_END_before wdi wdu by auto | |
qed | |
qed} note trans_nest = this | |
{ fix a c::"'a nest" | |
assume a:"a \<lless> c" | |
show "\<not> c \<lless> a" | |
apply (rule ccontr, auto) | |
using a irrefl_nest trans_nest by blast} | |
qed | |
end | |