Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
section "Attack Trees" | |
theory AT | |
imports MC | |
begin | |
text \<open>Attack Trees are an intuitive and practical formal method to analyse and quantify | |
attacks on security and privacy. They are very useful to identify the steps an attacker | |
takes through a system when approaching the attack goal. Here, we provide | |
a proof calculus to analyse concrete attacks using a notion of attack validity. | |
We define a state based semantics with Kripke models and the temporal logic | |
CTL in the proof assistant Isabelle \cite{npw:02} using its Higher Order Logic | |
(HOL). We prove the correctness and completeness (adequacy) of Attack Trees in Isabelle | |
with respect to the model.\<close> | |
subsection "Attack Tree datatype" | |
text \<open>The following datatype definition @{text \<open>attree\<close>} defines attack trees. | |
The simplest case of an attack tree is a base attack. | |
The principal idea is that base attacks are defined by a pair of | |
state sets representing the initial states and the {\it attack property} | |
-- a set of states characterized by the fact that this property holds | |
in them. | |
Attacks can also be combined as the conjunction or disjunction of other attacks. | |
The operator @{text \<open>\<oplus>\<^sub>\<or>\<close>} creates or-trees and @{text \<open>\<oplus>\<^sub>\<and>\<close>} creates and-trees. | |
And-attack trees @{text \<open>l \<oplus>\<^sub>\<and> s\<close>} and or-attack trees @{text \<open>l \<oplus>\<^sub>\<or> s\<close>} | |
combine lists of attack trees $l$ either conjunctively or disjunctively and | |
consist of a list of sub-attacks -- again attack trees.\<close> | |
datatype ('s :: state) attree = BaseAttack "('s set) * ('s set)" ("\<N>\<^bsub>(_)\<^esub>") | | |
AndAttack "('s attree) list" "('s set) * ('s set)" ("_ \<oplus>\<^sub>\<and>\<^bsup>(_)\<^esup>" 60) | | |
OrAttack "('s attree) list" "('s set) * ('s set)" ("_ \<oplus>\<^sub>\<or>\<^bsup>(_)\<^esup>" 61) | |
primrec attack :: "('s :: state) attree \<Rightarrow> ('s set) * ('s set)" | |
where | |
"attack (BaseAttack b) = b"| | |
"attack (AndAttack as s) = s" | | |
"attack (OrAttack as s) = s" | |
subsection \<open>Attack Tree refinement\<close> | |
text \<open>When we develop an attack tree, we proceed from an abstract attack, given | |
by an attack goal, by breaking it down into a series of sub-attacks. This | |
proceeding corresponds to a process of {\it refinement}. Therefore, as part of | |
the attack tree calculus, we provide a notion of attack tree refinement. | |
The relation @{text \<open>refines_to\<close>} "constructs" the attack tree. Here the above | |
defined attack vectors are used to define how nodes in an attack tree | |
can be expanded into more detailed (refined) attack sequences. This | |
process of refinement @{text "\<sqsubseteq>"} allows to eventually reach a fully detailed | |
attack that can then be proved using @{text "\<turnstile>"}.\<close> | |
inductive refines_to :: "[('s :: state) attree, 's attree] \<Rightarrow> bool" ("_ \<sqsubseteq> _" [40] 40) | |
where | |
refI: "\<lbrakk> A = ((l @ [ \<N>\<^bsub>(si',si'')\<^esub>] @ l'')\<oplus>\<^sub>\<and>\<^bsup>(si,si''')\<^esup> ); | |
A' = (l' \<oplus>\<^sub>\<and>\<^bsup>(si',si'')\<^esup>); | |
A'' = (l @ l' @ l'' \<oplus>\<^sub>\<and>\<^bsup>(si,si''')\<^esup>) | |
\<rbrakk> \<Longrightarrow> A \<sqsubseteq> A''"| | |
ref_or: "\<lbrakk> as \<noteq> []; \<forall> A' \<in> set(as). (A \<sqsubseteq> A') \<and> attack A = s \<rbrakk> \<Longrightarrow> A \<sqsubseteq> (as \<oplus>\<^sub>\<or>\<^bsup>s\<^esup>)" | | |
ref_trans: "\<lbrakk> A \<sqsubseteq> A'; A' \<sqsubseteq> A'' \<rbrakk> \<Longrightarrow> A \<sqsubseteq> A''"| | |
ref_refl : "A \<sqsubseteq> A" | |
subsection \<open>Validity of Attack Trees\<close> | |
text \<open>A valid attack, intuitively, is one which is fully refined into fine-grained | |
attacks that are feasible in a model. The general model we provide is | |
a Kripke structure, i.e., a set of states and a generic state transition. | |
Thus, feasible steps in the model are single steps of the state transition. | |
We call them valid base attacks. | |
The composition of sequences of valid base attacks into and-attacks yields | |
again valid attacks if the base attacks line up with respect to the states | |
in the state transition. If there are different valid attacks for the same | |
attack goal starting from the same initial state set, these can be | |
summarized in an or-attack. | |
More precisely, the different cases of the validity predicate are distinguished | |
by pattern matching over the attack tree structure. | |
\begin{itemize} | |
\item A base attack @{text \<open>\<N>(s0,s1)\<close>} is valid if from all | |
states in the pre-state set @{text \<open>s0\<close>} we can get with a single step of the | |
state transition relation to a state in the post-state set \<open>s1\<close>. Note, | |
that it is sufficient for a post-state to exist for each pre-state. After all, | |
we are aiming to validate attacks, that is, possible attack paths to some | |
state that fulfills the attack property. | |
\item An and-attack @{text \<open>As \<oplus>\<^sub>\<and> (s0,s1)\<close>} is a valid attack | |
if either of the following cases holds: | |
\begin{itemize} | |
\item empty attack sequence @{text \<open>As\<close>}: in this case | |
all pre-states in @{text \<open>s0\<close>} must already be attack states | |
in @{text \<open>s1\<close>}, i.e., @{text \<open>s0 \<subseteq> s1\<close>}; | |
\item attack sequence @{text \<open>As\<close>} is singleton: in this case, the | |
singleton element attack @{text \<open>a\<close>} in @{text \<open>[a]\<close>}, | |
must be a valid attack and it must be an attack with pre-state | |
@{text \<open>s0\<close>} and post-state @{text \<open>s1\<close>}; | |
\item otherwise, @{text \<open>As\<close>} must be a list matching @{text \<open>a # l\<close>} for | |
some attack @{text \<open>a\<close>} and tail of attack list @{text \<open>l\<close>} such that | |
@{text \<open>a\<close>} is a valid attack with pre-state identical to the overall | |
pre-state @{text \<open>s0\<close>} and the goal of the tail @{text \<open>l\<close>} is | |
@{text \<open>s1\<close>} the goal of the overall attack. The pre-state of the | |
attack represented by @{text \<open>l\<close>} is @{text \<open>snd(attack a)\<close>} since this is | |
the post-state set of the first step @{text \<open>a\<close>}. | |
\end{itemize} | |
\item An or-attack @{text \<open>As \<oplus>\<^sub>\<or>(s0,s1)\<close>} is a valid attack | |
if either of the following cases holds: | |
\begin{itemize} | |
\item the empty attack case is identical to the and-attack above: | |
@{text \<open>s0 \<subseteq> s1\<close>}; | |
\item attack sequence @{text \<open>As\<close>} is singleton: in this case, the | |
singleton element attack @{text \<open>a\<close>} | |
must be a valid attack and | |
its pre-state must include the overall attack pre-state set @{text \<open>s0\<close>} | |
(since @{text \<open>a\<close>} is singleton in the or) while the post-state of | |
@{text \<open>a\<close>} needs to be included in the global attack goal @{text \<open>s1\<close>}; | |
\item otherwise, @{text \<open>As\<close>} must be a list @{text \<open>a # l\<close>} for | |
an attack @{text \<open>a\<close>} and a list @{text \<open>l\<close>} of alternative attacks. | |
The pre-states can be just a subset of @{text \<open>s0\<close>} (since there are | |
other attacks in @{text \<open>l\<close>} that can cover the rest) and the goal | |
states @{text \<open>snd(attack a)\<close>} need to lie all in the overall goal | |
state @{text \<open>set s1\<close>}. The other or-attacks in @{text \<open>l\<close>} need | |
to cover only the pre-states @{text \<open>fst s - fst(attack a)\<close>} | |
(where @{text \<open>-\<close>} is set difference) and have the same goal @{text \<open>snd s\<close>}. | |
\end{itemize} | |
\end{itemize} | |
The proof calculus is thus completely described by one recursive function. \<close> | |
fun is_attack_tree :: "[('s :: state) attree] \<Rightarrow> bool" ("\<turnstile>_" [40] 40) | |
where | |
att_base: "(\<turnstile> \<N>\<^bsub>s\<^esub>) = ( (\<forall> x \<in> (fst s). (\<exists> y \<in> (snd s). x \<rightarrow>\<^sub>i y )))" | | |
att_and: "(\<turnstile>(As \<oplus>\<^sub>\<and>\<^bsup>s\<^esup>)) = | |
(case As of | |
[] \<Rightarrow> (fst s \<subseteq> snd s) | |
| [a] \<Rightarrow> ( \<turnstile> a \<and> attack a = s) | |
| (a # l) \<Rightarrow> (( \<turnstile> a) \<and> (fst(attack a) = fst s) \<and> | |
(\<turnstile>(l \<oplus>\<^sub>\<and>\<^bsup>(snd(attack a),snd(s))\<^esup>))))" | | |
att_or: "(\<turnstile>(As \<oplus>\<^sub>\<or>\<^bsup>s\<^esup>)) = | |
(case As of | |
[] \<Rightarrow> (fst s \<subseteq> snd s) | |
| [a] \<Rightarrow> ( \<turnstile> a \<and> (fst(attack a) \<supseteq> fst s) \<and> (snd(attack a) \<subseteq> snd s)) | |
| (a # l) \<Rightarrow> (( \<turnstile> a) \<and> fst(attack a) \<subseteq> fst s \<and> | |
snd(attack a) \<subseteq> snd s \<and> | |
( \<turnstile>(l \<oplus>\<^sub>\<or>\<^bsup>(fst s - fst(attack a), snd s)\<^esup>))))" | |
text \<open>Since the definition is constructive, code can be generated directly from it, here | |
into the programming language Scala.\<close> | |
export_code is_attack_tree in Scala | |
subsection "Lemmas for Attack Tree validity" | |
lemma att_and_one: assumes "\<turnstile> a" and "attack a = s" | |
shows "\<turnstile>([a] \<oplus>\<^sub>\<and>\<^bsup>s\<^esup>)" | |
proof - | |
show " \<turnstile>([a] \<oplus>\<^sub>\<and>\<^bsup>s\<^esup>)" using assms | |
by (subst att_and, simp del: att_and att_or) | |
qed | |
declare is_attack_tree.simps[simp del] | |
lemma att_and_empty[rule_format] : " \<turnstile>([] \<oplus>\<^sub>\<and>\<^bsup>(s', s'')\<^esup>) \<longrightarrow> s' \<subseteq> s''" | |
by (simp add: is_attack_tree.simps(2)) | |
lemma att_and_empty2: " \<turnstile>([] \<oplus>\<^sub>\<and>\<^bsup>(s, s)\<^esup>)" | |
by (simp add: is_attack_tree.simps(2)) | |
lemma att_or_empty[rule_format] : " \<turnstile>([] \<oplus>\<^sub>\<or>\<^bsup>(s', s'')\<^esup>) \<longrightarrow> s' \<subseteq> s''" | |
by (simp add: is_attack_tree.simps(3)) | |
lemma att_or_empty_back[rule_format]: " s' \<subseteq> s'' \<longrightarrow> \<turnstile>([] \<oplus>\<^sub>\<or>\<^bsup>(s', s'')\<^esup>)" | |
by (simp add: is_attack_tree.simps(3)) | |
lemma att_or_empty_rev: assumes "\<turnstile>(l \<oplus>\<^sub>\<or>\<^bsup>(s, s')\<^esup>)" and "\<not>(s \<subseteq> s')" shows "l \<noteq> []" | |
using assms att_or_empty by blast | |
lemma att_or_empty2: "\<turnstile>([] \<oplus>\<^sub>\<or>\<^bsup>(s, s)\<^esup>)" | |
by (simp add: att_or_empty_back) | |
lemma att_andD1: " \<turnstile>(x1 # x2 \<oplus>\<^sub>\<and>\<^bsup>s\<^esup>) \<Longrightarrow> \<turnstile> x1" | |
by (metis (no_types, lifting) is_attack_tree.simps(2) list.exhaust list.simps(4) list.simps(5)) | |
lemma att_and_nonemptyD2[rule_format]: | |
"(x2 \<noteq> [] \<longrightarrow> \<turnstile>(x1 # x2 \<oplus>\<^sub>\<and>\<^bsup>s\<^esup>) \<longrightarrow> \<turnstile> (x2 \<oplus>\<^sub>\<and>\<^bsup>(snd(attack x1),snd s)\<^esup>))" | |
by (metis (no_types, lifting) is_attack_tree.simps(2) list.exhaust list.simps(5)) | |
lemma att_andD2 : " \<turnstile>(x1 # x2 \<oplus>\<^sub>\<and>\<^bsup>s\<^esup>) \<Longrightarrow> \<turnstile> (x2 \<oplus>\<^sub>\<and>\<^bsup>(snd(attack x1),snd s)\<^esup>)" | |
by (metis (mono_tags, lifting) att_and_empty2 att_and_nonemptyD2 is_attack_tree.simps(2) list.simps(4) list.simps(5)) | |
lemma att_and_fst_lem[rule_format]: | |
"\<turnstile>(x1 # x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>) \<longrightarrow> xa \<in> fst (attack (x1 # x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>)) | |
\<longrightarrow> xa \<in> fst (attack x1)" | |
by (induction x2a, (subst att_and, simp)+) | |
lemma att_orD1: " \<turnstile>(x1 # x2 \<oplus>\<^sub>\<or>\<^bsup>x\<^esup>) \<Longrightarrow> \<turnstile> x1" | |
by (case_tac x2, (subst (asm) att_or, simp)+) | |
lemma att_or_snd_hd: " \<turnstile>(a # list \<oplus>\<^sub>\<or>\<^bsup>(aa, b)\<^esup>) \<Longrightarrow> snd(attack a) \<subseteq> b" | |
by (case_tac list, (subst (asm) att_or, simp)+) | |
lemma att_or_singleton[rule_format]: | |
" \<turnstile>([x1] \<oplus>\<^sub>\<or>\<^bsup>x\<^esup>) \<longrightarrow> \<turnstile>([] \<oplus>\<^sub>\<or>\<^bsup>(fst x - fst (attack x1), snd x)\<^esup>)" | |
by (subst att_or, simp, rule impI, rule att_or_empty_back, blast) | |
lemma att_orD2[rule_format]: | |
" \<turnstile>(x1 # x2 \<oplus>\<^sub>\<or>\<^bsup>x\<^esup>) \<longrightarrow> \<turnstile> (x2 \<oplus>\<^sub>\<or>\<^bsup>(fst x - fst(attack x1), snd x)\<^esup>)" | |
by (case_tac x2, simp add: att_or_singleton, simp, subst att_or, simp) | |
lemma att_or_snd_att[rule_format]: "\<forall> x. \<turnstile> (x2 \<oplus>\<^sub>\<or>\<^bsup>x\<^esup>) \<longrightarrow> (\<forall> a \<in> (set x2). snd(attack a) \<subseteq> snd x )" | |
proof (induction x2) | |
case Nil | |
then show ?case by (simp add: att_or) | |
next | |
case (Cons a x2) | |
then show ?case using att_orD2 att_or_snd_hd by fastforce | |
qed | |
lemma singleton_or_lem: " \<turnstile>([x1] \<oplus>\<^sub>\<or>\<^bsup>x\<^esup>) \<Longrightarrow> fst x \<subseteq> fst(attack x1)" | |
by (subst (asm) att_or, simp)+ | |
lemma or_att_fst_sup0[rule_format]: "x2 \<noteq> [] \<longrightarrow> (\<forall> x. (\<turnstile> ((x2 \<oplus>\<^sub>\<or>\<^bsup>x\<^esup>):: ('s :: state) attree)) \<longrightarrow> | |
((\<Union> y::'s attree\<in> set x2. fst (attack y)) \<supseteq> fst(x))) " | |
proof (induction x2) | |
case Nil | |
then show ?case by simp | |
next | |
case (Cons a x2) | |
then show ?case using att_orD2 singleton_or_lem by fastforce | |
qed | |
lemma or_att_fst_sup: | |
assumes "(\<turnstile> ((x1 # x2 \<oplus>\<^sub>\<or>\<^bsup>x\<^esup>):: ('s :: state) attree))" | |
shows "((\<Union> y::'s attree\<in> set (x1 # x2). fst (attack y)) \<supseteq> fst(x))" | |
by (rule or_att_fst_sup0, simp, rule assms) | |
text \<open>The lemma @{text \<open>att_elem_seq\<close>} is the main lemma for Correctness. | |
It shows that for a given attack tree x1, for each element in the set of start sets | |
of the first attack, we can reach in zero or more steps a state in the states in which | |
the attack is successful (the final attack state @{text \<open>snd(attack x1)\<close>}). | |
This proof is a big alternative to an earlier version of the proof with | |
@{text \<open>first_step\<close>} etc that mapped first on a sequence of sets of states.\<close> | |
lemma att_elem_seq[rule_format]: "\<turnstile> x1 \<longrightarrow> (\<forall> x \<in> fst(attack x1). | |
(\<exists> y. y \<in> snd(attack x1) \<and> x \<rightarrow>\<^sub>i* y))" | |
text \<open>First attack tree induction\<close> | |
proof (induction x1) | |
case (BaseAttack x) | |
then show ?case | |
by (metis AT.att_base EF_step EF_step_star_rev attack.simps(1)) | |
next | |
case (AndAttack x1a x2) | |
then show ?case | |
apply (rule_tac x = x2 in spec) | |
apply (subgoal_tac "(\<forall> x1aa::'a attree. | |
x1aa \<in> set x1a \<longrightarrow> | |
\<turnstile>x1aa \<longrightarrow> | |
(\<forall>x::'a\<in>fst (attack x1aa). \<exists>y::'a. y \<in> snd (attack x1aa) \<and> x \<rightarrow>\<^sub>i* y))") | |
apply (rule mp) | |
prefer 2 | |
apply (rotate_tac -1) | |
apply assumption | |
text \<open>Induction for @{text \<open>\<and>\<close>}: the manual instantiation seems tedious but in the @{text \<open>\<and>\<close>} | |
case necessary to get the right induction hypothesis.\<close> | |
proof (rule_tac list = "x1a" in list.induct) | |
text \<open>The @{text \<open>\<and>\<close>} induction empty case\<close> | |
show "(\<forall>x1aa::'a attree. | |
x1aa \<in> set [] \<longrightarrow> | |
\<turnstile>x1aa \<longrightarrow> (\<forall>x::'a\<in>fst (attack x1aa). \<exists>y::'a. y \<in> snd (attack x1aa) \<and> x \<rightarrow>\<^sub>i* y)) \<longrightarrow> | |
(\<forall>x::'a set \<times> 'a set. | |
\<turnstile>([] \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>) \<longrightarrow> | |
(\<forall>xa::'a\<in>fst (attack ([] \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>)). \<exists>y::'a. y \<in> snd (attack ([] \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>)) \<and> xa \<rightarrow>\<^sub>i* y))" | |
using att_and_empty state_transition_refl_def by fastforce | |
text \<open>The @{text \<open>\<and>\<close>} induction case nonempty\<close> | |
next show "\<And>(x1a::'a attree list) (x2::'a set \<times> 'a set) (x1::'a attree) (x2a::'a attree list). | |
(\<And>x1aa::'a attree. | |
(x1aa \<in> set x1a) \<Longrightarrow> | |
((\<turnstile>x1aa) \<longrightarrow> (\<forall>x::'a\<in>fst (attack x1aa). \<exists>y::'a. y \<in> snd (attack x1aa) \<and> x \<rightarrow>\<^sub>i* y))) \<Longrightarrow> | |
\<forall>x1aa::'a attree. | |
(x1aa \<in> set x1a) \<longrightarrow> | |
(\<turnstile>x1aa) \<longrightarrow> ((\<forall>x::'a\<in>fst (attack x1aa). \<exists>y::'a. y \<in> snd (attack x1aa) \<and> x \<rightarrow>\<^sub>i* y)) \<Longrightarrow> | |
(\<forall>x1aa::'a attree. | |
(x1aa \<in> set x2a) \<longrightarrow> | |
(\<turnstile>x1aa) \<longrightarrow> (\<forall>x::'a\<in>fst (attack x1aa). \<exists>y::'a. y \<in> snd (attack x1aa) \<and> x \<rightarrow>\<^sub>i* y)) \<longrightarrow> | |
(\<forall>x::'a set \<times> 'a set. | |
(\<turnstile>(x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>)) \<longrightarrow> | |
((\<forall>xa::'a\<in>fst (attack (x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>)). \<exists>y::'a. y \<in> snd (attack (x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>)) \<and> xa \<rightarrow>\<^sub>i* y))) \<Longrightarrow> | |
((\<forall>x1aa::'a attree. | |
(x1aa \<in> set (x1 # x2a)) \<longrightarrow> | |
(\<turnstile>x1aa) \<longrightarrow> ((\<forall>x::'a\<in>fst (attack x1aa). \<exists>y::'a. y \<in> snd (attack x1aa) \<and> x \<rightarrow>\<^sub>i* y))) \<longrightarrow> | |
(\<forall>x::'a set \<times> 'a set. | |
( \<turnstile>(x1 # x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>)) \<longrightarrow> | |
(\<forall>xa::'a\<in>fst (attack (x1 # x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>)). | |
(\<exists>y::'a. y \<in> snd (attack (x1 # x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>)) \<and> (xa \<rightarrow>\<^sub>i* y)))))" | |
apply (rule impI, rule allI, rule impI) | |
text \<open>Set free the Induction Hypothesis: this is necessary to provide the grounds for specific | |
instantiations in the step.\<close> | |
apply (subgoal_tac "(\<forall>x::'a set \<times> 'a set. | |
\<turnstile>(x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>) \<longrightarrow> | |
(\<forall>xa::'a\<in>fst (attack (x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>)). | |
\<exists>y::'a. y \<in> snd (attack (x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>)) \<and> xa \<rightarrow>\<^sub>i* y))") | |
prefer 2 | |
apply simp | |
text \<open>The following induction step for @{text \<open>\<and>\<close>} needs a number of manual instantiations | |
so that the proof is not found automatically. In the subsequent case for @{text \<open>\<or>\<close>}, | |
sledgehammer finds the proof.\<close> | |
proof - | |
show "\<And>(x1a::'a attree list) (x2::'a set \<times> 'a set) (x1::'a attree) (x2a::'a attree list) x::'a set \<times> 'a set. | |
\<forall>x1aa::'a attree. | |
x1aa \<in> set (x1 # x2a) \<longrightarrow> | |
\<turnstile>x1aa \<longrightarrow> (\<forall>x::'a\<in>fst (attack x1aa). \<exists>y::'a. y \<in> snd (attack x1aa) \<and> x \<rightarrow>\<^sub>i* y) \<Longrightarrow> | |
\<turnstile>(x1 # x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>) \<Longrightarrow> | |
\<forall>x::'a set \<times> 'a set. | |
\<turnstile>(x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>) \<longrightarrow> | |
(\<forall>xa::'a\<in>fst (attack (x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>)). \<exists>y::'a. y \<in> snd (attack (x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>)) \<and> xa \<rightarrow>\<^sub>i* y) \<Longrightarrow> | |
\<forall>xa::'a\<in>fst (attack (x1 # x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>)). \<exists>y::'a. y \<in> snd (attack (x1 # x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>)) \<and> xa \<rightarrow>\<^sub>i* y" | |
apply (rule ballI) | |
apply (rename_tac xa) | |
text \<open>Prepare the steps\<close> | |
apply (drule_tac x = "(snd(attack x1), snd x)" in spec) | |
apply (rotate_tac -1) | |
apply (erule impE) | |
apply (erule att_andD2) | |
text \<open>Premise for x1\<close> | |
apply (drule_tac x = x1 in spec) | |
apply (drule mp) | |
apply simp | |
apply (drule mp) | |
apply (erule att_andD1) | |
text \<open>Instantiate first step for xa\<close> | |
apply (rotate_tac -1) | |
apply (drule_tac x = xa in bspec) | |
apply (erule att_and_fst_lem, assumption) | |
apply (erule exE) | |
apply (erule conjE) | |
text \<open>Take this y and put it as first into the second part\<close> | |
apply (drule_tac x = y in bspec) | |
apply simp | |
apply (erule exE) | |
apply (erule conjE) | |
text \<open>Bind the first @{text \<open>xa \<rightarrow>\<^sub>i* y\<close>} and second @{text \<open>y \<rightarrow>\<^sub>i* ya\<close>} together for solution\<close> | |
apply (rule_tac x = ya in exI) | |
apply (rule conjI) | |
apply simp | |
by (simp add: state_transition_refl_def) | |
qed | |
qed auto | |
next | |
case (OrAttack x1a x2) | |
then show ?case | |
proof (induction x1a arbitrary: x2) | |
case Nil | |
then show ?case | |
by (metis EF_lem2a EF_step_star_rev att_or_empty attack.simps(3) subsetD surjective_pairing) | |
next | |
case (Cons a x1a) | |
then show ?case | |
by (smt DiffI att_orD1 att_orD2 att_or_snd_att attack.simps(3) insert_iff list.set(2) prod.sel(1) snd_conv subset_iff) | |
qed | |
qed | |
lemma att_elem_seq0: "\<turnstile> x1 \<Longrightarrow> (\<forall> x \<in> fst(attack x1). | |
(\<exists> y. y \<in> snd(attack x1) \<and> x \<rightarrow>\<^sub>i* y))" | |
by (simp add: att_elem_seq) | |
subsection \<open>Valid refinements\<close> | |
definition valid_ref :: "[('s :: state) attree, 's attree] \<Rightarrow> bool" ("_ \<sqsubseteq>\<^sub>V _" 50) | |
where | |
"A \<sqsubseteq>\<^sub>V A' \<equiv> ( (A \<sqsubseteq> A') \<and> \<turnstile> A')" | |
definition ref_validity :: "[('s :: state) attree] \<Rightarrow> bool" ("\<turnstile>\<^sub>V _" 50) | |
where | |
"\<turnstile>\<^sub>V A \<equiv> (\<exists> A'. (A \<sqsubseteq>\<^sub>V A'))" | |
lemma ref_valI: " A \<sqsubseteq> A'\<Longrightarrow> \<turnstile> A' \<Longrightarrow> \<turnstile>\<^sub>V A" | |
using ref_validity_def valid_ref_def by blast | |
section "Correctness and Completeness" | |
text \<open>This section presents the main theorems of Correctness and Completeness | |
between AT and Kripke, essentially: | |
@{text \<open>\<turnstile> (init K, p) \<equiv> K \<turnstile> EF p\<close>}. | |
First, we proof a number of lemmas needed for both directions before we | |
show the Correctness theorem followed by the Completeness theorem. | |
\<close> | |
subsection \<open>Lemma for Correctness and Completeness\<close> | |
lemma nth_app_eq[rule_format]: | |
"\<forall> sl x. sl \<noteq> [] \<longrightarrow> sl ! (length sl - Suc (0)) = x | |
\<longrightarrow> (l @ sl) ! (length l + length sl - Suc (0)) = x" | |
by (induction l) auto | |
lemma nth_app_eq1[rule_format]: "i < length sla \<Longrightarrow> (sla @ sl) ! i = sla ! i" | |
by (simp add: nth_append) | |
lemma nth_app_eq1_rev: "i < length sla \<Longrightarrow> sla ! i = (sla @ sl) ! i" | |
by (simp add: nth_append) | |
lemma nth_app_eq2[rule_format]: "\<forall> sl i. length sla \<le> i \<and> i < length (sla @ sl) | |
\<longrightarrow> (sla @ sl) ! i = sl ! (i - (length sla))" | |
by (simp add: nth_append) | |
lemma tl_ne_ex[rule_format]: "l \<noteq> [] \<longrightarrow> (? x . l = x # (tl l))" | |
by (induction l, auto) | |
lemma tl_nempty_lngth[rule_format]: "tl sl \<noteq> [] \<longrightarrow> 2 \<le> length(sl)" | |
using le_less by fastforce | |
lemma list_app_one_length: "length l = n \<Longrightarrow> (l @ [s]) ! n = s" | |
by (erule subst, simp) | |
lemma tl_lem1[rule_format]: "l \<noteq> [] \<longrightarrow> tl l = [] \<longrightarrow> length l = 1" | |
by (induction l, simp+) | |
lemma nth_tl_length[rule_format]: "tl sl \<noteq> [] \<longrightarrow> | |
tl sl ! (length (tl sl) - Suc (0)) = sl ! (length sl - Suc (0))" | |
by (induction sl, simp+) | |
lemma nth_tl_length1[rule_format]: "tl sl \<noteq> [] \<longrightarrow> | |
tl sl ! n = sl ! (n + 1)" | |
by (induction sl, simp+) | |
lemma ineq1: "i < length sla - n \<Longrightarrow> | |
(0) \<le> n \<Longrightarrow> i < length sla" | |
by simp | |
lemma ineq2[rule_format]: "length sla \<le> i \<longrightarrow> i + (1) - length sla = i - length sla + 1" | |
by arith | |
lemma ineq3: "tl sl \<noteq> [] \<Longrightarrow> length sla \<le> i \<Longrightarrow> i < length (sla @ tl sl) - (1) | |
\<Longrightarrow> i - length sla + (1) < length sl - (1)" | |
by simp | |
lemma tl_eq1[rule_format]: "sl \<noteq> [] \<longrightarrow> tl sl ! (0) = sl ! Suc (0)" | |
by (induction sl, simp+) | |
lemma tl_eq2[rule_format]: "tl sl = [] \<longrightarrow> sl ! (0) = sl ! (length sl - (1))" | |
by (induction sl, simp+) | |
lemma tl_eq3[rule_format]: "tl sl \<noteq> [] \<longrightarrow> | |
tl sl ! (length sl - Suc (Suc (0))) = sl ! (length sl - Suc (0))" | |
by (induction sl, simp+) | |
lemma nth_app_eq3: assumes "tl sl \<noteq> []" | |
shows "(sla @ tl sl) ! (length (sla @ tl sl) - (1)) = sl ! (length sl - (1))" | |
using assms nth_app_eq nth_tl_length by fastforce | |
lemma not_empty_ex: "A \<noteq> {} \<Longrightarrow> ? x. x \<in> A" | |
by force | |
lemma fst_att_eq: "(fst x # sl) ! (0) = fst (attack (al \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>))" | |
by simp | |
lemma list_eq1[rule_format]: "sl \<noteq> [] \<longrightarrow> | |
(fst x # sl) ! (length (fst x # sl) - (1)) = sl ! (length sl - (1))" | |
by (induction sl, auto) | |
lemma attack_eq1: "snd (attack (x1 # x2a \<oplus>\<^sub>\<and>\<^bsup>x\<^esup>)) = snd (attack (x2a \<oplus>\<^sub>\<and>\<^bsup>(snd (attack x1), snd x)\<^esup>))" | |
by simp | |
lemma fst_lem1[rule_format]: "\<forall> (a:: 's set) b (c :: 's set) d. (a, c) = (b, d) \<longrightarrow> a = b" | |
by auto | |
lemma fst_eq1: "(sla ! (0), y) = attack x1 \<Longrightarrow> | |
sla ! (0) = fst (attack x1)" | |
by (rule_tac c = y and d = "snd(attack x1)" in fst_lem1, simp) | |
lemma base_att_lem1: " y0 \<subseteq> y1 \<Longrightarrow> \<turnstile> \<N>\<^bsub>(y1, y)\<^esub> \<Longrightarrow>\<turnstile> \<N>\<^bsub>(y0, y)\<^esub>" | |
by (simp add: att_base, blast) | |
lemma ref_pres_att: "A \<sqsubseteq> A' \<Longrightarrow> attack A = attack A'" | |
proof (erule refines_to.induct) | |
show "\<And>(A::'a attree) (l::'a attree list) (si'::'a set) (si''::'a set) (l''::'a attree list) (si::'a set) | |
(si'''::'a set) (A'::'a attree) (l'::'a attree list) A''::'a attree. | |
A = (l @ [\<N>\<^bsub>(si', si'')\<^esub>] @ l'' \<oplus>\<^sub>\<and>\<^bsup>(si, si''')\<^esup>) \<Longrightarrow> | |
A' = (l' \<oplus>\<^sub>\<and>\<^bsup>(si', si'')\<^esup>) \<Longrightarrow> A'' = (l @ l' @ l'' \<oplus>\<^sub>\<and>\<^bsup>(si, si''')\<^esup>) \<Longrightarrow> attack A = attack A''" | |
by simp | |
next show "\<And>(as::'a attree list) (A::'a attree) (s::'a set \<times> 'a set). | |
as \<noteq> [] \<Longrightarrow> | |
(\<forall>A'::'a attree\<in> (set as). ((A \<sqsubseteq> A') \<and> (attack A = attack A')) \<and> attack A = s) \<Longrightarrow> | |
attack A = attack (as \<oplus>\<^sub>\<or>\<^bsup>s\<^esup>)" | |
using last_in_set by auto | |
next show "\<And>(A::'a attree) (A'::'a attree) A''::'a attree. | |
A \<sqsubseteq> A' \<Longrightarrow> attack A = attack A' \<Longrightarrow> A' \<sqsubseteq> A'' \<Longrightarrow> attack A' = attack A'' \<Longrightarrow> attack A = attack A''" | |
by simp | |
next show "\<And>A::'a attree. attack A = attack A" by (rule refl) | |
qed | |
lemma base_subset: | |
assumes "xa \<subseteq> xc" | |
shows "\<turnstile>\<N>\<^bsub>(x, xa)\<^esub> \<Longrightarrow> \<turnstile>\<N>\<^bsub>(x, xc)\<^esub>" | |
proof (simp add: att_base) | |
show " \<forall>x::'a\<in>x. \<exists>xa::'a\<in>xa. x \<rightarrow>\<^sub>i xa \<Longrightarrow> \<forall>x::'a\<in>x. \<exists>xa::'a\<in>xc. x \<rightarrow>\<^sub>i xa" | |
by (meson assms in_mono) | |
qed | |
subsection "Correctness Theorem" | |
text \<open>Proof with induction over the definition of EF using the main | |
lemma @{text \<open>att_elem_seq0\<close>}. | |
There is also a second version of Correctness for valid refinements.\<close> | |
theorem AT_EF: assumes " \<turnstile> (A :: ('s :: state) attree)" | |
and "attack A = (I,s)" | |
shows "Kripke {s :: ('s :: state). \<exists> i \<in> I. (i \<rightarrow>\<^sub>i* s)} (I :: ('s :: state)set) \<turnstile> EF s" | |
proof (simp add:check_def) | |
show "I \<subseteq> {sa::('s :: state). (\<exists>i::'s\<in>I. i \<rightarrow>\<^sub>i* sa) \<and> sa \<in> EF s}" | |
proof (rule subsetI, rule CollectI, rule conjI, simp add: state_transition_refl_def) | |
show "\<And>x::'s. x \<in> I \<Longrightarrow> \<exists>i::'s\<in>I. (i, x) \<in> {(x::'s, y::'s). x \<rightarrow>\<^sub>i y}\<^sup>*" | |
by (rule_tac x = x in bexI, simp) | |
next show "\<And>x::'s. x \<in> I \<Longrightarrow> x \<in> EF s" using assms | |
proof - | |
have a: "\<forall> x \<in> I. \<exists> y \<in> s. x \<rightarrow>\<^sub>i* y" using assms | |
proof - | |
have "\<forall>x::'s\<in>fst (attack A). \<exists>y::'s. y \<in> snd (attack A) \<and> x \<rightarrow>\<^sub>i* y" | |
by (rule att_elem_seq0, rule assms) | |
thus " \<forall>x::'s\<in>I. \<exists>y::'s\<in>s. x \<rightarrow>\<^sub>i* y" using assms | |
by force | |
qed | |
thus "\<And>x::'s. x \<in> I \<Longrightarrow> x \<in> EF s" | |
proof - | |
fix x | |
assume b: "x \<in> I" | |
have "\<exists>y::'s\<in>s::('s :: state) set. x \<rightarrow>\<^sub>i* y" | |
by (rule_tac x = x and A = I in bspec, rule a, rule b) | |
from this obtain y where "y \<in> s" and "x \<rightarrow>\<^sub>i* y" by (erule bexE) | |
thus "x \<in> EF s" | |
by (erule_tac f = s in EF_step_star) | |
qed | |
qed | |
qed | |
qed | |
theorem ATV_EF: "\<lbrakk> \<turnstile>\<^sub>V A; (I,s) = attack A \<rbrakk> \<Longrightarrow> | |
(Kripke {s. \<exists> i \<in> I. (i \<rightarrow>\<^sub>i* s) } I \<turnstile> EF s)" | |
by (metis (full_types) AT_EF ref_pres_att ref_validity_def valid_ref_def) | |
subsection "Completeness Theorem" | |
text \<open>This section contains the completeness direction, informally: | |
@{text \<open>\<turnstile> EF s \<Longrightarrow> \<exists> A. \<turnstile> A \<and> attack A = (I,s)\<close>}. | |
The main theorem is presented last since its | |
proof just summarises a number of main lemmas @{text \<open>Compl_step1, Compl_step2, | |
Compl_step3, Compl_step4\<close>} which are presented first together with other | |
auxiliary lemmas.\<close> | |
subsubsection "Lemma @{text \<open>Compl_step1\<close>}" | |
lemma Compl_step1: | |
"Kripke {s :: ('s :: state). \<exists> i \<in> I. (i \<rightarrow>\<^sub>i* s)} I \<turnstile> EF s | |
\<Longrightarrow> \<forall> x \<in> I. \<exists> y \<in> s. x \<rightarrow>\<^sub>i* y" | |
by (simp add: EF_step_star_rev valEF_E) | |
subsubsection "Lemma @{text \<open>Compl_step2\<close>}" | |
text \<open>First, we prove some auxiliary lemmas.\<close> | |
lemma rtrancl_imp_singleton_seq2: "x \<rightarrow>\<^sub>i* y \<Longrightarrow> | |
x = y \<or> (\<exists> s. s \<noteq> [] \<and> (tl s \<noteq> []) \<and> s ! 0 = x \<and> s ! (length s - 1) = y \<and> | |
(\<forall> i < (length s - 1). (s ! i) \<rightarrow>\<^sub>i (s ! (Suc i))))" | |
unfolding state_transition_refl_def | |
proof (induction rule: rtrancl_induct) | |
case base | |
then show ?case | |
by simp | |
next | |
case (step y z) | |
show ?case | |
using step.IH | |
proof (elim disjE exE conjE) | |
assume "x=y" | |
with step.hyps show ?case | |
by (force intro!: exI [where x="[y,z]"]) | |
next | |
show "\<And>s. \<lbrakk>s \<noteq> []; tl s \<noteq> []; s ! 0 = x; | |
s ! (length s - 1) = y; | |
\<forall>i<length s - 1. | |
s ! i \<rightarrow>\<^sub>i s ! Suc i\<rbrakk> | |
\<Longrightarrow> x = z \<or> | |
(\<exists>s. s \<noteq> [] \<and> | |
tl s \<noteq> [] \<and> s ! 0 = x \<and> | |
s ! (length s - 1) = z \<and> | |
(\<forall>i<length s - 1. s ! i \<rightarrow>\<^sub>i s ! Suc i))" | |
apply (rule disjI2) | |
apply (rule_tac x="s @ [z]" in exI) | |
apply (auto simp: nth_append) | |
by (metis One_nat_def Suc_lessI diff_Suc_1 mem_Collect_eq old.prod.case step.hyps(2)) | |
qed | |
qed | |
lemma tl_nempty_length[rule_format]: "s \<noteq> [] \<longrightarrow> tl s \<noteq> [] \<longrightarrow> 0 < length s - 1" | |
by (induction s, simp+) | |
lemma tl_nempty_length2[rule_format]: "s \<noteq> [] \<longrightarrow> tl s \<noteq> [] \<longrightarrow> Suc 0 < length s" | |
by (induction s, simp+) | |
lemma length_last[rule_format]: "(l @ [x]) ! (length (l @ [x]) - 1) = x" | |
by (induction l, simp+) | |
lemma Compl_step2: "\<forall> x \<in> I. \<exists> y \<in> s. x \<rightarrow>\<^sub>i* y \<Longrightarrow> | |
( \<forall> x \<in> I. x \<in> s \<or> (\<exists> (sl :: ((('s :: state) set)list)). | |
(sl \<noteq> []) \<and> (tl sl \<noteq> []) \<and> | |
(sl ! 0, sl ! (length sl - 1)) = ({x},s) \<and> | |
(\<forall> i < (length sl - 1). \<turnstile> \<N>\<^bsub>(sl ! i,sl ! (i+1) )\<^esub> | |
)))" | |
proof (rule ballI, drule_tac x = x in bspec, assumption, erule bexE) | |
fix x y | |
assume a: "x \<in> I" and b: "y \<in> s" and c: "x \<rightarrow>\<^sub>i* y" | |
show "x \<in> s \<or> | |
(\<exists>sl::'s set list. | |
sl \<noteq> [] \<and> | |
tl sl \<noteq> [] \<and> | |
(sl ! (0), sl ! (length sl - (1))) = ({x}, s) \<and> | |
(\<forall>i<length sl - (1). \<turnstile>\<N>\<^bsub>(sl ! i, sl ! (i + (1)))\<^esub>))" | |
proof - | |
have d : "x = y \<or> | |
(\<exists>s'. s' \<noteq> [] \<and> | |
tl s' \<noteq> [] \<and> | |
s' ! (0) = x \<and> | |
s' ! (length s' - (1)) = y \<and> (\<forall>i<length s' - (1). s' ! i \<rightarrow>\<^sub>i s' ! Suc i))" | |
using c rtrancl_imp_singleton_seq2 by blast | |
thus "x \<in> s \<or> | |
(\<exists>sl::'s set list. | |
sl \<noteq> [] \<and> | |
tl sl \<noteq> [] \<and> | |
(sl ! (0), sl ! (length sl - (1))) = ({x}, s) \<and> | |
(\<forall>i<length sl - (1). \<turnstile>\<N>\<^bsub>(sl ! i, sl ! (i + (1)))\<^esub>))" | |
apply (rule disjE) | |
using b apply blast | |
apply (rule disjI2, elim conjE exE) | |
apply (rule_tac x = "[{s' ! j}. j \<leftarrow> [0..<(length s' - 1)]] @ [s]" in exI) | |
apply (auto simp: nth_append) | |
apply (metis AT.att_base Suc_lessD fst_conv prod.sel(2) singletonD singletonI) | |
apply (metis AT.att_base Suc_lessI b fst_conv prod.sel(2) singletonD) | |
using tl_nempty_length2 by blast | |
qed | |
qed | |
subsubsection "Lemma @{text \<open>Compl_step3\<close>}" | |
text \<open>First, we need a few lemmas.\<close> | |
lemma map_hd_lem[rule_format] : "n > 0 \<longrightarrow> (f 0 # map (\<lambda>i. f i) [1..<n]) = map (\<lambda>i. f i) [0..<n]" | |
by (simp add : hd_map upt_rec) | |
lemma map_Suc_lem[rule_format] : "n > 0 \<longrightarrow> map (\<lambda> i:: nat. f i)[1..<n] = | |
map (\<lambda> i:: nat. f(Suc i))[0..<(n - 1)]" | |
proof - | |
have "(f 0 # map (\<lambda>n. f (Suc n)) [0..<n - 1] = f 0 # map f [1..<n]) = (map (\<lambda>n. f (Suc n)) [0..<n - 1] = map f [1..<n])" | |
by blast | |
then show ?thesis | |
by (metis Suc_pred' map_hd_lem map_upt_Suc) | |
qed | |
lemma forall_ex_fun: "finite S \<Longrightarrow> (\<forall> x \<in> S. (\<exists> y. P y x)) \<longrightarrow> (\<exists> f. \<forall> x \<in> S. P (f x) x)" | |
proof (induction rule: finite.induct) | |
case emptyI | |
then show ?case | |
by simp | |
next | |
case (insertI F x) | |
then show ?case | |
proof (clarify) | |
assume d: "(\<forall>x::'a\<in>insert x F. \<exists>y::'b. P y x)" | |
have "(\<forall>x::'a\<in>F. \<exists>y::'b. P y x)" | |
using d by blast | |
then obtain f where f: "\<forall>x::'a\<in>F. P (f x) x" | |
using insertI.IH by blast | |
from d obtain y where "P y x" by blast | |
thus "(\<exists>f::'a \<Rightarrow> 'b. \<forall>x::'a\<in>insert x F. P (f x) x)" using f | |
by (rule_tac x = "\<lambda> z. if z = x then y else f z" in exI, simp) | |
qed | |
qed | |
primrec nodup :: "['a, 'a list] \<Rightarrow> bool" | |
where | |
nodup_nil: "nodup a [] = True" | | |
nodup_step: "nodup a (x # ls) = (if x = a then (a \<notin> (set ls)) else nodup a ls)" | |
definition nodup_all:: "'a list \<Rightarrow> bool" | |
where | |
"nodup_all l \<equiv> \<forall> x \<in> set l. nodup x l" | |
lemma nodup_all_lem[rule_format]: | |
"nodup_all (x1 # a # l) \<longrightarrow> (insert x1 (insert a (set l)) - {x1}) = insert a (set l)" | |
by (induction l, (simp add: nodup_all_def)+) | |
lemma nodup_all_tl[rule_format]: "nodup_all (x # l) \<longrightarrow> nodup_all l" | |
by (induction l, (simp add: nodup_all_def)+) | |
lemma finite_nodup: "finite I \<Longrightarrow> \<exists> l. set l = I \<and> nodup_all l" | |
proof (induction rule: finite.induct) | |
case emptyI | |
then show ?case | |
by (simp add: nodup_all_def) | |
next | |
case (insertI A a) | |
then show ?case | |
by (metis insertE insert_absorb list.simps(15) nodup_all_def nodup_step) | |
qed | |
lemma Compl_step3: "I \<noteq> {} \<Longrightarrow> finite I \<Longrightarrow> | |
( \<forall> x \<in> I. x \<in> s \<or> (\<exists> (sl :: ((('s :: state) set)list)). | |
(sl \<noteq> []) \<and> (tl sl \<noteq> []) \<and> | |
(sl ! 0, sl ! (length sl - 1)) = ({x},s) \<and> | |
(\<forall> i < (length sl - 1). \<turnstile> \<N>\<^bsub>(sl ! i,sl ! (i+1) )\<^esub> | |
)) \<Longrightarrow> | |
(\<exists> lI. set lI = {x :: 's :: state. x \<in> I \<and> x \<notin> s} \<and> (\<exists> Sj :: ((('s :: state) set)list) list. | |
length Sj = length lI \<and> nodup_all lI \<and> | |
(\<forall> j < length Sj. (((Sj ! j) \<noteq> []) \<and> (tl (Sj ! j) \<noteq> []) \<and> | |
((Sj ! j) ! 0, (Sj ! j) ! (length (Sj ! j) - 1)) = ({lI ! j},s) \<and> | |
(\<forall> i < (length (Sj ! j) - 1). \<turnstile> \<N>\<^bsub>((Sj ! j) ! i, (Sj ! j) ! (i+1) )\<^esub> | |
))))))" | |
proof - | |
assume i: "I \<noteq> {}" and f: "finite I" and | |
fa: "\<forall>x::'s\<in>I. | |
x \<in> s \<or> | |
(\<exists>sl::'s set list. | |
sl \<noteq> [] \<and> | |
tl sl \<noteq> [] \<and> | |
(sl ! (0), sl ! (length sl - (1))) = ({x}, s) \<and> | |
(\<forall>i<length sl - (1). \<turnstile>\<N>\<^bsub>(sl ! i, sl ! (i + (1)))\<^esub>))" | |
have a: "\<exists> lI. set lI = {x::'s \<in> I. x \<notin> s} \<and> nodup_all lI" | |
by (simp add: f finite_nodup) | |
from this obtain lI where b: "set lI = {x::'s \<in> I. x \<notin> s} \<and> nodup_all lI" | |
by (erule exE) | |
thus "\<exists>lI::'s list. | |
set lI = {x::'s \<in> I. x \<notin> s} \<and> | |
(\<exists>Sj::'s set list list. | |
length Sj = length lI \<and> | |
nodup_all lI \<and> | |
(\<forall>j<length Sj. | |
Sj ! j \<noteq> [] \<and> | |
tl (Sj ! j) \<noteq> [] \<and> | |
(Sj ! j ! (0), Sj ! j ! (length (Sj ! j) - (1))) = ({lI ! j}, s) \<and> | |
(\<forall>i<length (Sj ! j) - (1). \<turnstile>\<N>\<^bsub>(Sj ! j ! i, Sj ! j ! (i + (1)))\<^esub>)))" | |
apply (rule_tac x = lI in exI) | |
apply (rule conjI) | |
apply (erule conjE, assumption) | |
proof - | |
have c: "\<forall> x \<in> set(lI). (\<exists> sl::'s set list. | |
sl \<noteq> [] \<and> | |
tl sl \<noteq> [] \<and> | |
(sl ! (0), sl ! (length sl - (1))) = ({x}, s) \<and> | |
(\<forall>i<length sl - (1). \<turnstile>\<N>\<^bsub>(sl ! i, sl ! (i + (1)))\<^esub>))" | |
using b fa by fastforce | |
thus "\<exists>Sj::'s set list list. | |
length Sj = length lI \<and> | |
nodup_all lI \<and> | |
(\<forall>j<length Sj. | |
Sj ! j \<noteq> [] \<and> | |
tl (Sj ! j) \<noteq> [] \<and> | |
(Sj ! j ! (0), Sj ! j ! (length (Sj ! j) - (1))) = ({lI ! j}, s) \<and> | |
(\<forall>i<length (Sj ! j) - (1). \<turnstile>\<N>\<^bsub>(Sj ! j ! i, Sj ! j ! (i + (1)))\<^esub>))" | |
apply (subgoal_tac "finite (set lI)") | |
apply (rotate_tac -1) | |
apply (drule forall_ex_fun) | |
apply (drule mp) | |
apply assumption | |
apply (erule exE) | |
apply (rule_tac x = "[f (lI ! j). j \<leftarrow> [0..<(length lI)]]" in exI) | |
apply simp | |
apply (insert b) | |
apply (erule conjE, assumption) | |
apply (rule_tac A = "set lI" and B = I in finite_subset) | |
apply blast | |
by (rule f) | |
qed | |
qed | |
subsubsection \<open>Lemma @{text \<open>Compl_step4\<close>}\<close> | |
text \<open>Again, we need some additional lemmas first.\<close> | |
lemma list_one_tl_empty[rule_format]: "length l = Suc (0 :: nat) \<longrightarrow> tl l = []" | |
by (induction l, simp+) | |
lemma list_two_tl_not_empty[rule_format]: "\<forall> list. length l = Suc (Suc (length list)) \<longrightarrow> tl l \<noteq> []" | |
by (induction l, simp+, force) | |
lemma or_empty: "\<turnstile>([] \<oplus>\<^sub>\<or>\<^bsup>({}, s)\<^esup>)" by (simp add: att_or) | |
text \<open>Note, this is not valid for any l, i.e., @{text \<open>\<turnstile> l \<oplus>\<^sub>\<or>\<^bsup>({}, s)\<^esup>\<close>} is not a theorem.\<close> | |
lemma list_or_upt[rule_format]: | |
"\<forall> l . lI \<noteq> [] \<longrightarrow> length l = length lI \<longrightarrow> nodup_all lI \<longrightarrow> | |
(\<forall> i < length lI. (\<turnstile> (l ! i)) \<and> (attack (l ! i) = ({lI ! i}, s))) | |
\<longrightarrow> ( \<turnstile> (l \<oplus>\<^sub>\<or>\<^bsup>(set lI, s)\<^esup>))" | |
proof (induction lI, simp, clarify) | |
fix x1 x2 l | |
show "\<forall>l::'a attree list. | |
x2 \<noteq> [] \<longrightarrow> | |
length l = length x2 \<longrightarrow> | |
nodup_all x2 \<longrightarrow> | |
(\<forall>i<length x2. \<turnstile>(l ! i) \<and> attack (l ! i) = ({x2 ! i}, s)) \<longrightarrow> \<turnstile>(l \<oplus>\<^sub>\<or>\<^bsup>(set x2, s)\<^esup>) \<Longrightarrow> | |
x1 # x2 \<noteq> [] \<Longrightarrow> | |
length l = length (x1 # x2) \<Longrightarrow> | |
nodup_all (x1 # x2) \<Longrightarrow> | |
\<forall>i<length (x1 # x2). \<turnstile>(l ! i) \<and> attack (l ! i) = ({(x1 # x2) ! i}, s) \<Longrightarrow> \<turnstile>(l \<oplus>\<^sub>\<or>\<^bsup>(set (x1 # x2), s)\<^esup>)" | |
apply (case_tac x2, simp, subst att_or, case_tac l, simp+) | |
text \<open>Case @{text \<open>\<forall>i<Suc (Suc (length list)). \<turnstile>l ! i \<and> attack (l ! i) = ({(x1 # a # list) ! i}, s) \<Longrightarrow> | |
x2 = a # list \<Longrightarrow> \<turnstile>l \<oplus>\<^sub>\<or>\<^bsup>(insert x1 (insert a (set list)), s)\<^esup>\<close>}\<close> | |
apply (subst att_or, case_tac l, simp, clarify, simp, rename_tac lista, case_tac lista, simp+) | |
text \<open>Remaining conjunct of three conditions: @{text \<open> \<turnstile>aa \<and> | |
fst (attack aa) \<subseteq> insert x1 (insert a (set list)) \<and> | |
snd (attack aa) \<subseteq> s \<and> \<turnstile>ab # listb \<oplus>\<^sub>\<or>\<^bsup>(insert x1 (insert a (set list)) - fst (attack aa), s)\<^esup>\<close>}\<close> | |
apply (rule conjI) | |
text \<open>First condition @{text \<open> \<turnstile>aa\<close>}\<close> | |
apply (drule_tac x = 0 in spec, drule mp, simp, (erule conjE)+, simp, rule conjI) | |
text \<open>Second condition @{text \<open>fst (attack aa) \<subseteq> insert x1 (insert a (set list))\<close>}\<close> | |
apply (drule_tac x = 0 in spec, drule mp, simp, erule conjE, simp) | |
text \<open>The remaining conditions | |
@{text \<open>snd (attack aa) \<subseteq> s \<and> \<turnstile>ab # listb \<oplus>\<^sub>\<or>\<^bsup>(insert x1 (insert a (set list)) - fst (attack aa), s)\<^esup>\<close>} | |
are solved automatically!\<close> | |
by (metis Suc_mono add.right_neutral add_Suc_right list.size(4) nodup_all_lem nodup_all_tl nth_Cons_0 nth_Cons_Suc order_refl prod.sel(1) prod.sel(2) zero_less_Suc) | |
qed | |
lemma app_tl_empty_hd[rule_format]: "tl (l @ [a]) = [] \<longrightarrow> hd (l @ [a]) = a" | |
by (induction l) auto | |
lemma tl_hd_empty[rule_format]: "tl (l @ [a]) = [] \<longrightarrow> l = []" | |
by (induction l) auto | |
lemma tl_hd_not_empty[rule_format]: "tl (l @ [a]) \<noteq> [] \<longrightarrow> l \<noteq> []" | |
by (induction l) auto | |
lemma app_tl_empty_length[rule_format]: "tl (map f [0..<length l] @ [a]) = [] | |
\<Longrightarrow> l = []" | |
by (drule tl_hd_empty, simp) | |
lemma not_empty_hd_fst[rule_format]: "l \<noteq> [] \<longrightarrow> hd(l @ [a]) = l ! 0" | |
by (induction l) auto | |
lemma app_tl_hd_list[rule_format]: "tl (map f [0..<length l] @ [a]) \<noteq> [] | |
\<Longrightarrow> hd(map f [0..<length l] @ [a]) = (map f [0..<length l]) ! 0" | |
by (drule tl_hd_not_empty, erule not_empty_hd_fst) | |
lemma tl_app_in[rule_format]: "l \<noteq> [] \<longrightarrow> | |
map f [0..<(length l - (Suc 0:: nat))] @ [f(length l - (Suc 0 :: nat))] = map f [0..<length l]" | |
by (induction l) auto | |
lemma map_fst[rule_format]: "n > 0 \<longrightarrow> map f [0..<n] = f 0 # (map f [1..<n])" | |
by (induction n) auto | |
lemma step_lem[rule_format]: "l \<noteq> [] \<Longrightarrow> | |
tl (map (\<lambda> i. f((x1 # a # l) ! i)((a # l) ! i)) [0..<length l]) = | |
map (\<lambda>i. f((a # l) ! i)(l ! i)) [0..<length l - (1)]" | |
proof (simp) | |
assume l: "l \<noteq> []" | |
have a: "map (\<lambda>i. f ((x1 # a # l) ! i) ((a # l) ! i)) [0..<length l] = | |
(f(x1)(a) # (map (\<lambda>i. f ((a # l) ! i) (l ! i)) [0..<(length l - 1)]))" | |
proof - | |
have b : "map (\<lambda>i. f ((x1 # a # l) ! i) ((a # l) ! i)) [0..<length l] = | |
f ((x1 # a # l) ! 0) ((a # l) ! 0) # | |
(map (\<lambda>i. f ((x1 # a # l) ! i) ((a # l) ! i)) [1..<length l])" | |
by (rule map_fst, simp, rule l) | |
have c: "map (\<lambda>i. f ((x1 # a # l) ! i) ((a # l) ! i)) [Suc (0)..<length l] = | |
map (\<lambda>i. f ((x1 # a # l) ! Suc i) ((a # l) ! Suc i)) [(0)..<(length l - 1)]" | |
by (subgoal_tac "[Suc (0)..<length l] = map Suc [0..<(length l - 1)]", | |
simp, simp add: map_Suc_upt l) | |
thus "map (\<lambda>i. f ((x1 # a # l) ! i) ((a # l) ! i)) [0..<length l] = | |
f x1 a # map (\<lambda>i. f ((a # l) ! i) (l ! i)) [0..<length l - (1)]" | |
by (simp add: b c) | |
qed | |
thus "l \<noteq> [] \<Longrightarrow> | |
tl (map (\<lambda>i. f ((x1 # a # l) ! i) ((a # l) ! i)) [0..<length l]) = | |
map (\<lambda>i. f ((a # l) ! i) (l ! i)) [0..<length l - Suc (0)]" | |
by (subst a, simp) | |
qed | |
lemma step_lem2a[rule_format]: "0 < length list \<Longrightarrow> map (\<lambda>i. \<N>\<^bsub>((x1 # a # list) ! i, (a # list) ! i)\<^esub>) | |
[0..<length list] @ | |
[\<N>\<^bsub>((x1 # a # list) ! length list, (a # list) ! length list)\<^esub>] = | |
aa # listb \<longrightarrow> \<N>\<^bsub>((x1, a))\<^esub> = aa" | |
by (subst map_fst, assumption, simp) | |
lemma step_lem2b[rule_format]: "0 = length list \<Longrightarrow> map (\<lambda>i. \<N>\<^bsub>((x1 # a # list) ! i, (a # list) ! i)\<^esub>) | |
[0..<length list] @ | |
[\<N>\<^bsub>((x1 # a # list) ! length list, (a # list) ! length list)\<^esub>] = | |
aa # listb \<longrightarrow> \<N>\<^bsub>((x1, a))\<^esub> = aa" | |
by simp | |
lemma step_lem2: "map (\<lambda>i. \<N>\<^bsub>((x1 # a # list) ! i, (a # list) ! i)\<^esub>) | |
[0..<length list] @ | |
[\<N>\<^bsub>((x1 # a # list) ! length list, (a # list) ! length list)\<^esub>] = | |
aa # listb \<Longrightarrow> \<N>\<^bsub>((x1, a))\<^esub> = aa" | |
proof (case_tac "length list", rule step_lem2b, erule sym, assumption) | |
show "\<And>nat. | |
map (\<lambda>i. \<N>\<^bsub>((x1 # a # list) ! i, (a # list) ! i)\<^esub>) [0..<length list] @ | |
[\<N>\<^bsub>((x1 # a # list) ! length list, (a # list) ! length list)\<^esub>] = | |
aa # listb \<Longrightarrow> | |
length list = Suc nat \<Longrightarrow> \<N>\<^bsub>(x1, a)\<^esub> = aa" | |
by (rule_tac list = list in step_lem2a, simp) | |
qed | |
lemma base_list_and[rule_format]: "Sji \<noteq> [] \<longrightarrow> tl Sji \<noteq> [] \<longrightarrow> | |
(\<forall> li. Sji ! (0) = li \<longrightarrow> | |
Sji! (length (Sji) - 1) = s \<longrightarrow> | |
(\<forall>i<length (Sji) - 1. \<turnstile>\<N>\<^bsub>(Sji ! i, Sji ! Suc i)\<^esub>) \<longrightarrow> | |
\<turnstile> (map (\<lambda>i. \<N>\<^bsub>(Sji ! i, Sji ! Suc i)\<^esub>) | |
[0..<length (Sji) - Suc (0)] \<oplus>\<^sub>\<and>\<^bsup>(li, s)\<^esup>))" | |
proof (induction Sji) | |
case Nil | |
then show ?case by simp | |
next | |
case (Cons a Sji) | |
then show ?case | |
apply (subst att_and, case_tac Sji, simp, simp) | |
apply (rule impI)+ | |
proof - | |
fix aa list | |
show "list \<noteq> [] \<longrightarrow> | |
list ! (length list - Suc 0) = s \<longrightarrow> | |
(\<forall>i<length list. \<turnstile>\<N>\<^bsub>((aa # list) ! i, list ! i)\<^esub>) \<longrightarrow> | |
\<turnstile>(map (\<lambda>i. \<N>\<^bsub>((aa # list) ! i, list ! i)\<^esub>) [0..<length list] \<oplus>\<^sub>\<and>\<^bsup>(aa, s)\<^esup>) \<Longrightarrow> | |
Sji = aa # list \<Longrightarrow> | |
(aa # list) ! length list = s \<Longrightarrow> | |
\<forall>i<Suc (length list). \<turnstile>\<N>\<^bsub>((a # aa # list) ! i, (aa # list) ! i)\<^esub> \<Longrightarrow> | |
case map (\<lambda>i. \<N>\<^bsub>((a # aa # list) ! i, (aa # list) ! i)\<^esub>) [0..<length list] @ | |
[\<N>\<^bsub>((a # aa # list) ! length list, s)\<^esub>] of | |
[] \<Rightarrow> fst (a, s) \<subseteq> snd (a, s) | [aa] \<Rightarrow> \<turnstile>aa \<and> attack aa = (a, s) | |
| aa # ab # list \<Rightarrow> | |
\<turnstile>aa \<and> fst (attack aa) = fst (a, s) \<and> \<turnstile>(ab # list \<oplus>\<^sub>\<and>\<^bsup>(snd (attack aa), snd (a, s))\<^esup>)" | |
proof (case_tac "map (\<lambda>i. \<N>\<^bsub>((a # aa # list) ! i, (aa # list) ! i)\<^esub>) [0..<length list] @ | |
[\<N>\<^bsub>((a # aa # list) ! length list, s)\<^esub>]", simp, clarify, simp) | |
fix ab lista | |
have *: "tl (map (\<lambda>i. \<N>\<^bsub>((a # aa # list) ! i, (aa # list) ! i)\<^esub>) [0..<length list]) | |
= (map (\<lambda>i. \<N>\<^bsub>((aa # list) ! i, (list) ! i)\<^esub>) [0..<(length list - 1)])" | |
if "list \<noteq> []" | |
apply (subgoal_tac "tl (map (\<lambda>i. \<N>\<^bsub>((a # aa # list) ! i, (aa # list) ! i)\<^esub>) [0..<length list]) | |
= (map (\<lambda>i. \<N>\<^bsub>((aa # list) ! i, (list) ! i)\<^esub>) [0..<(length list - 1)])") | |
apply blast | |
apply (subst step_lem [OF that]) | |
apply simp | |
done | |
show "list \<noteq> [] \<longrightarrow> | |
(\<forall>i<length list. \<turnstile>\<N>\<^bsub>((aa # list) ! i, list ! i)\<^esub>) \<longrightarrow> | |
\<turnstile>(map (\<lambda>i. \<N>\<^bsub>((aa # list) ! i, list ! i)\<^esub>) | |
[0..<length list] \<oplus>\<^sub>\<and>\<^bsup>(aa, list ! (length list - Suc 0))\<^esup>) \<Longrightarrow> | |
Sji = aa # list \<Longrightarrow> | |
\<forall>i<Suc (length list). \<turnstile>\<N>\<^bsub>((a # aa # list) ! i, (aa # list) ! i)\<^esub> \<Longrightarrow> | |
map (\<lambda>i. \<N>\<^bsub>((a # aa # list) ! i, (aa # list) ! i)\<^esub>) [0..<length list] @ | |
[\<N>\<^bsub>((a # aa # list) ! length list, (aa # list) ! length list)\<^esub>] = | |
ab # lista \<Longrightarrow> | |
s = (aa # list) ! length list \<Longrightarrow> | |
case lista of [] \<Rightarrow> \<turnstile>ab \<and> attack ab = (a, (aa # list) ! length list) | |
| aba # lista \<Rightarrow> | |
\<turnstile>ab \<and> fst (attack ab) = a \<and> \<turnstile>(aba # lista \<oplus>\<^sub>\<and>\<^bsup>(snd (attack ab), (aa # list) ! length list)\<^esup>)" | |
apply (auto simp: split: list.split) | |
apply (metis (no_types, lifting) app_tl_hd_list length_greater_0_conv list.sel(1) list.sel(3) list.simps(3) list.simps(8) list.size(3) map_fst nth_Cons_0 self_append_conv2 upt_0 zero_less_Suc) | |
apply (metis (no_types, lifting) app_tl_hd_list attack.simps(1) fst_conv length_greater_0_conv list.sel(1) list.sel(3) list.simps(3) list.simps(8) list.size(3) map_fst nth_Cons_0 self_append_conv2 upt_0) | |
apply (metis (mono_tags, lifting) app_tl_hd_list attack.simps(1) fst_conv length_greater_0_conv list.sel(1) list.sel(3) list.simps(3) list.simps(8) list.size(3) map_fst nth_Cons_0 self_append_conv2 upt_0) | |
by (smt * One_nat_def app_tl_hd_list attack.simps(1) length_greater_0_conv list.sel(1) list.sel(3) list.simps(3) list.simps(8) list.size(3) map_fst nth_Cons_0 nth_Cons_pos self_append_conv2 snd_conv tl_app_in tl_append2 upt_0) | |
qed | |
qed | |
qed | |
lemma Compl_step4: "I \<noteq> {} \<Longrightarrow> finite I \<Longrightarrow> \<not> I \<subseteq> s \<Longrightarrow> | |
(\<exists> lI. set lI = {x. x \<in> I \<and> x \<notin> s} \<and> (\<exists> Sj :: ((('s :: state) set)list) list. | |
length Sj = length lI \<and> nodup_all lI \<and> | |
(\<forall> j < length Sj. (((Sj ! j) \<noteq> []) \<and> (tl (Sj ! j) \<noteq> []) \<and> | |
((Sj ! j) ! 0, (Sj ! j) ! (length (Sj ! j) - 1)) = ({lI ! j},s) \<and> | |
(\<forall> i < (length (Sj ! j) - 1). \<turnstile> \<N>\<^bsub>((Sj ! j) ! i, (Sj ! j) ! (i+1) )\<^esub> | |
))))) | |
\<Longrightarrow> \<exists> (A :: ('s :: state) attree). \<turnstile> A \<and> attack A = (I,s)" | |
proof (erule exE, erule conjE, erule exE, erule conjE) | |
fix lI Sj | |
assume a: "I \<noteq> {}" and b: "finite I" and c: "\<not> I \<subseteq> s" | |
and d: "set lI = {x::'s \<in> I. x \<notin> s}" and e: "length Sj = length lI" | |
and f: "nodup_all lI \<and> | |
(\<forall>j<length Sj. Sj ! j \<noteq> [] \<and> | |
tl (Sj ! j) \<noteq> [] \<and> | |
(Sj ! j ! (0), Sj ! j ! (length (Sj ! j) - (1))) = ({lI ! j}, s) \<and> | |
(\<forall>i<length (Sj ! j) - (1). \<turnstile>\<N>\<^bsub>(Sj ! j ! i, Sj ! j ! (i + (1)))\<^esub>))" | |
show "\<exists>A::'s attree. \<turnstile>A \<and> attack A = (I, s)" | |
apply (rule_tac x = | |
"[([] \<oplus>\<^sub>\<or>\<^bsup>({x. x \<in> I \<and> x \<in> s}, s)\<^esup>), | |
([[ \<N>\<^bsub>((Sj ! j) ! i, (Sj ! j) ! (i + (1)))\<^esub>. | |
i \<leftarrow> [0..<(length (Sj ! j)-(1))]] \<oplus>\<^sub>\<and>\<^bsup>(({lI ! j},s))\<^esup>. j \<leftarrow> [0..<(length Sj)]] | |
\<oplus>\<^sub>\<or>\<^bsup>({x. x \<in> I \<and> x \<notin> s},s)\<^esup>)] \<oplus>\<^sub>\<or>\<^bsup>(I, s)\<^esup>" in exI) | |
proof | |
show "\<turnstile>([[] \<oplus>\<^sub>\<or>\<^bsup>({x::'s \<in> I. x \<in> s}, s)\<^esup>, | |
map (\<lambda>j. | |
((map (\<lambda>i. \<N>\<^bsub>(Sj ! j ! i, Sj ! j ! (i + (1)))\<^esub>) | |
[0..<length (Sj ! j) - (1)]) \<oplus>\<^sub>\<and>\<^bsup>({lI ! j}, s)\<^esup>)) | |
[0..<length Sj] \<oplus>\<^sub>\<or>\<^bsup>({x::'s \<in> I. x \<notin> s}, s)\<^esup>] \<oplus>\<^sub>\<or>\<^bsup>(I, s)\<^esup>)" | |
proof - | |
have g: "I - {x::'s \<in> I. x \<in> s} = {x::'s \<in> I. x \<notin> s}" by blast | |
thus "\<turnstile>([[] \<oplus>\<^sub>\<or>\<^bsup>({x::'s \<in> I. x \<in> s}, s)\<^esup>, | |
(map (\<lambda>j. | |
((map (\<lambda>i. \<N>\<^bsub>(Sj ! j ! i, Sj ! j ! (i + (1)))\<^esub>) | |
[0..<length (Sj ! j) - (1)]) \<oplus>\<^sub>\<and>\<^bsup>({lI ! j}, s)\<^esup>)) | |
[0..<length Sj]) \<oplus>\<^sub>\<or>\<^bsup>({x::'s \<in> I. x \<notin> s}, s)\<^esup>] \<oplus>\<^sub>\<or>\<^bsup>(I, s)\<^esup>)" | |
apply (subst att_or, simp) | |
proof | |
show "I - {x \<in> I. x \<in> s} = {x \<in> I. x \<notin> s} \<Longrightarrow> \<turnstile>([] \<oplus>\<^sub>\<or>\<^bsup>({x \<in> I. x \<in> s}, s)\<^esup>)" | |
by (metis (no_types, lifting) CollectD att_or_empty_back subsetI) | |
next show "I - {x \<in> I. x \<in> s} = {x \<in> I. x \<notin> s} \<Longrightarrow> | |
\<turnstile>([map (\<lambda>j. ((map (\<lambda>i. \<N>\<^bsub>(Sj ! j ! i, Sj ! j ! Suc i)\<^esub>) [0..<length (Sj ! j) - Suc 0]) \<oplus>\<^sub>\<and>\<^bsup>({lI ! j}, s)\<^esup>)) | |
[0..<length Sj] \<oplus>\<^sub>\<or>\<^bsup>({x \<in> I. x \<notin> s}, s)\<^esup>] \<oplus>\<^sub>\<or>\<^bsup>({x \<in> I. x \<notin> s}, s)\<^esup>)" | |
text \<open>Use lemma @{text \<open>list_or_upt\<close>} to distribute attack validity over list lI\<close> | |
proof (erule ssubst, subst att_or, simp, rule subst, rule d, rule_tac lI = lI in list_or_upt) | |
show "lI \<noteq> []" | |
using c d by auto | |
next show "\<And>i. | |
i < length lI \<Longrightarrow> | |
\<turnstile>(map (\<lambda>j. | |
((map (\<lambda>i. \<N>\<^bsub>(Sj ! j ! i, Sj ! j ! Suc i)\<^esub>) | |
[0..<length (Sj ! j) - Suc (0)]) \<oplus>\<^sub>\<and>\<^bsup>({lI ! j}, s)\<^esup>)) | |
[0..<length Sj] ! | |
i) \<and> | |
(attack | |
(map (\<lambda>j. | |
((map (\<lambda>i. \<N>\<^bsub>(Sj ! j ! i, Sj ! j ! Suc i)\<^esub>) | |
[0..<length (Sj ! j) - Suc (0)]) \<oplus>\<^sub>\<and>\<^bsup>({lI ! j}, s)\<^esup>)) | |
[0..<length Sj] ! | |
i) = | |
({lI ! i}, s))" | |
proof (simp add: a b c d e f) | |
show "\<And>i. | |
i < length lI \<Longrightarrow> | |
\<turnstile>(map (\<lambda>ia. \<N>\<^bsub>(Sj ! i ! ia, Sj ! i ! Suc ia)\<^esub>) | |
[0..<length (Sj ! i) - Suc (0)] \<oplus>\<^sub>\<and>\<^bsup>({lI ! i}, s)\<^esup>)" | |
proof - | |
fix i :: nat | |
assume a1: "i < length lI" | |
have "\<forall>n. \<turnstile>map (\<lambda>na. \<N>\<^bsub>(Sj ! n ! na, Sj ! n ! Suc na)\<^esub>) [0..< length (Sj ! n) - 1] \<oplus>\<^sub>\<and>\<^bsup>(Sj ! n ! 0, Sj ! n ! (length (Sj ! n) - 1))\<^esup> \<or> \<not> n < length Sj" | |
by (metis (no_types) One_nat_def add.right_neutral add_Suc_right base_list_and f) | |
then show "\<turnstile>map (\<lambda>n. \<N>\<^bsub>(Sj ! i ! n, Sj ! i ! Suc n)\<^esub>) [0..< length (Sj ! i) - Suc 0] \<oplus>\<^sub>\<and>\<^bsup>({lI ! i}, s)\<^esup>" | |
using a1 by (metis (no_types) One_nat_def e f) | |
qed | |
qed | |
qed (auto simp add: e f) | |
qed | |
qed | |
qed auto | |
qed | |
subsubsection \<open>Main Theorem Completeness\<close> | |
theorem Completeness: "I \<noteq> {} \<Longrightarrow> finite I \<Longrightarrow> | |
Kripke {s :: ('s :: state). \<exists> i \<in> I. (i \<rightarrow>\<^sub>i* s)} (I :: ('s :: state)set) \<turnstile> EF s | |
\<Longrightarrow> \<exists> (A :: ('s :: state) attree). \<turnstile> A \<and> attack A = (I,s)" | |
proof (case_tac "I \<subseteq> s") | |
show "I \<noteq> {} \<Longrightarrow> finite I \<Longrightarrow> | |
Kripke {s::'s. \<exists>i::'s\<in>I. i \<rightarrow>\<^sub>i* s} I \<turnstile> EF s \<Longrightarrow> I \<subseteq> s \<Longrightarrow> \<exists>A::'s attree. \<turnstile>A \<and> attack A = (I, s)" | |
using att_or_empty_back attack.simps(3) by blast | |
next | |
show "I \<noteq> {} \<Longrightarrow> finite I \<Longrightarrow> | |
Kripke {s::'s. \<exists>i::'s\<in>I. i \<rightarrow>\<^sub>i* s} I \<turnstile> EF s \<Longrightarrow> \<not> I \<subseteq> s | |
\<Longrightarrow> \<exists>A::'s attree. \<turnstile>A \<and> attack A = (I, s)" | |
by (iprover intro: Compl_step1 Compl_step2 Compl_step3 Compl_step4 elim: ) | |
qed | |
subsubsection \<open>Contrapositions of Correctness and Completeness\<close> | |
lemma contrapos_compl: | |
"I \<noteq> {} \<Longrightarrow> finite I \<Longrightarrow> | |
(\<not> (\<exists> (A :: ('s :: state) attree). \<turnstile> A \<and> attack A = (I, - s))) \<Longrightarrow> | |
\<not> (Kripke {s. \<exists>i\<in>I. i \<rightarrow>\<^sub>i* s} I \<turnstile> EF (- s))" | |
using Completeness by auto | |
lemma contrapos_corr: | |
"(\<not>(Kripke {s :: ('s :: state). \<exists> i \<in> I. (i \<rightarrow>\<^sub>i* s)} I \<turnstile> EF s)) | |
\<Longrightarrow> attack A = (I,s) | |
\<Longrightarrow> \<not> (\<turnstile> A)" | |
using AT_EF by blast | |
end |