Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
File: HOL_Base.thy | |
Author: Bohua Zhan | |
Extra theorems in logic used by auto2. | |
*) | |
theory HOL_Base | |
imports Main | |
begin | |
theorem to_contra_form: "Trueprop A \<equiv> (\<not>A \<Longrightarrow> False)" by (rule equal_intr_rule) auto | |
theorem to_contra_form': "Trueprop (\<not>A) \<equiv> (A \<Longrightarrow> False)" by (rule equal_intr_rule) auto | |
theorem contra_triv: "\<not>A \<Longrightarrow> A \<Longrightarrow> False" by simp | |
theorem or_intro1: "\<not> (P \<or> Q) \<Longrightarrow> \<not> P" by simp | |
theorem or_intro2: "\<not> (P \<or> Q) \<Longrightarrow> \<not> Q" by simp | |
theorem or_cancel1: "\<not>Q \<Longrightarrow> (P \<or> Q) = P" by auto | |
theorem or_cancel2: "\<not>P \<Longrightarrow> (P \<or> Q) = Q" by auto | |
theorem exE': "(\<And>x. P x \<Longrightarrow> Q) \<Longrightarrow> \<exists>x. P x \<Longrightarrow> Q" by auto | |
theorem nn_create: "A \<Longrightarrow> \<not>\<not>A" by auto | |
theorem iffD: "A \<longleftrightarrow> B \<Longrightarrow> (A \<longrightarrow> B) \<and> (B \<longrightarrow> A)" by auto | |
theorem obj_sym: "Trueprop (t = s) \<equiv> Trueprop (s = t)" by (rule equal_intr_rule) auto | |
theorem to_meta_eq: "Trueprop (t = s) \<equiv> (t \<equiv> s)" by (rule equal_intr_rule) auto | |
theorem inv_backward: "A \<longleftrightarrow> B \<Longrightarrow> \<not>A \<Longrightarrow> \<not>B" by auto | |
theorem backward_conv: "(A \<Longrightarrow> B) \<equiv> (\<not>B \<Longrightarrow> \<not>A)" by (rule equal_intr_rule) auto | |
theorem backward1_conv: "(A \<Longrightarrow> B \<Longrightarrow> C) \<equiv> (\<not>C \<Longrightarrow> B \<Longrightarrow> \<not>A)" by (rule equal_intr_rule) auto | |
theorem backward2_conv: "(A \<Longrightarrow> B \<Longrightarrow> C) \<equiv> (\<not>C \<Longrightarrow> A \<Longrightarrow> \<not>B)" by (rule equal_intr_rule) auto | |
theorem resolve_conv: "(A \<Longrightarrow> B) \<equiv> (\<not>B \<Longrightarrow> A \<Longrightarrow> False)" by (rule equal_intr_rule) auto | |
(* Quantifiers: swapping out of ALL or EX *) | |
theorem swap_ex_conj: "(P \<and> (\<exists>x. Q x)) \<longleftrightarrow> (\<exists>x. P \<and> Q x)" by auto | |
theorem swap_all_disj: "(P \<or> (\<forall>x. Q x)) \<longleftrightarrow> (\<forall>x. P \<or> Q x)" by auto | |
(* Use these instead of original versions to keep names in abstractions. *) | |
theorem Bex_def': "(\<exists>x\<in>S. P x) \<longleftrightarrow> (\<exists>x. x \<in> S \<and> P x)" by auto | |
theorem Ball_def': "(\<forall>x\<in>S. P x) \<longleftrightarrow> (\<forall>x. x \<in> S \<longrightarrow> P x)" by auto | |
(* Taking conjunction of assumptions *) | |
lemma atomize_conjL: "(A \<Longrightarrow> B \<Longrightarrow> PROP C) \<equiv> (A \<and> B \<Longrightarrow> PROP C)" by (rule equal_intr_rule) auto | |
end | |