Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
File: Logic_Thms.thy | |
Author: Bohua Zhan | |
Setup for proof steps related to logic. | |
*) | |
theory Logic_Thms | |
imports Auto2_HOL | |
begin | |
(* Trivial contradictions. *) | |
setup \<open>add_resolve_prfstep @{thm HOL.refl}\<close> | |
setup \<open>add_forward_prfstep @{thm contra_triv}\<close> | |
setup \<open>add_resolve_prfstep @{thm TrueI}\<close> | |
theorem FalseD [resolve]: "\<not>False" by simp | |
lemma exists_triv_eq [resolve]: "\<exists>x. x = x" by auto | |
(* Not. *) | |
setup \<open>add_forward_prfstep_cond @{thm HOL.not_sym} [with_filt (not_type_filter "s" boolT)]\<close> | |
(* Iff. *) | |
setup \<open>add_gen_prfstep ("iff_intro1", | |
[WithGoal @{term_pat "(?A::bool) = ?B"}, | |
CreateCase @{term_pat "?A::bool"}, | |
WithScore 25])\<close> | |
theorem iff_goal: | |
"A \<noteq> B \<Longrightarrow> A \<Longrightarrow> \<not>B" "A \<noteq> B \<Longrightarrow> B \<Longrightarrow> \<not>A" | |
"A \<noteq> B \<Longrightarrow> \<not>A \<Longrightarrow> B" "A \<noteq> B \<Longrightarrow> \<not>B \<Longrightarrow> A" | |
"(\<not>A) \<noteq> B \<Longrightarrow> A \<Longrightarrow> B" "A \<noteq> (\<not>B) \<Longrightarrow> B \<Longrightarrow> A" by auto | |
setup \<open>fold (fn th => add_forward_prfstep_cond th [with_score 1]) @{thms iff_goal}\<close> | |
(* Quantifiers: normalization *) | |
theorem exists_split: "(\<exists>x y. P x \<and> Q y) = ((\<exists>x. P x) \<and> (\<exists>y. Q y))" by simp | |
setup \<open>add_backward_prfstep (equiv_backward_th @{thm exists_split})\<close> | |
(* Case analysis. *) | |
setup \<open>add_gen_prfstep ("case_intro", | |
[WithTerm @{term_pat "if ?cond then (?yes::?'a) else ?no"}, | |
CreateCase @{term_pat "?cond::bool"}])\<close> | |
setup \<open>add_gen_prfstep ("case_intro_fact", | |
[WithFact @{term_pat "if ?cond then (?yes::bool) else ?no"}, | |
CreateCase @{term_pat "?cond::bool"}])\<close> | |
setup \<open>add_gen_prfstep ("case_intro_goal", | |
[WithGoal @{term_pat "if ?cond then (?yes::bool) else ?no"}, | |
CreateCase @{term_pat "?cond::bool"}])\<close> | |
lemma if_eval': | |
"P \<Longrightarrow> (if \<not>P then x else y) = y" by auto | |
lemma ifb_eval: | |
"P \<Longrightarrow> (if P then (x::bool) else y) = x" | |
"\<not>P \<Longrightarrow> (if P then (x::bool) else y) = y" | |
"P \<Longrightarrow> (if \<not>P then (x::bool) else y) = y" by auto | |
setup \<open>fold (fn th => add_rewrite_rule_cond th [with_score 1]) | |
([@{thm HOL.if_P}, @{thm HOL.if_not_P}, @{thm if_eval'}] @ @{thms ifb_eval})\<close> | |
(* THE and \<exists>! *) | |
setup \<open>add_forward_prfstep_cond @{thm theI'} [with_term "THE x. ?P x"]\<close> | |
setup \<open>add_gen_prfstep ("ex1_case", | |
[WithGoal @{term_pat "\<exists>!x. ?P x"}, CreateConcl @{term_pat "\<exists>x. ?P x"}])\<close> | |
theorem ex_ex1I' [backward1]: "\<forall>y. P y \<longrightarrow> x = y \<Longrightarrow> P x \<Longrightarrow> \<exists>!x. P x" by auto | |
theorem the1_equality': "P a \<Longrightarrow> \<exists>!x. P x \<Longrightarrow> (THE x. P x) = a" by (simp add: the1_equality) | |
setup \<open>add_forward_prfstep_cond @{thm the1_equality'} [with_term "THE x. ?P x"]\<close> | |
(* Hilbert choice. *) | |
setup \<open>add_gen_prfstep ("SOME_case_intro", | |
[WithTerm @{term_pat "SOME k. ?P k"}, CreateConcl @{term_pat "\<exists>k. ?P k"}])\<close> | |
setup \<open>add_forward_prfstep_cond @{thm someI} [with_term "SOME x. ?P x"]\<close> | |
setup \<open>add_forward_prfstep_cond @{thm someI_ex} [with_term "SOME x. ?P x"]\<close> | |
(* Axiom of choice *) | |
setup \<open>add_prfstep_custom ("ex_choice", | |
[WithGoal @{term_pat "EX f. !x. ?Q f x"}], | |
(fn ((id, _), ths) => fn _ => fn _ => | |
let | |
val choice = @{thm choice} |> apply_to_thm (Conv.rewr_conv UtilBase.backward_conv_th) | |
in | |
[Update.thm_update (id, (ths MRS choice))] | |
end | |
handle THM _ => [])) | |
\<close> | |
(* Least operator. *) | |
theorem Least_equality' [backward1]: | |
"P (x::('a::order)) \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Least P = x" by (simp add: Least_equality) | |
(* Pairs. *) | |
lemma pair_inj: "(a,b) = c \<longleftrightarrow> a = fst c \<and> b = snd c" by auto | |
setup \<open>Normalizer.add_inj_struct_data @{thm pair_inj}\<close> | |
setup \<open>add_rewrite_rule @{thm fst_conv}\<close> | |
setup \<open>add_rewrite_rule @{thm snd_conv}\<close> | |
setup \<open>add_forward_prfstep (equiv_forward_th @{thm prod.simps(1)})\<close> | |
setup \<open>add_rewrite_rule_cond @{thm surjective_pairing} [with_cond "?t \<noteq> (?a, ?b)"]\<close> | |
setup \<open>Normalizer.add_rewr_normalizer ("rewr_case", (to_meta_eq @{thm case_prod_beta'}))\<close> | |
(* Let. *) | |
setup \<open>Normalizer.add_rewr_normalizer ("rewr_let", @{thm Let_def})\<close> | |
(* Equivalence relations *) | |
setup \<open>add_forward_prfstep @{thm Relation.symD}\<close> | |
setup \<open>add_backward_prfstep @{thm Relation.symI}\<close> | |
setup \<open>add_forward_prfstep @{thm Relation.transD}\<close> | |
setup \<open>add_backward_prfstep @{thm Relation.transI}\<close> | |
(* Options *) | |
setup \<open>add_resolve_prfstep @{thm option.distinct(1)}\<close> | |
setup \<open>add_rewrite_rule @{thm Option.option.sel}\<close> | |
setup \<open>add_forward_prfstep @{thm option.collapse}\<close> | |
setup \<open>add_forward_prfstep (equiv_forward_th @{thm option.simps(1)})\<close> | |
setup \<open>fold (fn th => add_rewrite_rule_cond th [with_score 1]) @{thms Option.option.case}\<close> | |
end | |