Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: IL_AF_Stream.thy | |
Date: Jan 2007 | |
Author: David Trachtenherz | |
*) | |
section \<open>\textsc{AutoFocus} message streams and temporal logic on intervals\<close> | |
theory IL_AF_Stream | |
imports Main "Nat-Interval-Logic.IL_TemporalOperators" AF_Stream | |
begin | |
subsection \<open>Stream views -- joining streams and intervals\<close> | |
subsubsection \<open>Basic definitions\<close> | |
primrec f_join_aux :: "'a list \<Rightarrow> nat \<Rightarrow> iT \<Rightarrow> 'a list" | |
where | |
"f_join_aux [] n I = []" | |
| "f_join_aux (x # xs) n I = | |
(if n \<in> I then [x] else []) @ f_join_aux xs (Suc n) I" | |
text \<open> | |
The functions \<open>f_join\<close> and \<open>i_join\<close> | |
deliver views of finite and infinite streams through intervals | |
(more exactly: arbitrary natural sets). | |
A stream view contains only the elements of the original stream | |
at positions, which are contained in the interval. | |
For instance, \<open>f_join [0,10,20,30,40] {1,4} = [10,40]\<close>\<close> | |
definition f_join :: "'a list \<Rightarrow> iT \<Rightarrow> 'a list" (infixl "\<Join>\<^sub>f" 100) | |
where "xs \<Join>\<^sub>f I \<equiv> f_join_aux xs 0 I" | |
definition i_join :: "'a ilist \<Rightarrow> iT \<Rightarrow> 'a ilist" (infixl "\<Join>\<^sub>i" 100) | |
where "f \<Join>\<^sub>i I \<equiv> \<lambda>n. (f (I \<rightarrow> n))" | |
notation | |
f_join (infixl "\<Join>\<^sub>" 100) and | |
i_join (infixl "\<Join>\<^sub>" 100) | |
text \<open> | |
The function \<open>i_f_join\<close> can be used for the case, | |
when an infinite stream is joined with a finite interval. | |
The function \<open>i_join\<close> would then deliver | |
an infinite stream, whose elements after position \<open>card I\<close> | |
are equal to initial stream's element at position \<open>Max I\<close>. | |
The function \<open>i_f_join\<close> in contrast | |
cuts the resulting stream at this position | |
and returns a finite stream.\<close> | |
definition i_f_join :: "'a ilist \<Rightarrow> iT \<Rightarrow> 'a list" (infixl "\<Join>\<^bsub>i-f\<^esub>" 100) | |
where "f \<Join>\<^bsub>i-f\<^esub> I \<equiv> f \<Down> Suc (Max I) \<Join>\<^sub>f I" | |
notation | |
i_f_join (infixl "\<Join>\<^sub>" 100) | |
text \<open> | |
The function \<open>i_f_join\<close> should be used | |
only for finite sets in order to deliver well-defined results. | |
The function \<open>i_join\<close> should be used for infinite sets, | |
because joining an infinite stream \<open>s\<close> and a finite set \<open>I\<close> | |
using \<open>i_join\<close> would deliver an infinite stream, | |
ending with an infinite sequence of elements equal to | |
\<open>s (Max I)\<close>.\<close> | |
subsubsection \<open>Basic results\<close> | |
lemma f_join_aux_length: " | |
\<And>n. length (f_join_aux xs n I) = card (I \<inter> {n..<n + length xs})" | |
apply (induct xs, simp) | |
apply (simp add: atLeastLessThan_def) | |
apply (rule_tac t="{n..}" and s="insert n {Suc n..}" in subst, fastforce) | |
apply simp | |
done | |
lemma f_join_aux_nth[rule_format]: " | |
\<forall>n i. i < card (I \<inter> {n..<n + length xs}) \<longrightarrow> | |
(f_join_aux xs n I) ! i = xs ! (((I \<inter> {n..<n + length xs}) \<rightarrow> i) - n)" | |
apply (induct xs, simp) | |
apply (clarsimp split del: if_split) | |
apply (subgoal_tac "{n..<Suc (n + length xs)} = insert n {Suc n..<Suc (n + length xs)}") | |
prefer 2 | |
apply fastforce | |
apply (frule card_gr0_imp_not_empty[OF gr_implies_gr0]) | |
apply (case_tac "n \<in> I") | |
prefer 2 | |
apply (simp add: nth_Cons') | |
apply (subgoal_tac "Suc n \<le> (I \<inter> {Suc n..<Suc (n + length xs)}) \<rightarrow> i", simp) | |
apply (rule order_trans[OF _ iMin_le[OF inext_nth_closed]]) | |
apply (rule order_trans[OF _ iMin_Int_ge2]) | |
apply (subgoal_tac "n < n + length xs") | |
prefer 2 | |
apply (rule ccontr, simp) | |
apply (simp add: iMin_atLeastLessThan) | |
apply assumption+ | |
apply simp | |
apply (case_tac "I \<inter> {Suc n..<Suc (n + length xs)} = {}", simp) | |
apply (case_tac i) | |
apply (simp add: iMin_insert) | |
apply (subgoal_tac "Suc n \<le> iMin {Suc n..<Suc (n + length xs)}") | |
prefer 2 | |
apply (subgoal_tac "n < n + length xs") | |
prefer 2 | |
apply (rule ccontr, simp) | |
apply (simp add: iMin_atLeastLessThan) | |
apply (rename_tac i1) | |
apply (simp del: inext_nth.simps) | |
apply (subst inext_nth_insert_Suc) | |
apply simp | |
apply (rule Suc_le_lessD) | |
apply (rule order_trans[OF _ iMin_Int_ge2]) | |
apply assumption+ | |
apply (simp add: nth_Cons') | |
apply (subgoal_tac "Suc n \<le> (I \<inter> {Suc n..<Suc (n + length xs)}) \<rightarrow> i1", simp) | |
apply (rule order_trans[OF _ iMin_le[OF inext_nth_closed]]) | |
apply (rule order_trans[OF _ iMin_Int_ge2]) | |
apply assumption+ | |
done | |
text \<open>Joining finite streams and intervals\<close> | |
(*<*) | |
(* | |
lemma "[(0::nat),10,20,30,40] \<Join>\<^sub>f {1,4} = [10,40]" | |
by (simp add: f_join_def) | |
*) | |
(*>*) | |
lemma f_join_length: "length (xs \<Join>\<^sub>f I) = card (I \<down>< length xs)" | |
by (simp add: f_join_def f_join_aux_length atLeast0LessThan cut_less_Int_conv) | |
lemma f_join_nth: "n < length (xs \<Join>\<^sub>f I) \<Longrightarrow> (xs \<Join>\<^sub>f I) ! n = xs ! (I \<rightarrow> n)" | |
apply (simp add: f_join_length) | |
apply (unfold f_join_def) | |
apply (drule back_subst[OF _ cut_less_Int_conv]) | |
apply (simp add: f_join_aux_nth atLeast0LessThan cut_less_Int_conv[symmetric] inext_nth_cut_less_eq) | |
done | |
lemma f_join_nth2: "n < card (I \<down>< length xs) \<Longrightarrow> (xs \<Join>\<^sub>f I) ! n = xs ! (I \<rightarrow> n)" | |
by (simp add: f_join_nth f_join_length) | |
lemma f_join_empty: "xs \<Join>\<^sub>f {} = []" | |
by (simp add: length_0_conv[symmetric] f_join_length cut_less_empty del: length_0_conv) | |
lemma f_join_Nil: "[] \<Join>\<^sub>f I = []" | |
by (simp add: length_0_conv[symmetric] f_join_length cut_less_0_empty del: length_0_conv) | |
lemma f_join_Nil_conv: "(xs \<Join>\<^sub>f I = []) = (I \<down>< length xs = {})" | |
by (simp add: length_0_conv[symmetric] f_join_length card_0_eq[OF nat_cut_less_finite] del: length_0_conv) | |
lemma f_join_Nil_conv': "(xs \<Join>\<^sub>f I = []) = (\<forall>i<length xs. i \<notin> I)" | |
by (fastforce simp: f_join_Nil_conv) | |
lemma f_join_all_conv: "(xs \<Join>\<^sub>f I = xs) = ({..<length xs} \<subseteq> I)" | |
apply (case_tac "length xs = 0", simp add: f_join_Nil) | |
apply (rule iffI) | |
apply (rule subsetI, rename_tac t) | |
apply (clarsimp simp: list_eq_iff[of _ xs] f_join_length) | |
apply (rule ccontr) | |
apply (subgoal_tac "I \<down>< length xs \<subset> {..<length xs}") | |
prefer 2 | |
apply blast | |
apply (drule psubset_card_mono[OF finite_lessThan]) | |
apply simp | |
apply (subgoal_tac "length (xs \<Join>\<^sub>f I) = length xs") | |
prefer 2 | |
apply (simp add: f_join_length cut_less_Int_conv Int_absorb1) | |
apply (clarsimp simp: list_eq_iff[of _ xs] f_join_nth) | |
apply (rule arg_cong[where f="(!) xs"]) | |
apply (subgoal_tac "I \<down>< length xs = {..<length xs}") | |
prefer 2 | |
apply fastforce | |
apply (subst inext_nth_cut_less_eq[where t="length xs", symmetric], simp) | |
apply (simp add: inext_nth_lessThan) | |
done | |
lemma f_join_all: "{..<length xs} \<subseteq> I \<Longrightarrow> xs \<Join>\<^sub>f I = xs" | |
by (rule f_join_all_conv[THEN iffD2]) | |
corollary f_join_UNIV: "xs \<Join>\<^sub>f UNIV = xs" | |
by (simp add: f_join_all) | |
lemma f_join_union: " | |
\<lbrakk> finite A; Max A < iMin B \<rbrakk> \<Longrightarrow> xs \<Join>\<^sub>f (A \<union> B) = xs \<Join>\<^sub>f A @ (xs \<Join>\<^sub>f B)" | |
apply (case_tac "A = {}", simp add: f_join_empty) | |
apply (case_tac "B = {}", simp add: f_join_empty) | |
apply (frule Max_less_iMin_imp_disjoint, assumption) | |
apply (simp add: list_eq_iff f_join_length cut_less_Un del: Max_less_iff) | |
apply (subgoal_tac "A \<down>< length xs \<inter> B \<down>< length xs = {}") | |
prefer 2 | |
apply (simp add: cut_less_Int[symmetric] cut_less_empty) | |
apply (frule card_Un_disjoint[OF nat_cut_less_finite nat_cut_less_finite]) | |
apply (clarsimp simp del: Max_less_iff) | |
apply (subst f_join_nth) | |
apply (simp add: f_join_length cut_less_Un) | |
apply (simp add: nth_append f_join_length del: Max_less_iff, intro conjI impI) | |
apply (simp add: f_join_nth f_join_length del: Max_less_iff) | |
apply (rule ssubst[OF inext_nth_card_append_eq1], assumption) | |
apply (rule order_less_le_trans[OF _ cut_less_card], assumption+) | |
apply simp | |
apply (subst f_join_nth) | |
apply (simp add: f_join_length) | |
apply (subgoal_tac "iMin B < length xs") | |
prefer 2 | |
apply (rule ccontr) | |
apply (simp add: linorder_not_less cut_less_Min_empty) | |
apply (frule order_less_trans, assumption) | |
apply (rule arg_cong[where f="\<lambda>x. xs ! x"]) | |
apply (simp add: cut_less_Max_all inext_nth_card_append_eq2) | |
done | |
lemma f_join_singleton_if: " | |
xs \<Join>\<^sub>f {n} = (if n < length xs then [xs ! n] else [])" | |
apply (clarsimp simp: list_eq_iff f_join_length cut_less_singleton) | |
apply (insert f_join_nth[of 0 xs "{n}"]) | |
apply (simp add: f_join_length cut_less_singleton) | |
done | |
lemma f_join_insert: " | |
n < length xs \<Longrightarrow> | |
xs \<Join>\<^sub>f insert n I = xs \<Join>\<^sub>f (I \<down>< n) @ (xs ! n) # (xs \<Join>\<^sub>f (I \<down>> n))" | |
apply (rule_tac t="insert n I" and s="(I \<down>< n) \<union> {n} \<union> (I \<down>> n)" in subst, fastforce) | |
apply (insert nat_cut_less_finite[of I n]) | |
apply (case_tac "I \<down>> n = {}") | |
apply (simp add: f_join_empty del: Un_insert_right) | |
apply (case_tac "I \<down>< n = {}") | |
apply (simp add: f_join_empty f_join_singleton_if) | |
apply (subgoal_tac "Max (I \<down>< n) < iMin {n}") | |
prefer 2 | |
apply (simp add: cut_less_mem_iff) | |
apply (simp add: f_join_union f_join_singleton_if del: Un_insert_right) | |
apply (subgoal_tac "Max {n} < iMin (I \<down>> n)") | |
prefer 2 | |
apply (simp add: iMin_gr_iff cut_greater_mem_iff) | |
apply (case_tac "I \<down>< n = {}") | |
apply (simp add: f_join_empty f_join_union f_join_singleton_if del: Un_insert_left) | |
apply (subgoal_tac "Max (I \<down>< n) < iMin {n}") | |
prefer 2 | |
apply (simp add: cut_less_mem_iff) | |
apply (subgoal_tac "Max (I \<down>< n \<union> {n}) < iMin (I \<down>> n)") | |
prefer 2 | |
apply (simp add: iMin_gr_iff i_cut_mem_iff) | |
apply (simp add: f_join_union f_join_singleton_if del: Un_insert_right) | |
done | |
lemma f_join_snoc: " | |
(xs @ [x]) \<Join>\<^sub>f I = | |
xs \<Join>\<^sub>f I @ (if length xs \<in> I then [x] else [])" | |
apply (simp add: list_eq_iff f_join_length) | |
apply (subgoal_tac " | |
card (I \<down>< Suc (length xs)) = | |
card (I \<down>< length xs) + (if length xs \<in> I then Suc 0 else 0)") | |
prefer 2 | |
apply (simp add: nat_cut_le_less_conv[symmetric] cut_le_less_conv_if) | |
apply (simp add: card_insert_if[OF nat_cut_less_finite] cut_less_mem_iff) | |
apply simp | |
apply (case_tac "length xs \<in> I") | |
apply (clarsimp simp: f_join_length) | |
apply (simp add: nth_append f_join_length, intro conjI impI) | |
apply (subst f_join_nth[of _ "xs @ [x]"]) | |
apply (simp add: f_join_length) | |
apply (simp add: nth_append less_card_cut_less_imp_inext_nth_less) | |
apply (simp add: f_join_nth f_join_length) | |
apply (simp add: linorder_not_less less_Suc_eq_le) | |
apply (subst f_join_nth) | |
apply (simp add: f_join_length) | |
apply (subgoal_tac "I \<rightarrow> i = length xs") | |
prefer 2 | |
apply (rule_tac t="length xs" and s="Max (I \<down>< Suc (length xs))" in subst) | |
apply (rule Max_equality[OF _ nat_cut_less_finite]) | |
apply (simp add: cut_less_mem_iff)+ | |
apply (subst inext_nth_cut_less_eq[of _ _ "Suc (length xs)", symmetric], simp) | |
apply (rule inext_nth_card_Max[OF nat_cut_less_finite]) | |
apply (simp add: card_gr0_imp_not_empty) | |
apply simp+ | |
apply (simp add: f_join_nth f_join_length) | |
apply (simp add: nth_append less_card_cut_less_imp_inext_nth_less) | |
done | |
(*<*) | |
(* | |
lemma " | |
let xs = [0::nat,10,20,30]; ys =[100,110,120,130]; I = {0,2,4,6} in | |
(xs @ ys) \<Join>\<^sub>f I = xs \<Join>\<^sub>f I @ (ys \<Join>\<^sub>f (I \<oplus>- (length xs)))" | |
by (simp add: Let_def f_join_def iT_Plus_neg_def) | |
*) | |
(*>*) | |
lemma f_join_append: " | |
(xs @ ys) \<Join>\<^sub>f I = xs \<Join>\<^sub>f I @ ys \<Join>\<^sub>f (I \<oplus>- (length xs))" | |
apply (induct ys rule: rev_induct) | |
apply (simp add: f_join_Nil) | |
apply (simp add: append_assoc[symmetric] f_join_snoc del: append_assoc) | |
apply (simp add: iT_Plus_neg_mem_iff add.commute[of "length xs"]) | |
done | |
lemma take_f_join_eq1: " | |
n < card (I \<down>< length xs) \<Longrightarrow> | |
(xs \<Join>\<^sub>f I) \<down> n = xs \<Join>\<^sub>f (I \<down>< (I \<rightarrow> n))" | |
apply (frule less_card_cut_less_imp_inext_nth_less) | |
apply (simp add: list_eq_iff f_join_length cut_cut_less min_eqR) | |
apply (subgoal_tac "n < card I \<or> infinite I") | |
prefer 2 | |
apply (case_tac "finite I") | |
apply (drule order_less_le_trans[OF _ cut_less_card], simp+) | |
apply (simp add: min_eqL cut_less_inext_nth_card_eq1) | |
apply clarify | |
apply (subst f_join_nth) | |
apply (simp add: f_join_length) | |
apply (subst f_join_nth) | |
apply (simp add: f_join_length cut_cut_less min_eqL) | |
apply (simp add: cut_less_inext_nth_card_eq1) | |
apply (simp add: cut_less_inext_nth_card_eq1 inext_nth_cut_less_eq) | |
done | |
lemma take_f_join_eq2: " | |
card (I \<down>< length xs) \<le> n \<Longrightarrow> (xs \<Join>\<^sub>f I) \<down> n = xs \<Join>\<^sub>f I" | |
by (simp add: f_join_length) | |
lemma take_f_join_if: " | |
(xs \<Join>\<^sub>f I) \<down> n = | |
(if n < card (I \<down>< length xs) then xs \<Join>\<^sub>f (I \<down>< (I \<rightarrow> n)) else xs \<Join>\<^sub>f I)" | |
by (simp add: take_f_join_eq1 take_f_join_eq2) | |
lemma drop_f_join_eq1: " | |
n < card (I \<down>< length xs) \<Longrightarrow> | |
(xs \<Join>\<^sub>f I) \<up> n = xs \<Join>\<^sub>f (I \<down>\<ge> (I \<rightarrow> n))" | |
apply (case_tac "I = {}") | |
apply (simp add: cut_less_empty) | |
apply (case_tac "I \<down>< length xs = {}") | |
apply (simp add: cut_less_empty) | |
apply (rule same_append_eq[THEN iffD1, of "xs \<Join>\<^sub>f I \<down> n"]) | |
txt \<open>First, a simplification step without \<open>take_f_join_eq1\<close> required for correct transformation, in order to eliminate \<open>(xs \<Join>\<^sub>f I) \<down> n\<close> in the equation.\<close> | |
apply simp | |
txt \<open>Now, \<open>take_f_join_eq1\<close> can be applied\<close> | |
apply (simp add: take_f_join_eq1) | |
apply (case_tac "I \<down>< (I \<rightarrow> n) = {}") | |
apply (simp add: f_join_empty) | |
apply (rule_tac t= "I \<rightarrow> n" and s="iMin I" in subst) | |
apply (rule ccontr) | |
apply (drule neq_le_trans[of "iMin I"]) | |
apply (simp add: iMin_le[OF inext_nth_closed]) | |
apply (simp add: cut_less_Min_not_empty) | |
apply (simp add: cut_ge_Min_all) | |
apply (subst f_join_union[OF nat_cut_less_finite, symmetric]) | |
apply (subgoal_tac "I \<down>\<ge> (I \<rightarrow> n) \<noteq> {}") | |
prefer 2 | |
apply (simp add: cut_ge_not_empty_iff) | |
apply (blast intro: inext_nth_closed) | |
apply (simp add: nat_cut_less_finite i_cut_mem_iff iMin_gr_iff) | |
apply (simp add: cut_less_cut_ge_ident) | |
done | |
lemma drop_f_join_eq2: " | |
card (I \<down>< length xs) \<le> n \<Longrightarrow> (xs \<Join>\<^sub>f I) \<up> n = []" | |
by (simp add: f_join_length) | |
lemma drop_f_join_if: " | |
(xs \<Join>\<^sub>f I) \<up> n = | |
(if n < card (I \<down>< length xs) then xs \<Join>\<^sub>f (I \<down>\<ge> (I \<rightarrow> n)) else [])" | |
by (simp add: drop_f_join_eq1 drop_f_join_eq2) | |
lemma f_join_take: "xs \<down> n \<Join>\<^sub>f I = xs \<Join>\<^sub>f (I \<down>< n)" | |
apply (clarsimp simp: list_eq_iff f_join_length cut_cut_less min.commute) | |
apply (simp add: f_join_nth f_join_length cut_cut_less min.commute) | |
apply (case_tac "n < length xs") | |
apply (simp add: min_eqL inext_nth_cut_less_eq) | |
apply (simp add: less_card_cut_less_imp_inext_nth_less) | |
apply (simp add: min_eqR linorder_not_less) | |
apply (subst inext_nth_cut_less_eq) | |
apply (rule order_less_le_trans, assumption) | |
apply (rule card_mono[OF nat_cut_less_finite cut_less_mono], assumption) | |
apply simp | |
done | |
lemma f_join_drop: "xs \<up> n \<Join>\<^sub>f I = xs \<Join>\<^sub>f (I \<oplus> n)" | |
apply (case_tac "length xs \<le> n") | |
apply (simp add: f_join_Nil) | |
apply (rule sym) | |
apply (simp add: f_join_Nil_conv' iT_Plus_mem_iff) | |
apply (rule subst[OF append_take_drop_id, of "\<lambda>x. xs \<up> n \<Join>\<^sub>f I = x \<Join>\<^sub>f (I \<oplus> n)" n]) | |
apply (simp only: f_join_append) | |
apply (simp add: f_join_take min_eqR) | |
apply (simp add: iT_Plus_Plus_neg_inverse) | |
apply (rule_tac t="(I \<oplus> n) \<down>< n" and s="{}" in subst) | |
apply (rule sym) | |
apply (simp add: cut_less_empty_iff iT_Plus_mem_iff) | |
apply (simp add: f_join_empty) | |
done | |
lemma cut_less_eq_imp_f_join_eq: " | |
A \<down>< length xs = B \<down>< length xs \<Longrightarrow> xs \<Join>\<^sub>f A = xs \<Join>\<^sub>f B" | |
apply (clarsimp simp: list_eq_iff f_join_length f_join_nth) | |
apply (rule subst[OF inext_nth_cut_less_eq, of _ A "length xs"], simp) | |
apply (rule subst[OF inext_nth_cut_less_eq, of _ B "length xs"], simp) | |
apply simp | |
done | |
corollary f_join_cut_less_eq: " | |
length xs \<le> t \<Longrightarrow> xs \<Join>\<^sub>f (I \<down>< t) = xs \<Join>\<^sub>f I" | |
apply (rule cut_less_eq_imp_f_join_eq) | |
apply (simp add: cut_cut_less min_eqR) | |
done | |
lemma take_Suc_Max_eq_imp_f_join_eq: " | |
\<lbrakk> finite I; xs \<down> Suc (Max I) = ys \<down> Suc (Max I) \<rbrakk> \<Longrightarrow> | |
xs \<Join>\<^sub>f I = ys \<Join>\<^sub>f I" | |
apply (case_tac "I = {}") | |
apply (simp add: f_join_empty) | |
apply (simp add: list_eq_iff f_join_length) | |
apply (case_tac "length xs < Suc (Max I)") | |
apply (case_tac "length ys < Suc (Max I)") | |
apply (clarsimp simp: min_eqL, rename_tac i) | |
apply (simp add: f_join_nth2) | |
apply (drule_tac x="I \<rightarrow> i" in spec) | |
apply (subgoal_tac "I \<rightarrow> i < length ys") | |
prefer 2 | |
apply (rule less_card_cut_less_imp_inext_nth_less, simp) | |
apply simp | |
apply (simp add: min_eq) | |
apply (case_tac "length ys < Suc (Max I)") | |
apply (simp add: min_eq) | |
apply (simp add: linorder_not_less min_eqR Suc_le_eq del: Max_less_iff) | |
apply (subgoal_tac "I \<down>< length xs = I \<down>< length ys") | |
prefer 2 | |
apply (simp add: cut_less_Max_all) | |
apply (clarsimp simp: f_join_nth2 simp del: Max_less_iff, rename_tac i) | |
apply (drule_tac x="I \<rightarrow> i" in spec) | |
apply (subgoal_tac "I \<rightarrow> i < Suc (Max I)") | |
prefer 2 | |
apply (simp add: less_Suc_eq_le inext_nth_closed) | |
apply (simp del: Max_less_iff) | |
done | |
corollary f_join_take_Suc_Max_eq: " | |
finite I \<Longrightarrow> xs \<down> Suc (Max I) \<Join>\<^sub>f I = xs \<Join>\<^sub>f I" | |
by (rule take_Suc_Max_eq_imp_f_join_eq, simp+) | |
text \<open>Joining infinite streams and infinite intervals\<close> | |
lemma i_join_nth: "(f \<Join>\<^sub>i I) n = f (I \<rightarrow> n)" | |
by (simp add: i_join_def) | |
lemma i_join_UNIV: "f \<Join>\<^sub>i UNIV = f" | |
by (simp add: ilist_eq_iff i_join_nth inext_nth_UNIV) | |
lemma i_join_union: " | |
\<lbrakk> finite A; Max A < iMin B; B \<noteq> {} \<rbrakk> \<Longrightarrow> | |
f \<Join>\<^sub>i (A \<union> B) = (f \<Down> Suc (Max A) \<Join>\<^sub>f A) \<frown> (f \<Join>\<^sub>i B)" | |
apply (case_tac "A = {}") | |
apply (simp add: f_join_empty) | |
apply (simp (no_asm) add: ilist_eq_iff, clarify) | |
apply (simp add: i_join_nth i_append_nth f_join_length del: Max_less_iff) | |
apply (subgoal_tac "A \<down>< Suc (Max A) = A") | |
prefer 2 | |
apply (simp add: nat_cut_le_less_conv[symmetric] cut_le_Max_all) | |
apply (simp del: Max_less_iff, intro conjI impI) | |
apply (simp add: inext_nth_card_append_eq1) | |
apply (simp add: f_join_nth f_join_length) | |
apply (simp add: less_card_cut_less_imp_inext_nth_less) | |
apply (simp add: inext_nth_card_append_eq2) | |
done | |
lemma i_join_singleton: "f \<Join>\<^sub>i {a} = (\<lambda>n. f a)" | |
by (simp add: ilist_eq_iff i_join_nth inext_nth_singleton) | |
lemma i_join_insert: " | |
f \<Join>\<^sub>i (insert n I) = | |
(f \<Down> n) \<Join>\<^sub>f (I \<down>< n) \<frown> [f n] \<frown> ( | |
if I \<down>> n = {} then (\<lambda>x. f n) else f \<Join>\<^sub>i (I \<down>> n))" | |
apply (rule ssubst[OF insert_eq_cut_less_cut_greater]) | |
apply (case_tac "I \<down>< n = {}") | |
apply (simp add: f_join_empty, intro conjI impI) | |
apply (simp add: i_join_singleton ilist_eq_iff i_append_nth) | |
apply (subgoal_tac "Max {n} < iMin (I \<down>> n)") | |
prefer 2 | |
apply (simp add: cut_greater_Min_greater) | |
apply simp | |
apply (subst insert_is_Un) | |
apply (subst i_join_union[OF singleton_finite]) | |
apply (simp add: f_join_singleton_if)+ | |
apply (intro conjI impI) | |
apply (subgoal_tac "Max (I \<down>< n) < iMin {n}") | |
prefer 2 | |
apply (simp add: nat_cut_less_Max_less) | |
apply (rule_tac t="insert n (I \<down>< n)" and s="(I \<down>< n) \<union> {n}" in subst, simp) | |
apply (subst i_join_union[OF nat_cut_less_finite _ singleton_not_empty], simp) | |
apply (simp add: i_join_singleton) | |
apply (rule_tac s="\<lambda>x. f n" and t="[f n] \<frown> (\<lambda>x. f n)" in subst) | |
apply (simp add: ilist_eq_iff i_append_nth) | |
apply (subst i_append_assoc[symmetric]) | |
apply (rule_tac t="[f n] \<frown> (\<lambda>x. f n)" and s="(\<lambda>x. f n)" in subst) | |
apply (simp add: ilist_eq_iff i_append_nth) | |
apply (rule arg_cong) | |
apply (simp add: take_Suc_Max_eq_imp_f_join_eq[OF nat_cut_less_finite] min_eqR) | |
apply (subgoal_tac "Max (I \<down>< n) < iMin {n} \<and> Max {n} < iMin (I \<down>> n)", elim conjE) | |
prefer 2 | |
apply (simp add: cut_greater_Min_greater nat_cut_less_Max_less) | |
apply (rule_tac t="insert n (I \<down>< n \<union> I \<down>> n)" and s="(I \<down>< n \<union> ({n} \<union> I \<down>> n))" in subst, simp) | |
apply (subgoal_tac "({n} \<union> I \<down>> n) \<noteq> {} \<and> Max (I \<down>< n) < iMin ({n} \<union> I \<down>> n)", elim conjE) | |
prefer 2 | |
apply (simp add: iMin_insert) | |
apply (simp add: i_join_union nat_cut_less_finite singleton_finite del: Un_insert_left Un_insert_right Max_less_iff) | |
apply (simp add: f_join_singleton_if) | |
apply (rule arg_cong) | |
apply (simp add: take_Suc_Max_eq_imp_f_join_eq[OF nat_cut_less_finite] min_eqR) | |
done | |
lemma i_join_i_append: " | |
infinite I \<Longrightarrow> (xs \<frown> f) \<Join>\<^sub>i I = (xs \<Join>\<^sub>f I) \<frown> (f \<Join>\<^sub>i (I \<oplus>- length xs))" | |
apply (clarsimp simp: ilist_eq_iff) | |
apply (simp add: i_join_nth i_append_nth f_join_length) | |
apply (subgoal_tac "I \<down>\<ge> length xs \<noteq> {}") | |
prefer 2 | |
apply (fastforce simp: cut_ge_not_empty_iff infinite_nat_iff_unbounded_le) | |
apply (simp add: inext_nth_less_less_card_conv) | |
apply (intro conjI impI) | |
apply (simp add: f_join_nth f_join_length) | |
apply (subgoal_tac "I \<oplus>- length xs \<noteq> {}") | |
prefer 2 | |
apply (simp add: iT_Plus_neg_empty_iff infinite_imp_nonempty) | |
apply (simp add: iT_Plus_neg_inext_nth) | |
apply (case_tac "I \<down>< length xs = {}") | |
apply (frule cut_less_empty_iff[THEN iffD1, THEN cut_ge_all_iff[THEN iffD2]]) | |
apply simp | |
apply (rule subst[OF inext_nth_card_append_eq2, OF nat_cut_less_finite], simp+) | |
apply (simp add: less_imp_Max_less_iMin[OF nat_cut_less_finite] i_cut_mem_iff) | |
apply simp | |
apply (simp add: cut_less_cut_ge_ident) | |
done | |
lemma i_take_i_join: "infinite I \<Longrightarrow> f \<Join>\<^sub>i I \<Down> n = f \<Down> (I \<rightarrow> n) \<Join>\<^sub>f I" | |
apply (clarsimp simp: list_eq_iff f_join_length cut_less_inext_nth_card_eq1, rename_tac i) | |
apply (simp add: i_join_nth) | |
apply (frule inext_nth_mono2_infin[THEN iffD2], assumption) | |
apply (rule_tac t="f (I \<rightarrow> i)" and s="f \<Down> (I \<rightarrow> n) ! (I \<rightarrow> i)" in subst, simp) | |
apply (rule sym, rule f_join_nth) | |
apply (simp add: f_join_length) | |
apply (simp add: inext_nth_less_less_card_conv[OF nat_cut_ge_infinite_not_empty]) | |
done | |
lemma i_drop_i_join: "I \<noteq> {} \<Longrightarrow> f \<Join>\<^sub>i I \<Up> n = f \<Join>\<^sub>i (I \<down>\<ge> (I \<rightarrow> n))" | |
apply (simp (no_asm) add: ilist_eq_iff) | |
apply (simp add: i_join_nth inext_nth_cut_ge_inext_nth) | |
done | |
lemma i_join_i_take: "f \<Down> n \<Join>\<^sub>f I = f \<Join>\<^sub>i I \<Down> card (I \<down>< n)" | |
apply (clarsimp simp: list_eq_iff f_join_length) | |
apply (frule less_card_cut_less_imp_inext_nth_less) | |
apply (simp add: i_join_nth f_join_length f_join_nth) | |
done | |
lemma i_join_i_drop: "I \<noteq> {} \<Longrightarrow> f \<Up> n \<Join>\<^sub>i I = f \<Join>\<^sub>i (I \<oplus> n)" | |
apply (simp (no_asm) add: ilist_eq_iff) | |
apply (simp add: i_join_nth iT_Plus_inext_nth add.commute[of _ n]) | |
done | |
lemma i_join_finite_nth_ge_card_eq_nth_Max: " | |
\<lbrakk> finite I; I \<noteq> {}; card I \<le> Suc n \<rbrakk> \<Longrightarrow> (f \<Join>\<^sub>i I) n = f (Max I)" | |
by (simp add: i_join_nth inext_nth_card_Max) | |
lemma i_join_finite_i_drop_card_eq_const_nth_Max: " | |
\<lbrakk> finite I; I \<noteq> {} \<rbrakk> \<Longrightarrow> (f \<Join>\<^sub>i I) \<Up> (card I) = (\<lambda>n. f (Max I))" | |
by (simp add: ilist_eq_iff i_join_finite_nth_ge_card_eq_nth_Max) | |
lemma i_join_finite_i_append_nth_Max_conv: " | |
\<lbrakk> finite I; I \<noteq> {} \<rbrakk> \<Longrightarrow> (f \<Join>\<^sub>i I) = f \<Down> Suc (Max I) \<Join>\<^sub>f I \<frown> (\<lambda>n. f (Max I))" | |
apply (simp (no_asm) add: ilist_eq_iff, clarify) | |
apply (subgoal_tac "I \<down>< (Suc (Max I)) = I") | |
prefer 2 | |
apply (simp add: nat_cut_le_less_conv[symmetric] cut_le_Max_all) | |
apply (simp add: i_append_nth i_join_nth f_join_length) | |
apply (intro conjI impI) | |
apply (simp add: f_join_nth f_join_length) | |
apply (rule sym, rule i_take_nth) | |
apply (simp add: less_card_cut_less_imp_inext_nth_less) | |
apply (simp add: inext_nth_card_Max) | |
done | |
text \<open>Joining infinite streams and finite intervals\<close> | |
lemma i_f_join_length: "finite I \<Longrightarrow> length (f \<Join>\<^bsub>i-f\<^esub> I) = card I" | |
apply (simp add: i_f_join_def f_join_length) | |
apply (simp add: nat_cut_le_less_conv[symmetric] cut_le_Max_all) | |
done | |
lemma i_f_join_nth: "n < card I \<Longrightarrow> f \<Join>\<^bsub>i-f\<^esub> I ! n = f (I \<rightarrow> n)" | |
apply (frule card_gr0_imp_finite[OF gr_implies_gr0]) | |
apply (frule card_gr0_imp_not_empty[OF gr_implies_gr0]) | |
apply (simp add: i_f_join_def) | |
apply (subst i_take_nth[ of "I \<rightarrow> n" "Suc (Max I)" f, symmetric]) | |
apply (rule le_imp_less_Suc) | |
apply (simp add: Max_ge[OF _ inext_nth_closed]) | |
apply (simp add: f_join_nth2 nat_cut_le_less_conv[symmetric] cut_le_Max_all) | |
done | |
lemma i_f_join_empty: "f \<Join>\<^bsub>i-f\<^esub> {} = []" | |
by (simp add: i_f_join_def f_join_empty) | |
lemma i_f_join_eq_i_join_i_take: " | |
finite I \<Longrightarrow> f \<Join>\<^bsub>i-f\<^esub> I = f \<Join>\<^sub>i I \<Down> (card I)" | |
apply (simp add: i_f_join_def) | |
apply (simp add: i_join_i_take nat_cut_le_less_conv[symmetric] cut_le_Max_all) | |
done | |
lemma i_f_join_union: " | |
\<lbrakk> finite A; finite B; Max A < iMin B \<rbrakk> \<Longrightarrow> | |
f \<Join>\<^bsub>i-f\<^esub> (A \<union> B) = f \<Join>\<^bsub>i-f\<^esub> A @ f \<Join>\<^bsub>i-f\<^esub> B" | |
apply (case_tac "A = {}", simp add: i_f_join_empty) | |
apply (case_tac "B = {}", simp add: i_f_join_empty) | |
apply (simp add: i_f_join_def f_join_union del: Max_less_iff) | |
apply (subgoal_tac "Max A < Max B") | |
prefer 2 | |
apply (rule order_less_le_trans[OF _ iMin_le_Max], assumption+) | |
apply (simp add: Max_Un max_eqR[OF less_imp_le]) | |
apply (rule take_Suc_Max_eq_imp_f_join_eq, assumption) | |
apply (simp add: min_eqR[OF less_imp_le]) | |
done | |
lemma i_f_join_singleton: "f \<Join>\<^bsub>i-f\<^esub> {n} = [f n]" | |
by (simp add: i_f_join_def f_join_singleton_if) | |
lemma i_f_join_insert: " | |
finite I \<Longrightarrow> | |
f \<Join>\<^bsub>i-f\<^esub> insert n I = f \<Join>\<^bsub>i-f\<^esub> (I \<down>< n) @ f n # f \<Join>\<^bsub>i-f\<^esub> (I \<down>> n)" | |
apply (case_tac "I = {}") | |
apply (simp add: i_f_join_singleton i_cut_empty i_f_join_empty) | |
(* | |
apply (subgoal_tac "n < Suc (Max (insert n I))") | |
prefer 2 | |
apply simp | |
apply (frule less_Suc_eq_le[THEN iffD1])*) | |
apply (simp add: i_f_join_def) | |
apply (simp add: f_join_insert) | |
apply (frule cut_greater_finite[of _ n]) | |
apply (case_tac "I \<down>> n = {}") | |
apply (simp add: f_join_empty) | |
apply (case_tac "I \<down>< n = {}") | |
apply (simp add: f_join_empty) | |
apply (rule take_Suc_Max_eq_imp_f_join_eq[OF nat_cut_less_finite]) | |
apply simp | |
apply (rule arg_cong[where f="\<lambda>x. f \<Down> x"]) | |
apply simp | |
apply (rule min_eqR, rule max.coboundedI1, rule less_imp_le) | |
apply (simp add: nat_cut_less_Max_less) | |
apply (simp add: cut_greater_Max_eq) | |
apply (subgoal_tac "n < Max I") | |
prefer 2 | |
apply (rule ccontr) | |
apply (simp add: linorder_not_less cut_greater_Max_empty) | |
apply (simp add: max_eqR[OF less_imp_le]) | |
apply (case_tac "I \<down>< n = {}") | |
apply (simp add: f_join_empty) | |
apply (rule take_Suc_Max_eq_imp_f_join_eq[OF nat_cut_less_finite]) | |
apply simp | |
apply (rule arg_cong[where f="\<lambda>x. f \<Down> x"]) | |
apply simp | |
apply (rule min_eqR) | |
apply (blast intro: Max_subset) | |
done | |
lemma take_i_f_join_eq1: " | |
n < card I \<Longrightarrow> f \<Join>\<^bsub>i-f\<^esub> I \<down> n = f \<Join>\<^bsub>i-f\<^esub> (I \<down>< (I \<rightarrow> n))" | |
apply (frule card_ge_0_finite[OF gr_implies_gr0]) | |
apply (case_tac "I = {}") | |
apply (simp add: cut_less_empty i_f_join_empty) | |
apply (subgoal_tac "n < card (I \<down>< Suc (Max I))") | |
prefer 2 | |
apply (simp add: cut_less_Max_all) | |
apply (simp add: i_f_join_def take_f_join_eq1) | |
apply (case_tac "I \<down>< (I \<rightarrow> n) = {}") | |
apply (simp add: f_join_empty) | |
apply (rule take_Suc_Max_eq_imp_f_join_eq[OF nat_cut_less_finite]) | |
apply simp | |
apply (rule arg_cong[where f="\<lambda>x. f \<Down> x"]) | |
apply simp | |
apply (rule min_eqR) | |
apply (rule order_trans[OF less_imp_le[OF cut_less_Max_less]]) | |
apply (simp add: nat_cut_less_finite inext_nth_closed)+ | |
done | |
lemma take_i_f_join_eq2: " | |
\<lbrakk> finite I; card I \<le> n \<rbrakk> \<Longrightarrow> f \<Join>\<^bsub>i-f\<^esub> I \<down> n = f \<Join>\<^bsub>i-f\<^esub> I" | |
apply (case_tac "I = {}") | |
apply (simp add: cut_less_empty i_f_join_empty) | |
apply (simp add: i_f_join_def take_f_join_eq2 cut_less_Max_all) | |
done | |
lemma take_i_f_join_if: " | |
finite I \<Longrightarrow> | |
f \<Join>\<^bsub>i-f\<^esub> I \<down> n = (if n < card I then f \<Join>\<^bsub>i-f\<^esub> (I \<down>< (I \<rightarrow> n)) else f \<Join>\<^bsub>i-f\<^esub> I)" | |
by (simp add: take_i_f_join_eq1 take_i_f_join_eq2) | |
lemma drop_i_f_join_eq1: " | |
n < card I \<Longrightarrow> f \<Join>\<^bsub>i-f\<^esub> I \<up> n = f \<Join>\<^bsub>i-f\<^esub> (I \<down>\<ge> (I \<rightarrow> n))" | |
apply (frule card_ge_0_finite[OF gr_implies_gr0]) | |
apply (case_tac "I = {}") | |
apply (simp add: cut_ge_empty i_f_join_empty) | |
apply (subgoal_tac "n < card (I \<down>< Suc (Max I))") | |
prefer 2 | |
apply (simp add: cut_less_Max_all) | |
apply (simp add: i_f_join_def drop_f_join_eq1) | |
apply (subgoal_tac "I \<down>\<ge> (I \<rightarrow> n) \<noteq> {}") | |
prefer 2 | |
apply (rule in_imp_not_empty[of "I \<rightarrow> n"]) | |
apply (simp add: cut_ge_mem_iff inext_nth_closed) | |
apply (rule take_Suc_Max_eq_imp_f_join_eq) | |
apply (rule cut_ge_finite, assumption) | |
apply simp | |
apply (rule arg_cong[where f="\<lambda>x. f \<Down> x"]) | |
apply (simp add: min_eqR cut_ge_Max_eq) | |
done | |
lemma drop_i_f_join_eq2: " | |
\<lbrakk> finite I; card I \<le> n \<rbrakk> \<Longrightarrow> f \<Join>\<^bsub>i-f\<^esub> I \<up> n = []" | |
by (simp add: i_f_join_length) | |
lemma drop_i_f_join_if: " | |
finite I \<Longrightarrow> | |
f \<Join>\<^bsub>i-f\<^esub> I \<up> n = (if n < card I then f \<Join>\<^bsub>i-f\<^esub> (I \<down>\<ge> (I \<rightarrow> n)) else [])" | |
by (simp add: drop_i_f_join_eq1 drop_i_f_join_eq2) | |
lemma i_f_join_i_drop: " | |
finite I \<Longrightarrow> f \<Up> n \<Join>\<^bsub>i-f\<^esub> I = f \<Join>\<^bsub>i-f\<^esub> (I \<oplus> n)" | |
apply (case_tac "I = {}") | |
apply (simp add: iT_Plus_empty i_f_join_empty) | |
apply (simp add: i_f_join_def iT_Plus_Max) | |
apply (simp add: i_take_i_drop f_join_drop) | |
done | |
lemma i_take_Suc_Max_eq_imp_i_f_join_eq: " | |
f \<Down> Suc (Max I) = g \<Down> Suc (Max I) \<Longrightarrow> f \<Join>\<^bsub>i-f\<^esub> I = g \<Join>\<^bsub>i-f\<^esub> I" | |
by (simp add: i_f_join_def) | |
lemma i_take_i_join_eq_i_f_join: " | |
infinite I \<Longrightarrow> f \<Join>\<^sub>i I \<Down> n = f \<Join>\<^bsub>i-f\<^esub> (I \<down>< (I \<rightarrow> n))" | |
apply (frule infinite_imp_nonempty) | |
apply (case_tac "n = 0") | |
apply (simp add: cut_less_Min_empty i_f_join_empty) | |
apply (frule inext_nth_gr_Min_conv_infinite[THEN iffD2], simp) | |
apply (simp add: i_take_i_join i_f_join_def) | |
apply (subgoal_tac "Suc (Max (I \<down>< (I \<rightarrow> n))) \<le> I \<rightarrow> n") | |
prefer 2 | |
apply (rule Suc_leI) | |
apply (rule nat_cut_less_Max_less) | |
apply (simp add: cut_less_Min_not_empty) | |
apply (simp add: f_join_cut_less_eq) | |
apply (simp add: i_join_i_take) | |
apply (rule arg_cong[where f="\<lambda>x. f \<Join>\<^sub>i I \<Down> card x"]) | |
apply (clarsimp simp: gr0_conv_Suc) | |
apply (simp add: cut_le_less_inext_conv[OF inext_nth_closed, symmetric]) | |
apply (simp add: nat_cut_le_less_conv[symmetric]) | |
apply (rule arg_cong[where f="\<lambda>x. I \<down>\<le> x"]) | |
apply (rule sym, rule Max_equality[OF _ nat_cut_le_finite]) | |
apply (simp add: cut_le_mem_iff inext_nth_closed)+ | |
done | |
subsubsection \<open>Results for intervals from \<open>IL_Interval\<close>\<close> | |
lemma f_join_iFROM: "xs \<Join>\<^sub>f [n\<dots>] = xs \<up> n" | |
apply (clarsimp simp: list_eq_iff f_join_length iFROM_cut_less iIN_card Suc_diff_Suc) | |
apply (subst f_join_nth2) | |
apply (simp add: iFROM_cut_less iIN_card) | |
apply (simp add: iFROM_inext_nth) | |
done | |
lemma i_join_iFROM: "f \<Join>\<^sub>i [n\<dots>] = f \<Up> n" | |
by (simp add: ilist_eq_iff i_join_nth iFROM_inext_nth) | |
lemma f_join_iIN: "xs \<Join>\<^sub>f [n\<dots>,d] = xs \<up> n \<down> Suc d" | |
apply (simp add: list_eq_iff f_join_length iIN_cut_less iIN_card Suc_diff_Suc min_eq) | |
apply (simp add: f_join_nth2 iIN_cut_less iIN_card iIN_inext_nth) | |
done | |
lemma i_f_join_iIN: "f \<Join>\<^bsub>i-f\<^esub> [n\<dots>,d] = f \<Up> n \<Down> Suc d" | |
by (simp add: i_f_join_def f_join_iIN iIN_Max i_take_drop) | |
lemma f_join_iTILL: "xs \<Join>\<^sub>f [\<dots>n] = xs \<down> (Suc n)" | |
by (simp add: iIN_0_iTILL_conv[symmetric] f_join_iIN) | |
lemma i_f_join_iTILL: "f \<Join>\<^bsub>i-f\<^esub> [\<dots>n] = f \<Down> Suc n" | |
by (simp add: iIN_0_iTILL_conv[symmetric] i_f_join_iIN) | |
lemma f_join_f_expand_iT_Mult: " | |
0 < k \<Longrightarrow> xs \<odot>\<^sub>f k \<Join>\<^sub>f (I \<otimes> k) = xs \<Join>\<^sub>f I" | |
apply (case_tac "I = {}") | |
apply (simp add: iT_Mult_empty f_join_empty) | |
apply (simp add: list_eq_iff f_join_length) | |
apply (clarsimp simp: iT_Mult_cut_less2 iT_Mult_card) | |
apply (simp add: f_join_nth2 iT_Mult_cut_less2 iT_Mult_card) | |
apply (drule less_card_cut_less_imp_inext_nth_less) | |
apply (simp add: iT_Mult_inext_nth f_expand_nth_mult) | |
done | |
lemma i_join_i_expand_iT_Mult: " | |
\<lbrakk> 0 < k; I \<noteq> {} \<rbrakk> \<Longrightarrow> f \<odot>\<^sub>i k \<Join>\<^sub>i (I \<otimes> k) = f \<Join>\<^sub>i I" | |
apply (simp (no_asm) add: ilist_eq_iff, clarify) | |
apply (simp add: i_join_nth iT_Mult_inext_nth i_expand_nth_mult) | |
done | |
lemma i_f_join_i_expand_iT_Mult: " | |
\<lbrakk> 0 < k; finite I \<rbrakk> \<Longrightarrow> f \<odot>\<^sub>i k \<Join>\<^bsub>i-f\<^esub> (I \<otimes> k) = f \<Join>\<^bsub>i-f\<^esub> I" | |
apply (case_tac "I = {}") | |
apply (simp add: iT_Mult_empty i_f_join_empty) | |
apply (clarsimp simp: list_eq_iff i_f_join_length iT_Mult_finite_iff iT_Mult_not_empty iT_Mult_card) | |
apply (simp add: i_f_join_nth iT_Mult_card iT_Mult_inext_nth i_expand_nth_mult) | |
done | |
lemma f_join_f_shrink_iT_Plus_iT_Div_mod: " | |
\<lbrakk> 0 < k; \<forall>x\<in>I. x mod k = 0 \<rbrakk> \<Longrightarrow> | |
(xs \<longmapsto>\<^sub>f k) \<Join>\<^sub>f (I \<oplus> (k - 1)) = xs \<div>\<^sub>f k \<Join>\<^sub>f (I \<oslash> k)" | |
apply (case_tac "I = {}") | |
apply (simp add: iT_Plus_empty iT_Div_empty f_join_empty) | |
apply (simp add: list_eq_iff f_join_length f_shrink_length) | |
apply (subgoal_tac "Suc (length xs) - k \<le> length xs - length xs mod k") | |
prefer 2 | |
apply (case_tac "length xs < k", simp) | |
apply (simp add: Suc_diff_le linorder_not_less) | |
apply (rule Suc_leI) | |
apply (rule diff_less_mono2, simp) | |
apply (rule order_less_le_trans[OF mod_less_divisor], assumption+) | |
apply (rule context_conjI) | |
apply (simp add: iT_Plus_cut_less iT_Div_cut_less2 iT_Plus_card) | |
apply (subst iT_Div_card_inj_on) | |
apply (rule mod_eq_imp_div_right_inj_on) | |
apply clarsimp+ | |
apply (rule arg_cong[where f=card]) | |
apply (simp (no_asm_simp) add: set_eq_iff cut_less_mem_iff, clarify) | |
apply (rule conj_cong, simp) | |
apply (rule iffI) | |
apply simp | |
apply (frule_tac x=x and m=k in less_mod_eq_imp_add_divisor_le) | |
apply (simp add: mod_diff_right_eq [symmetric]) | |
apply simp | |
apply (clarsimp simp: f_join_nth f_join_length f_shrink_length) | |
apply (simp add: iT_Plus_inext_nth iT_Plus_not_empty) | |
apply (simp add: iT_Div_mod_inext_nth) | |
apply (subst f_shrink_nth_eq_f_last_message_hold_nth) | |
apply (drule sym, simp, thin_tac "card x = card y" for x y) | |
apply (simp add: iT_Plus_cut_less iT_Plus_card) | |
apply (rule less_mult_imp_div_less) | |
apply (rule less_le_trans[OF less_card_cut_less_imp_inext_nth_less], assumption) | |
apply (simp add: div_mult_cancel) | |
apply (simp add: div_mult_cancel inext_nth_closed) | |
done | |
lemma i_join_i_shrink_iT_Plus_iT_Div_mod: " | |
\<lbrakk> 0 < k; I \<noteq> {}; \<forall>x\<in>I. x mod k = 0 \<rbrakk> \<Longrightarrow> | |
(f \<longmapsto>\<^sub>i k) \<Join>\<^sub>i (I \<oplus> (k - 1))= f \<div>\<^sub>i k \<Join>\<^sub>i (I \<oslash> k)" | |
apply (simp (no_asm) add: ilist_eq_iff, clarify) | |
apply (simp add: i_join_nth) | |
apply (simp add: i_shrink_nth_eq_i_last_message_hold_nth) | |
apply (simp add: iT_Plus_inext_nth iT_Div_mod_inext_nth) | |
apply (drule_tac x="I \<rightarrow> x" in bspec) | |
apply (simp add: inext_nth_closed) | |
apply (simp add: mod_0_div_mult_cancel) | |
done | |
lemma i_f_join_i_shrink_iT_Plus_iT_Div_mod: " | |
\<lbrakk> 0 < k; finite I; \<forall>x\<in>I. x mod k = 0 \<rbrakk> \<Longrightarrow> | |
(f \<longmapsto>\<^sub>i k) \<Join>\<^bsub>i-f\<^esub> (I \<oplus> (k - 1))= f \<div>\<^sub>i k \<Join>\<^bsub>i-f\<^esub> (I \<oslash> k)" | |
apply (case_tac "I = {}") | |
apply (simp add: iT_Plus_empty iT_Div_empty i_f_join_empty) | |
apply (simp add: i_f_join_def iT_Plus_Max iT_Div_Max) | |
apply (simp add: i_last_message_hold_i_take[symmetric] i_shrink_i_take_mult[symmetric]) | |
apply (simp add: add.commute[of k]) | |
apply (simp add: mod_0_div_mult_cancel[THEN iffD1]) | |
apply (simp add: f_join_f_shrink_iT_Plus_iT_Div_mod[unfolded One_nat_def]) | |
done | |
corollary f_join_f_shrink_iT_Plus_iT_Div_mod_subst: " | |
\<lbrakk> 0 < k; \<forall>x\<in>I. x mod k = 0; | |
A = I \<oplus> (k - 1); B = I \<oslash> k \<rbrakk> \<Longrightarrow> | |
(xs \<longmapsto>\<^sub>f k) \<Join>\<^sub>f A = xs \<div>\<^sub>f k \<Join>\<^sub>f B" | |
by (simp add: f_join_f_shrink_iT_Plus_iT_Div_mod[unfolded One_nat_def]) | |
corollary i_join_i_shrink_iT_Plus_iT_Div_mod_subst: " | |
\<lbrakk> 0 < k; I \<noteq> {}; \<forall>x\<in>I. x mod k = 0; | |
A = I \<oplus> (k - 1); B = I \<oslash> k \<rbrakk> \<Longrightarrow> | |
(f \<longmapsto>\<^sub>i k) \<Join>\<^sub>i A = f \<div>\<^sub>i k \<Join>\<^sub>i B" | |
by (simp add: i_join_i_shrink_iT_Plus_iT_Div_mod[unfolded One_nat_def]) | |
corollary i_f_join_i_shrink_iT_Plus_iT_Div_mod_subst: " | |
\<lbrakk> 0 < k; finite I; \<forall>x\<in>I. x mod k = 0; | |
A = I \<oplus> (k - 1); B = I \<oslash> k \<rbrakk> \<Longrightarrow> | |
(f \<longmapsto>\<^sub>i k) \<Join>\<^bsub>i-f\<^esub> A= f \<div>\<^sub>i k \<Join>\<^bsub>i-f\<^esub> B" | |
by (simp add: i_f_join_i_shrink_iT_Plus_iT_Div_mod[unfolded One_nat_def]) | |
lemma f_join_f_shrink_iT_Div_mod: " | |
\<lbrakk> 0 < k; \<forall>x\<in>I. x mod k = k - 1 \<rbrakk> \<Longrightarrow> | |
(xs \<longmapsto>\<^sub>f k) \<Join>\<^sub>f I = xs \<div>\<^sub>f k \<Join>\<^sub>f (I \<oslash> k)" | |
apply (case_tac "I = {}") | |
apply (simp add: iT_Div_empty f_join_empty) | |
apply (frule Suc_leI, drule order_le_imp_less_or_eq, erule disjE) | |
prefer 2 | |
apply (drule sym, simp add: iT_Div_1) | |
apply (rule_tac t=I and s="I \<oplus>- (k - 1) \<oplus> (k - 1)" in subst) | |
apply (rule iT_Plus_neg_Plus_le_inverse) | |
apply (rule ccontr) | |
apply (drule_tac x="iMin I" in bspec, simp add: iMinI_ex2) | |
apply (simp add: iMinI_ex2)+ | |
apply (subgoal_tac "\<And>x. x + k - Suc 0 \<in> I \<Longrightarrow> x mod k = 0") | |
prefer 2 | |
apply (rule mod_add_eq_imp_mod_0[THEN iffD1, of "k - Suc 0"]) | |
apply (simp add: add.commute[of k]) | |
apply (subst iT_Plus_Div_distrib_mod_less) | |
apply (clarsimp simp: iT_Plus_neg_mem_iff) | |
apply (simp add: iT_Plus_0) | |
apply (rule f_join_f_shrink_iT_Plus_iT_Div_mod[unfolded One_nat_def], simp) | |
apply (simp add: iT_Plus_neg_mem_iff) | |
done | |
lemma i_join_i_shrink_iT_Div_mod: " | |
\<lbrakk> 0 < k; I \<noteq> {}; \<forall>x\<in>I. x mod k = k - 1 \<rbrakk> \<Longrightarrow> | |
(f \<longmapsto>\<^sub>i k) \<Join>\<^sub>i I= f \<div>\<^sub>i k \<Join>\<^sub>i (I \<oslash> k)" | |
apply (simp (no_asm) add: ilist_eq_iff, clarify) | |
apply (simp add: i_join_nth) | |
apply (simp add: i_shrink_nth_eq_i_last_message_hold_nth) | |
apply (simp add: iT_Div_mod_inext_nth) | |
apply (drule_tac x="I \<rightarrow> x" in bspec) | |
apply (rule inext_nth_closed, assumption) | |
apply (simp add: div_mult_cancel) | |
apply (subgoal_tac "k - Suc 0 \<le> I \<rightarrow> x ") | |
prefer 2 | |
apply (rule order_trans[OF _ mod_le_dividend[where n=k]]) | |
apply simp | |
apply simp | |
done | |
lemma i_f_join_i_shrink_iT_Div_mod: " | |
\<lbrakk> 0 < k; finite I; \<forall>x\<in>I. x mod k = k - 1 \<rbrakk> \<Longrightarrow> | |
(f \<longmapsto>\<^sub>i k) \<Join>\<^bsub>i-f\<^esub> I = f \<div>\<^sub>i k \<Join>\<^bsub>i-f\<^esub> (I \<oslash> k)" | |
apply (case_tac "I = {}") | |
apply (simp add: iT_Plus_empty iT_Div_empty i_f_join_empty) | |
apply (simp add: i_f_join_def) | |
apply (simp add: iT_Div_Max) | |
apply (simp add: i_last_message_hold_i_take[symmetric] i_shrink_i_take_mult[symmetric] add.commute[of k]) | |
apply (simp add: div_mult_cancel) | |
apply (subgoal_tac "k - Suc 0 \<le> Max I") | |
prefer 2 | |
apply (rule order_trans[OF _ mod_le_dividend[where n=k]]) | |
apply simp | |
apply (simp add: f_join_f_shrink_iT_Div_mod) | |
done | |
lemma f_join_f_expand_iMOD: " | |
0 < k \<Longrightarrow> xs \<odot>\<^sub>f k \<Join>\<^sub>f [n * k, mod k] = xs \<Join>\<^sub>f [n\<dots>]" | |
by (subst iFROM_mult[symmetric], rule f_join_f_expand_iT_Mult) | |
corollary f_join_f_expand_iMOD_0: " | |
0 < k \<Longrightarrow> xs \<odot>\<^sub>f k \<Join>\<^sub>f [0, mod k] = xs" | |
apply (drule f_join_f_expand_iMOD[of k xs 0]) | |
apply (simp add: iFROM_0 f_join_UNIV) | |
done | |
lemma f_join_f_expand_iMODb: " | |
0 < k \<Longrightarrow> xs \<odot>\<^sub>f k \<Join>\<^sub>f [n * k, mod k, d] = xs \<Join>\<^sub>f [n\<dots>,d]" | |
by (subst iIN_mult[symmetric], rule f_join_f_expand_iT_Mult) | |
corollary f_join_f_expand_iMODb_0: " | |
0 < k \<Longrightarrow> xs \<odot>\<^sub>f k \<Join>\<^sub>f [0, mod k, n] = xs \<Join>\<^sub>f [\<dots>n]" | |
apply (drule f_join_f_expand_iMODb[of k xs 0 n]) | |
apply (simp add: iIN_0_iTILL_conv) | |
done | |
lemma i_join_i_expand_iMOD: " | |
0 < k \<Longrightarrow> f \<odot>\<^sub>i k \<Join>\<^sub>i [n * k, mod k] = f \<Join>\<^sub>i [n\<dots>]" | |
by (subst iFROM_mult[symmetric], rule i_join_i_expand_iT_Mult[OF _ iFROM_not_empty]) | |
corollary i_join_i_expand_iMOD_0: " | |
0 < k \<Longrightarrow> f \<odot>\<^sub>i k \<Join>\<^sub>i [0, mod k] = f" | |
apply (drule i_join_i_expand_iMOD[of k f 0]) | |
apply (simp add: iFROM_0 i_join_UNIV) | |
done | |
lemma i_join_i_expand_iMODb: " | |
0 < k \<Longrightarrow> f \<odot>\<^sub>i k \<Join>\<^sub>i [n * k, mod k, d] = f \<Join>\<^sub>i [n\<dots>,d]" | |
by (subst iIN_mult[symmetric], rule i_join_i_expand_iT_Mult[OF _ iIN_not_empty]) | |
corollary i_join_i_expand_iMODb_0: " | |
0 < k \<Longrightarrow> f \<odot>\<^sub>i k \<Join>\<^sub>i [0, mod k, n] = f \<Join>\<^sub>i [\<dots>n]" | |
apply (drule i_join_i_expand_iMODb[of k f 0 n]) | |
apply (simp add: iIN_0_iTILL_conv) | |
done | |
lemma i_f_join_i_expand_iMODb: " | |
0 < k \<Longrightarrow> f \<odot>\<^sub>i k \<Join>\<^bsub>i-f\<^esub> [n * k, mod k, d] = f \<Join>\<^bsub>i-f\<^esub> [n\<dots>,d]" | |
by (subst iIN_mult[symmetric], rule i_f_join_i_expand_iT_Mult[OF _ iIN_finite]) | |
corollary i_f_join_i_expand_iMODb_0: " | |
0 < k \<Longrightarrow> f \<odot>\<^sub>i k \<Join>\<^bsub>i-f\<^esub> [0, mod k, n] = f \<Join>\<^bsub>i-f\<^esub> [\<dots>n]" | |
apply (drule i_f_join_i_expand_iMODb[of k f 0 n]) | |
apply (simp add: iIN_0_iTILL_conv) | |
done | |
lemma f_join_f_shrink_iMOD: " | |
0 < k \<Longrightarrow> (xs \<longmapsto>\<^sub>f k) \<Join>\<^sub>f [n * k + (k - 1), mod k] = xs \<div>\<^sub>f k \<Join>\<^sub>f [n\<dots>]" | |
apply (rule f_join_f_shrink_iT_Plus_iT_Div_mod_subst[where I="[n * k, mod k]"]) | |
apply (simp add: iMOD_iff iMOD_add iMOD_div_ge)+ | |
done | |
corollary f_join_f_shrink_iMOD_0: " | |
0 < k \<Longrightarrow> (xs \<longmapsto>\<^sub>f k) \<Join>\<^sub>f [k - 1, mod k] = xs \<div>\<^sub>f k" | |
apply (frule f_join_f_shrink_iMOD[of k xs 0]) | |
apply (simp add: iFROM_0 f_join_UNIV) | |
done | |
lemma f_join_f_shrink_iMODb: " | |
0 < k \<Longrightarrow> (xs \<longmapsto>\<^sub>f k) \<Join>\<^sub>f [n * k + (k - 1), mod k, d] = xs \<div>\<^sub>f k \<Join>\<^sub>f [n\<dots>,d]" | |
apply (rule f_join_f_shrink_iT_Plus_iT_Div_mod_subst[where I="[n * k, mod k, d]"]) | |
apply (simp add: iMODb_iff iMODb_add iMODb_div_ge)+ | |
done | |
corollary f_join_f_shrink_iMODb_0: " | |
0 < k \<Longrightarrow> (xs \<longmapsto>\<^sub>f k) \<Join>\<^sub>f [k - 1, mod k, n] = xs \<div>\<^sub>f k \<Join>\<^sub>f [\<dots>n]" | |
apply (frule f_join_f_shrink_iMODb[of k xs 0 n]) | |
apply (simp add: iIN_0_iTILL_conv) | |
done | |
lemma i_join_i_shrink_iMOD: " | |
0 < k \<Longrightarrow> (f \<longmapsto>\<^sub>i k) \<Join>\<^sub>i [n * k + (k - 1), mod k] = f \<div>\<^sub>i k \<Join>\<^sub>i [n\<dots>]" | |
apply (rule i_join_i_shrink_iT_Plus_iT_Div_mod_subst[where I="[n * k, mod k]"]) | |
apply (simp add: iMOD_not_empty iMOD_iff iMOD_add iMOD_div_ge)+ | |
done | |
corollary i_join_i_shrink_iMOD_0: " | |
0 < k \<Longrightarrow> (f \<longmapsto>\<^sub>i k) \<Join>\<^sub>i [k - 1, mod k] = f \<div>\<^sub>i k" | |
apply (frule i_join_i_shrink_iMOD[of k f 0]) | |
apply (simp add: iFROM_0 i_join_UNIV) | |
done | |
lemma i_f_join_i_shrink_iMODb: " | |
0 < k \<Longrightarrow> (f \<longmapsto>\<^sub>i k) \<Join>\<^bsub>i-f\<^esub> [n * k + (k - 1), mod k, d] = f \<div>\<^sub>i k \<Join>\<^bsub>i-f\<^esub> [n\<dots>,d]" | |
apply (rule i_f_join_i_shrink_iT_Plus_iT_Div_mod_subst[where I="[n * k, mod k, d]"]) | |
apply (simp add: iMODb_finite iMODb_iff iMODb_add iMODb_div_ge)+ | |
done | |
corollary i_f_join_i_shrink_iMODb_0: " | |
0 < k \<Longrightarrow> (f \<longmapsto>\<^sub>i k) \<Join>\<^bsub>i-f\<^esub> [k - 1, mod k, n] = f \<div>\<^sub>i k \<Join>\<^bsub>i-f\<^esub> [\<dots>n]" | |
apply (frule i_f_join_i_shrink_iMODb[of k f 0 n]) | |
apply (simp add: iIN_0_iTILL_conv i_join_UNIV) | |
done | |
subsection \<open>Streams and temporal operators\<close> | |
lemma i_shrink_eq_NoMsg_iAll_conv: " | |
0 < k \<Longrightarrow> ((s \<div>\<^sub>i k) t = \<NoMsg>) = (\<box> t1 [t * k\<dots>,k - Suc 0]. s t1 = \<NoMsg>)" | |
apply (simp add: i_shrink_nth last_message_NoMsg_conv iAll_def Ball_def iIN_iff) | |
apply (rule iffI) | |
apply (clarify, rename_tac i) | |
apply (drule_tac x="i - t * k" in spec) | |
apply simp | |
apply (clarify, rename_tac i) | |
apply (drule_tac x="t * k + i" in spec) | |
apply simp | |
done | |
lemma i_shrink_eq_NoMsg_iAll_conv2: " | |
0 < k \<Longrightarrow> ((s \<div>\<^sub>i k) t = \<NoMsg>) = (\<box> t1 [\<dots>k - 1] \<oplus> (t * k). s t1 = \<NoMsg>)" | |
by (simp add: iT_add i_shrink_eq_NoMsg_iAll_conv) | |
lemma i_shrink_eq_Msg_iEx_iAll_conv: " | |
\<lbrakk> 0 < k; m \<noteq> \<NoMsg> \<rbrakk> \<Longrightarrow> | |
((s \<div>\<^sub>i k) t = m) = | |
(\<diamond> t1 [t * k\<dots>,k - Suc 0]. s t1 = m \<and> | |
(\<box> t2 [Suc t1\<dots>]. t2 \<le> t * k + k - Suc 0 \<longrightarrow> s t2 = \<NoMsg>))" | |
apply (simp add: i_shrink_nth last_message_conv) | |
apply (simp add: iAll_def iEx_def Ball_def Bex_def iIN_iff iFROM_iff) | |
apply (rule iffI) | |
apply (clarsimp, rename_tac i) | |
apply (rule_tac x="t * k + i" in exI) | |
apply (simp add: diff_add_assoc less_imp_le_pred del: add_diff_assoc) | |
apply (clarsimp, rename_tac j) | |
apply (drule_tac x="j - t * k" in spec) | |
apply simp | |
apply (clarsimp, rename_tac i) | |
apply (rule_tac x="i - t * k" in exI) | |
apply simp | |
done | |
lemma i_shrink_eq_Msg_iEx_iAll_conv2: " | |
\<lbrakk> 0 < k; m \<noteq> \<NoMsg> \<rbrakk> \<Longrightarrow> | |
((s \<div>\<^sub>i k) t = m) = | |
(\<diamond> t1 [\<dots>k - 1] \<oplus> (t * k). s t1 = m \<and> | |
(\<box> t2 [1\<dots>] \<oplus> t1 . t2 \<le> t * k + k - 1 \<longrightarrow> s t2 = \<NoMsg>))" | |
by (simp add: iT_add i_shrink_eq_Msg_iEx_iAll_conv) | |
lemma i_shrink_eq_Msg_iEx_iAll_cut_greater_conv: " | |
\<lbrakk> 0 < k; m \<noteq> \<NoMsg> \<rbrakk> \<Longrightarrow> | |
((s \<div>\<^sub>i k) t = m) = | |
(\<diamond> t1 [t * k\<dots>,k - Suc 0]. s t1 = m \<and> | |
(\<box> t2 [t * k\<dots>,k - Suc 0] \<down>> t1. s t2 = \<NoMsg>))" | |
apply (simp add: i_shrink_eq_Msg_iEx_iAll_conv) | |
apply (simp add: iIN_cut_greater iEx_def) | |
apply (rule bex_cong2[OF subset_refl]) | |
apply (force simp: iAll_def Ball_def iT_iff) | |
done | |
lemma i_shrink_eq_Msg_iEx_iAll_cut_greater_conv2: " | |
\<lbrakk> 0 < k; m \<noteq> \<NoMsg> \<rbrakk> \<Longrightarrow> | |
((s \<div>\<^sub>i k) t = m) = | |
(\<diamond> t1 [\<dots>k - 1] \<oplus> (t * k). s t1 = m \<and> | |
(\<box> t2 ([\<dots>k - 1] \<oplus> (t * k)) \<down>> t1. s t2 = \<NoMsg>))" | |
by (simp add: iT_add i_shrink_eq_Msg_iEx_iAll_cut_greater_conv) | |
lemma i_shrink_eq_Msg_iSince_conv: " | |
\<lbrakk> 0 < k; m \<noteq> \<NoMsg> \<rbrakk> \<Longrightarrow> | |
((s \<div>\<^sub>i k) t = m) = | |
(s t2 = \<NoMsg>. t2 \<S> t1 [t * k\<dots>,k - Suc 0]. s t1 = m)" | |
by (simp add: iSince_def iIN_cut_greater i_shrink_eq_Msg_iEx_iAll_cut_greater_conv) | |
lemma i_shrink_eq_Msg_iSince_conv2: " | |
\<lbrakk> 0 < k; m \<noteq> \<NoMsg> \<rbrakk> \<Longrightarrow> | |
((s \<div>\<^sub>i k) t = m) = | |
(s t2 = \<NoMsg>. t2 \<S> t1 [\<dots>k - 1] \<oplus> (t * k). s t1 = m)" | |
by (simp add: iT_add i_shrink_eq_Msg_iSince_conv) | |
lemma iT_Mult_iAll_i_expand_nth_iff: | |
"0 < k \<Longrightarrow> (\<box> t (I \<otimes> k). P ((f \<odot>\<^sub>i k) t)) = (\<box> t I. P (f t))" | |
apply (rule iffI) | |
apply clarify | |
apply (drule_tac t="t * k" in ispec) | |
apply (simp add: iT_Mult_mem_iff2) | |
apply (simp add: i_expand_nth_mult) | |
apply (fastforce simp: iT_Mult_mem_iff mult.commute[of k] i_expand_nth_mod_eq_0) | |
done | |
text \<open>Streams and temporal operators cycle start/finish events\<close> | |
lemma i_shrink_eq_NoMsg_iAll_start_event_conv: " | |
\<lbrakk> 0 < k; \<And>t. event t = (t mod k = 0); t0 = t * k \<rbrakk> \<Longrightarrow> | |
((s \<div>\<^sub>i k) t = \<NoMsg>) = | |
(s t0 = \<NoMsg> \<and> (\<circle> t' t0 [0\<dots>]. (s t1 = \<NoMsg>. t1 \<U> t2 ([0\<dots>] \<oplus> t'). event t2)))" | |
apply (case_tac "k = Suc 0") | |
apply (simp add: iT_add iT_not_empty iNext_True) | |
apply (drule neq_le_trans[OF not_sym], simp) | |
apply (simp add: i_shrink_eq_NoMsg_iAll_conv iTL_defs Ball_def Bex_def iT_add iT_iff iFROM_cut_less iFROM_inext) | |
apply (rule iffI) | |
apply simp | |
apply (rule_tac x="t * k + k" in exI) | |
apply fastforce | |
apply (clarify elim!: dvdE, rename_tac x1 x2) | |
apply (case_tac "x2 = Suc (t * k)") | |
apply (simp add: mod_Suc) | |
apply (clarsimp elim!: dvdE, rename_tac q) | |
apply (drule_tac y=x1 in order_le_imp_less_or_eq, erule disjE) | |
prefer 2 | |
apply simp | |
apply (drule_tac x=x1 in spec) | |
apply (simp add: mult.commute[of k]) | |
apply (drule Suc_le_lessD) | |
apply (drule_tac y="q * k" and m=k in less_mod_eq_imp_add_divisor_le, simp) | |
apply simp | |
done | |
lemma i_shrink_eq_Msg_iUntil_start_event_conv: " | |
\<lbrakk> 0 < k; m \<noteq> \<NoMsg>; \<And>t. event t = (t mod k = 0); t0 = t * k \<rbrakk> \<Longrightarrow> | |
((s \<div>\<^sub>i k) t = m) = ( | |
(s t0 = m \<and> (\<circle> t' t0 [0\<dots>]. (s t1 = \<NoMsg>. t1 \<U> t2 ([0\<dots>] \<oplus> t'). event t2))) \<or> | |
(\<circle> t' t0 [0\<dots>]. (\<not> event t1. t1 \<U> t2 ([0\<dots>] \<oplus> t'). ( | |
s t2 = m \<and> \<not> event t2 \<and> (\<circle> t'' t2 [0\<dots>]. | |
(s t3 = \<NoMsg>. t3 \<U> t4 ([0\<dots>] \<oplus> t''). event t4))))))" | |
apply (case_tac "k = Suc 0") | |
apply (simp add: iT_add iT_not_empty iNext_iff) | |
apply (drule neq_le_trans[OF not_sym], simp) | |
apply (simp add: i_shrink_eq_Msg_iSince_conv iTL_defs iT_add iT_cut_greater iT_cut_less Ball_def Bex_def iT_iff iFROM_inext) | |
apply (rule_tac t="Suc (t * k + k - 2)" and s="t * k + k - Suc 0" in subst, simp) | |
apply (rule iffI) | |
apply (elim exE conjE, rename_tac i) | |
apply (case_tac "i = t * k") | |
apply (rule disjI1) | |
apply simp | |
apply (rule_tac x="t * k + k" in exI) | |
apply force | |
apply (rule disjI2) | |
apply (rule_tac x=i in exI) | |
apply (case_tac "i = Suc (t * k)") | |
apply simp | |
apply (case_tac "Suc (t * k) < t * k + k - Suc 0") | |
apply (clarsimp simp: mod_Suc) | |
apply (case_tac "k = Suc (Suc 0)", simp) | |
apply simp | |
apply (rule_tac x="t * k + k" in exI) | |
apply force | |
apply clarsimp | |
apply (subgoal_tac "k = Suc (Suc 0)") | |
prefer 2 | |
apply simp | |
apply (simp add: mod_Suc) | |
apply (simp add: mult_2_right[symmetric] numeral_2_eq_2 del: mult_Suc_right) | |
apply (rule_tac x="t * k + k" in exI) | |
apply simp | |
apply simp | |
apply (subgoal_tac "Suc (t * k) \<le> i") | |
prefer 2 | |
apply (rule ccontr, simp) | |
apply simp | |
apply (case_tac "i < t * k + k - Suc 0") | |
apply clarsimp | |
apply (subgoal_tac "0 < i mod k") | |
prefer 2 | |
apply (simp add: mult.commute[of t]) | |
apply (rule between_imp_mod_gr0[OF Suc_le_lessD], simp+) | |
apply (rule conjI) | |
apply (rule_tac x="t * k + k" in exI) | |
apply force | |
apply clarify | |
apply (simp add: mult.commute[of t]) | |
apply (rule between_imp_mod_gr0[OF Suc_le_lessD], assumption) | |
apply simp | |
apply clarsimp | |
apply (subgoal_tac "Suc (Suc 0) < k") | |
prefer 2 | |
apply simp | |
apply (simp add: mod_0_imp_mod_pred) | |
apply (rule conjI, blast) | |
apply clarify | |
apply (simp add: mult.commute[of t]) | |
apply (rule between_imp_mod_gr0[OF Suc_le_lessD], assumption) | |
apply simp | |
apply (simp add: mod_Suc) | |
apply (erule disjE) | |
apply (clarsimp simp: mult.commute[of k] elim!: dvdE, rename_tac i) | |
apply (subgoal_tac "t < i") | |
prefer 2 | |
apply (rule ccontr) | |
apply (simp add: linorder_not_less) | |
apply (drule_tac i=i and k=k in mult_le_mono1) | |
apply simp | |
apply (rule_tac x="t * k" in exI) | |
apply simp | |
apply (subgoal_tac "t * k < t * k + k - Suc 0") | |
prefer 2 | |
apply simp | |
apply (clarsimp, rename_tac j) | |
apply (drule_tac x=j in spec) | |
apply (simp add: numeral_2_eq_2 Suc_diff_Suc) | |
apply (drule mp) | |
apply (rule order_trans, assumption) | |
apply (drule_tac m=t and n=i in Suc_leI) | |
apply (drule mult_le_mono1[of "Suc t"_ k]) | |
apply simp | |
apply simp | |
apply (clarsimp, rename_tac i) | |
apply (case_tac "i = Suc (t * k)") | |
apply (clarsimp, rename_tac i1) | |
apply (rule_tac x="Suc (t * k)" in exI) | |
apply simp | |
apply (case_tac "k = Suc (Suc 0)", simp) | |
apply (clarsimp simp: mult.commute[of k] elim!: dvdE, rename_tac q) | |
apply (subgoal_tac "Suc (t * k) < t * k + k - Suc 0") | |
prefer 2 | |
apply simp | |
apply (clarsimp elim!: dvdE, rename_tac j) | |
apply (drule_tac x=j in spec) | |
apply (simp add: numeral_3_eq_3 Suc_diff_Suc) | |
apply (subgoal_tac "t * k + k \<le> q * k") | |
prefer 2 | |
apply (rule less_mod_eq_imp_add_divisor_le) | |
apply (rule Suc_le_lessD, simp) | |
apply simp | |
apply simp | |
apply (clarsimp, rename_tac i1) | |
apply (rule_tac x=i in exI) | |
apply (simp add: numeral_2_eq_2 Suc_diff_Suc) | |
apply (case_tac "i1 = Suc i") | |
apply simp | |
apply (case_tac "Suc (i mod k) = k") | |
apply simp | |
apply (subgoal_tac "i \<le> t * k + k - Suc 0") | |
prefer 2 | |
apply (rule ccontr) | |
apply (drule_tac x="t * k + k" in spec) | |
apply (simp add: linorder_not_le) | |
apply (drule pred_less_imp_le)+ | |
apply clarsimp | |
apply simp | |
apply (drule_tac x=i in le_imp_less_or_eq, erule disjE) | |
apply simp | |
apply (cut_tac b="k - Suc (Suc 0)" and m=k and k=t and a="Suc 0" and n=i in between_imp_mod_between) | |
apply (simp add: mult.commute[of k])+ | |
apply (clarsimp elim!: dvdE)+ | |
apply (rename_tac q) | |
apply (simp add: mult.commute[of k]) | |
apply (subgoal_tac "Suc t \<le> q") | |
prefer 2 | |
apply (rule Suc_leI) | |
apply (rule mult_less_cancel2[where k=k, THEN iffD1, THEN conjunct2]) | |
apply (rule Suc_le_lessD) | |
apply simp | |
apply (frule mult_le_mono1[of "Suc t" _ k]) | |
apply (simp add: add.commute[of k]) | |
apply (intro conjI impI allI) | |
apply force | |
apply (simp add: linorder_not_less) | |
apply (case_tac "i > t * k + k") | |
apply (drule_tac x="t * k + k" in spec) | |
apply simp | |
apply (case_tac "i = t * k + k", simp) | |
apply simp | |
done | |
lemma i_shrink_eq_NoMsg_iAll_finish_event_conv: " | |
\<lbrakk> 1 < k; \<And>t. event t = (t mod k = k - 1); t0 = t * k \<rbrakk> \<Longrightarrow> | |
((s \<div>\<^sub>i k) t = \<NoMsg>) = | |
(s t0 = \<NoMsg> \<and> (\<circle> t' t0 [0\<dots>]. (s t1 = \<NoMsg>. t1 \<U> t2 ([0\<dots>] \<oplus> t'). (event t2 \<and> s t2 = \<NoMsg>))))" | |
apply (simp add: i_shrink_eq_NoMsg_iAll_conv iT_add) | |
apply (unfold iTL_defs Ball_def Bex_def) | |
apply (simp add: iT_iff div_mult_cancel iFROM_cut_less iFROM_inext) | |
apply (subgoal_tac "t * k < t * k + k - Suc 0") | |
prefer 2 | |
apply simp | |
apply (rule iffI) | |
apply simp | |
apply (rule_tac x="t * k + k - Suc 0" in exI) | |
apply (simp add: mod_pred) | |
apply (clarify, rename_tac t1) | |
apply (drule Suc_leI[of "t * k"]) | |
apply (drule order_le_less[THEN iffD1], erule disjE) | |
prefer 2 | |
apply simp | |
apply (clarsimp simp: iIN_iff) | |
apply (clarify, rename_tac t1 t2) | |
apply (case_tac "t2 \<le> Suc (t * k)") | |
apply (clarsimp simp: mod_Suc) | |
apply (drule_tac s="Suc 0" in sym, drule_tac x="k - Suc 0" and f=Suc in arg_cong) | |
apply (drule_tac y=t1 in order_le_imp_less_or_eq, erule disjE) | |
apply (drule_tac n=t1 in Suc_leI) | |
apply simp | |
apply simp | |
apply clarsimp | |
apply (drule_tac x=t1 in spec) | |
apply (simp add: iIN_iff linorder_not_le) | |
apply (drule_tac y=t1 in order_le_imp_less_or_eq, erule disjE) | |
prefer 2 | |
apply simp | |
apply (subgoal_tac "t * k + k - Suc 0 \<le> t2") | |
prefer 2 | |
apply (rule le_diff_conv[THEN iffD2]) | |
apply (rule less_mod_eq_imp_add_divisor_le, simp) | |
apply (simp add: mod_Suc) | |
apply simp | |
apply (drule_tac x="t * k + k - Suc 0" and y=t2 in order_le_imp_less_or_eq, erule disjE) | |
prefer 2 | |
apply (drule_tac t=t2 in sym, simp) | |
apply (drule_tac x=t1 in order_le_imp_less_or_eq, erule disjE) | |
apply simp+ | |
done | |
lemma i_shrink_eq_Msg_iUntil_finish_event_conv: " | |
\<lbrakk> 1 < k; m \<noteq> \<NoMsg>; \<And>t. event t = (t mod k = k - 1); t0 = t * k \<rbrakk> \<Longrightarrow> | |
((s \<div>\<^sub>i k) t = m) = ( | |
(\<not> event t1. t1 \<U> t2 ([0\<dots>] \<oplus> t0). event t2 \<and> s t2 = m) \<or> | |
(\<not> event t1. t1 \<U> t2 ([0\<dots>] \<oplus> t0). (\<not> event t2 \<and> s t2 = m \<and> ( | |
\<circle> t' t2 [0\<dots>]. (s t3 = \<NoMsg>. t3 \<U> t4 ([0\<dots>] \<oplus> t'). event t4 \<and> s t4 = \<NoMsg>)))))" | |
apply (simp add: i_shrink_eq_Msg_iSince_conv split del: if_split) | |
apply (simp only: iTL_defs iT_add iT_cut_greater iT_cut_less Ball_def Bex_def iT_iff iFROM_inext) | |
apply (subgoal_tac "t * k < t * k + k - Suc 0") | |
prefer 2 | |
apply simp | |
apply (rule iffI) | |
apply (subgoal_tac "\<And>x. t * k \<le> x \<Longrightarrow> x < t * k + k - Suc 0 \<Longrightarrow> x mod k \<noteq> k - Suc 0") | |
prefer 2 | |
apply (rule less_imp_neq) | |
apply (rule le_pred_imp_less, simp) | |
apply (simp only: mult.commute[of t k]) | |
apply (rule between_imp_mod_le[of "k - Suc 0 - Suc 0" k t]) | |
apply (simp split del: if_split)+ | |
apply (elim exE conjE, rename_tac t1) | |
apply (drule_tac x=t1 in order_le_imp_less_or_eq, erule disjE) | |
prefer 2 | |
apply (rule disjI1) | |
apply (rule_tac x=t1 in exI) | |
apply (clarsimp simp add: mod_pred iIN_iff) | |
apply (rule disjI2) | |
apply (rule_tac x=t1 in exI) | |
apply (simp split del: if_split) | |
apply (rule conjI) | |
apply (rule_tac x="t * k + k - Suc 0" in exI) | |
apply (clarsimp simp: mod_pred iIN_iff) | |
apply (clarsimp simp: iIN_iff) | |
apply (erule disjE) | |
apply (clarsimp, rename_tac t1) | |
apply (drule_tac y=t1 in order_le_imp_less_or_eq, erule disjE) | |
prefer 2 | |
apply (drule_tac t=t1 in sym, simp) | |
apply (simp add: iIN_iff) | |
apply (subgoal_tac "t1 \<le> t * k + k - Suc 0") | |
prefer 2 | |
apply (rule ccontr) | |
apply (drule_tac x="t * k + k - Suc 0" in spec) | |
apply (simp add: mod_pred) | |
apply (frule_tac a="t * k" and b=t1 and k="k - Suc 0" and m=k | |
in le_mod_add_eq_imp_add_mod_le[OF less_imp_le, rule_format]) | |
apply (simp add: add.commute[of "t * k"] mod_pred) | |
apply (rule_tac x=t1 in exI) | |
apply simp | |
apply (clarsimp, rename_tac t1 t2) | |
apply (rule_tac x=t1 in exI) | |
apply (drule_tac y=t1 in order_le_imp_less_or_eq, erule disjE) | |
prefer 2 | |
apply (drule_tac t=t1 in sym) | |
apply (clarsimp simp: iIN_iff, rename_tac t3) | |
apply (split if_split_asm) | |
apply (subgoal_tac "t2 = Suc (t * k)") | |
prefer 2 | |
apply simp | |
apply (subgoal_tac "k = Suc (Suc 0)") | |
prefer 2 | |
apply (simp add: mod_Suc) | |
apply (simp add: mod_Suc) | |
apply (simp add: iIN_iff) | |
apply (subgoal_tac "t * k + k - Suc 0 \<le> t2") | |
prefer 2 | |
apply (rule ccontr) | |
apply (simp add: linorder_not_le) | |
apply (drule_tac m=t2 in less_imp_le_pred) | |
apply (simp only: mult.commute[of t]) | |
apply (frule_tac n=t2 in between_imp_mod_le[of "k - Suc (Suc 0)" k t _, OF diff_Suc_less, OF gr_implies_gr0]) | |
apply simp+ | |
apply (drule_tac x=t3 in spec) | |
apply simp | |
apply (drule_tac x=t3 in order_le_imp_less_or_eq) | |
apply (drule_tac x="t * k + k - Suc 0" and y=t2 in order_le_imp_less_or_eq) | |
apply (fastforce simp: numeral_2_eq_2 Suc_diff_Suc) | |
apply simp | |
apply (case_tac "Suc t1 = t2") | |
apply (drule_tac t=t2 in sym) | |
apply (simp add: iIN_iff numeral_2_eq_2 Suc_diff_Suc) | |
apply (subgoal_tac "t1 \<le> t * k + k - Suc 0") | |
prefer 2 | |
apply (rule ccontr) | |
apply (drule_tac x="t * k + k - Suc 0" in spec) | |
apply (simp add: mod_pred) | |
apply (intro conjI impI) | |
apply (subgoal_tac "Suc t1 = t * k + k - Suc 0", clarsimp) | |
apply (subgoal_tac "t * k + (k - Suc 0) \<le> Suc t1") | |
prefer 2 | |
apply (rule ccontr) | |
apply (subgoal_tac "k - Suc 0 - Suc 0 < k") | |
prefer 2 | |
apply simp | |
apply (simp only: mult.commute[of t]) | |
apply (drule_tac n="Suc t1" in between_imp_mod_le[of "k - Suc 0 - Suc 0" k t]) | |
apply simp_all | |
apply (simp add: iIN_iff) | |
apply (subgoal_tac "t1 \<le> t * k + k - Suc 0") | |
prefer 2 | |
apply (rule ccontr) | |
apply (drule_tac x="t * k + k - Suc 0" in spec) | |
apply (simp add: mod_pred) | |
apply (clarsimp, rename_tac t3) | |
apply (thin_tac "All (\<lambda>x. A x \<longrightarrow> B (x mod k))" for A B) | |
apply (drule_tac x=t3 in spec) | |
apply (subgoal_tac "t3 \<le> t2 \<Longrightarrow> s t3 = \<NoMsg>") | |
prefer 2 | |
apply (drule_tac x=t3 and y=t2 in order_le_imp_less_or_eq, erule disjE) | |
apply simp | |
apply simp | |
apply (drule_tac P="t3 \<le> t2" in meta_mp) | |
apply (subgoal_tac "t * k < t2") | |
prefer 2 | |
apply (rule_tac y=t1 in less_trans, assumption+) | |
apply (case_tac "t * k + (k - Suc 0) < t2") | |
apply simp | |
apply simp | |
apply (subgoal_tac "t * k + (k - Suc 0) \<le> t2") | |
prefer 2 | |
apply (simp only: mult.commute[of t]) | |
apply (rule mult_divisor_le_mod_ge_imp_ge) | |
apply simp_all | |
done | |
end | |