Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
section \<open>Relators\<close> | |
theory Relators | |
imports "../Lib/Refine_Lib" | |
begin | |
text \<open> | |
We define the concept of relators. The relation between a concrete type and | |
an abstract type is expressed by a relation of type \<open>('c\<times>'a) set\<close>. | |
For each composed type, say \<open>'a list\<close>, we can define a {\em relator}, | |
that takes as argument a relation for the element type, and returns a relation | |
for the list type. For most datatypes, there exists a {\em natural relator}. | |
For algebraic datatypes, this is the relator that preserves the structure | |
of the datatype, and changes the components. For example, | |
\<open>list_rel::('c\<times>'a) set \<Rightarrow> ('c list\<times>'a list) set\<close> is the natural | |
relator for lists. | |
However, relators can also be used to change the representation, and thus | |
relate an implementation with an abstract type. For example, the relator | |
\<open>list_set_rel::('c\<times>'a) set \<Rightarrow> ('c list\<times>'a set) set\<close> relates lists | |
with the set of their elements. | |
In this theory, we define some basic notions for relators, and | |
then define natural relators for all HOL-types, including the function type. | |
For each relator, we also show a single-valuedness property, and initialize a | |
solver for single-valued properties. | |
\<close> | |
subsection \<open>Basic Definitions\<close> | |
text \<open> | |
For smoother handling of relator unification, we require relator arguments to | |
be applied by a special operator, such that we avoid higher-order | |
unification problems. We try to set up some syntax to make this more | |
transparent, and give relators a type-like prefix-syntax. | |
\<close> | |
definition relAPP | |
:: "(('c1\<times>'a1) set \<Rightarrow> _) \<Rightarrow> ('c1\<times>'a1) set \<Rightarrow> _" | |
where "relAPP f x \<equiv> f x" | |
syntax "_rel_APP" :: "args \<Rightarrow> 'a \<Rightarrow> 'b" ("\<langle>_\<rangle>_" [0,900] 900) | |
translations | |
"\<langle>x,xs\<rangle>R" == "\<langle>xs\<rangle>(CONST relAPP R x)" | |
"\<langle>x\<rangle>R" == "CONST relAPP R x" | |
ML \<open> | |
structure Refine_Relators_Thms = struct | |
structure rel_comb_def_rules = Named_Thms ( | |
val name = @{binding refine_rel_defs} | |
val description = "Refinement Framework: " ^ | |
"Relator definitions" | |
); | |
end | |
\<close> | |
setup Refine_Relators_Thms.rel_comb_def_rules.setup | |
subsection \<open>Basic HOL Relators\<close> | |
subsubsection \<open>Function\<close> | |
definition fun_rel where | |
fun_rel_def_internal: "fun_rel A B \<equiv> { (f,f'). \<forall>(a,a')\<in>A. (f a, f' a')\<in>B }" | |
abbreviation fun_rel_syn (infixr "\<rightarrow>" 60) where "A\<rightarrow>B \<equiv> \<langle>A,B\<rangle>fun_rel" | |
lemma fun_rel_def[refine_rel_defs]: | |
"A\<rightarrow>B \<equiv> { (f,f'). \<forall>(a,a')\<in>A. (f a, f' a')\<in>B }" | |
by (simp add: relAPP_def fun_rel_def_internal) | |
lemma fun_relI[intro!]: "\<lbrakk>\<And>a a'. (a,a')\<in>A \<Longrightarrow> (f a,f' a')\<in>B\<rbrakk> \<Longrightarrow> (f,f')\<in>A\<rightarrow>B" | |
by (auto simp: fun_rel_def) | |
lemma fun_relD: | |
shows " ((f,f')\<in>(A\<rightarrow>B)) \<Longrightarrow> | |
(\<And>x x'. \<lbrakk> (x,x')\<in>A \<rbrakk> \<Longrightarrow> (f x, f' x')\<in>B)" | |
apply rule | |
by (auto simp: fun_rel_def) | |
lemma fun_relD1: | |
assumes "(f,f')\<in>Ra\<rightarrow>Rr" | |
assumes "f x = r" | |
shows "\<forall>x'. (x,x')\<in>Ra \<longrightarrow> (r,f' x')\<in>Rr" | |
using assms by (auto simp: fun_rel_def) | |
lemma fun_relD2: | |
assumes "(f,f')\<in>Ra\<rightarrow>Rr" | |
assumes "f' x' = r'" | |
shows "\<forall>x. (x,x')\<in>Ra \<longrightarrow> (f x,r')\<in>Rr" | |
using assms by (auto simp: fun_rel_def) | |
lemma fun_relE1: | |
assumes "(f,f')\<in>Id \<rightarrow> Rv" | |
assumes "t' = f' x" | |
shows "(f x,t')\<in>Rv" using assms | |
by (auto elim: fun_relD) | |
lemma fun_relE2: | |
assumes "(f,f')\<in>Id \<rightarrow> Rv" | |
assumes "t = f x" | |
shows "(t,f' x)\<in>Rv" using assms | |
by (auto elim: fun_relD) | |
subsubsection \<open>Terminal Types\<close> | |
abbreviation unit_rel :: "(unit\<times>unit) set" where "unit_rel == Id" | |
abbreviation "nat_rel \<equiv> Id::(nat\<times>_) set" | |
abbreviation "int_rel \<equiv> Id::(int\<times>_) set" | |
abbreviation "bool_rel \<equiv> Id::(bool\<times>_) set" | |
subsubsection \<open>Product\<close> | |
definition prod_rel where | |
prod_rel_def_internal: "prod_rel R1 R2 | |
\<equiv> { ((a,b),(a',b')) . (a,a')\<in>R1 \<and> (b,b')\<in>R2 }" | |
abbreviation prod_rel_syn (infixr "\<times>\<^sub>r" 70) where "a\<times>\<^sub>rb \<equiv> \<langle>a,b\<rangle>prod_rel" | |
lemma prod_rel_def[refine_rel_defs]: | |
"(\<langle>R1,R2\<rangle>prod_rel) \<equiv> { ((a,b),(a',b')) . (a,a')\<in>R1 \<and> (b,b')\<in>R2 }" | |
by (simp add: prod_rel_def_internal relAPP_def) | |
lemma prod_relI: "\<lbrakk>(a,a')\<in>R1; (b,b')\<in>R2\<rbrakk> \<Longrightarrow> ((a,b),(a',b'))\<in>\<langle>R1,R2\<rangle>prod_rel" | |
by (auto simp: prod_rel_def) | |
lemma prod_relE: | |
assumes "(p,p')\<in>\<langle>R1,R2\<rangle>prod_rel" | |
obtains a b a' b' where "p=(a,b)" and "p'=(a',b')" | |
and "(a,a')\<in>R1" and "(b,b')\<in>R2" | |
using assms | |
by (auto simp: prod_rel_def) | |
lemma prod_rel_simp[simp]: | |
"((a,b),(a',b'))\<in>\<langle>R1,R2\<rangle>prod_rel \<longleftrightarrow> (a,a')\<in>R1 \<and> (b,b')\<in>R2" | |
by (auto intro: prod_relI elim: prod_relE) | |
lemma in_Domain_prod_rel_iff[iff]: "(a,b)\<in>Domain (A\<times>\<^sub>rB) \<longleftrightarrow> a\<in>Domain A \<and> b\<in>Domain B" | |
by (auto simp: prod_rel_def) | |
lemma prod_rel_comp: "(A \<times>\<^sub>r B) O (C \<times>\<^sub>r D) = (A O C) \<times>\<^sub>r (B O D)" | |
unfolding prod_rel_def | |
by auto | |
subsubsection \<open>Option\<close> | |
definition option_rel where | |
option_rel_def_internal: | |
"option_rel R \<equiv> { (Some a,Some a') | a a'. (a,a')\<in>R } \<union> {(None,None)}" | |
lemma option_rel_def[refine_rel_defs]: | |
"\<langle>R\<rangle>option_rel \<equiv> { (Some a,Some a') | a a'. (a,a')\<in>R } \<union> {(None,None)}" | |
by (simp add: option_rel_def_internal relAPP_def) | |
lemma option_relI: | |
"(None,None)\<in>\<langle>R\<rangle> option_rel" | |
"\<lbrakk> (a,a')\<in>R \<rbrakk> \<Longrightarrow> (Some a, Some a')\<in>\<langle>R\<rangle>option_rel" | |
by (auto simp: option_rel_def) | |
lemma option_relE: | |
assumes "(x,x')\<in>\<langle>R\<rangle>option_rel" | |
obtains "x=None" and "x'=None" | |
| a a' where "x=Some a" and "x'=Some a'" and "(a,a')\<in>R" | |
using assms by (auto simp: option_rel_def) | |
lemma option_rel_simp[simp]: | |
"(None,a)\<in>\<langle>R\<rangle>option_rel \<longleftrightarrow> a=None" | |
"(c,None)\<in>\<langle>R\<rangle>option_rel \<longleftrightarrow> c=None" | |
"(Some x,Some y)\<in>\<langle>R\<rangle>option_rel \<longleftrightarrow> (x,y)\<in>R" | |
by (auto intro: option_relI elim: option_relE) | |
subsubsection \<open>Sum\<close> | |
definition sum_rel where sum_rel_def_internal: | |
"sum_rel Rl Rr | |
\<equiv> { (Inl a, Inl a') | a a'. (a,a')\<in>Rl } \<union> | |
{ (Inr a, Inr a') | a a'. (a,a')\<in>Rr }" | |
lemma sum_rel_def[refine_rel_defs]: | |
"\<langle>Rl,Rr\<rangle>sum_rel \<equiv> | |
{ (Inl a, Inl a') | a a'. (a,a')\<in>Rl } \<union> | |
{ (Inr a, Inr a') | a a'. (a,a')\<in>Rr }" | |
by (simp add: sum_rel_def_internal relAPP_def) | |
lemma sum_rel_simp[simp]: | |
"\<And>a a'. (Inl a, Inl a') \<in> \<langle>Rl,Rr\<rangle>sum_rel \<longleftrightarrow> (a,a')\<in>Rl" | |
"\<And>a a'. (Inr a, Inr a') \<in> \<langle>Rl,Rr\<rangle>sum_rel \<longleftrightarrow> (a,a')\<in>Rr" | |
"\<And>a a'. (Inl a, Inr a') \<notin> \<langle>Rl,Rr\<rangle>sum_rel" | |
"\<And>a a'. (Inr a, Inl a') \<notin> \<langle>Rl,Rr\<rangle>sum_rel" | |
unfolding sum_rel_def by auto | |
lemma sum_relI: | |
"(l,l')\<in>Rl \<Longrightarrow> (Inl l, Inl l') \<in> \<langle>Rl,Rr\<rangle>sum_rel" | |
"(r,r')\<in>Rr \<Longrightarrow> (Inr r, Inr r') \<in> \<langle>Rl,Rr\<rangle>sum_rel" | |
by simp_all | |
lemma sum_relE: | |
assumes "(x,x')\<in>\<langle>Rl,Rr\<rangle>sum_rel" | |
obtains | |
l l' where "x=Inl l" and "x'=Inl l'" and "(l,l')\<in>Rl" | |
| r r' where "x=Inr r" and "x'=Inr r'" and "(r,r')\<in>Rr" | |
using assms by (auto simp: sum_rel_def) | |
subsubsection \<open>Lists\<close> | |
definition list_rel where list_rel_def_internal: | |
"list_rel R \<equiv> {(l,l'). list_all2 (\<lambda>x x'. (x,x')\<in>R) l l'}" | |
lemma list_rel_def[refine_rel_defs]: | |
"\<langle>R\<rangle>list_rel \<equiv> {(l,l'). list_all2 (\<lambda>x x'. (x,x')\<in>R) l l'}" | |
by (simp add: list_rel_def_internal relAPP_def) | |
lemma list_rel_induct[induct set,consumes 1, case_names Nil Cons]: | |
assumes "(l,l')\<in>\<langle>R\<rangle> list_rel" | |
assumes "P [] []" | |
assumes "\<And>x x' l l'. \<lbrakk> (x,x')\<in>R; (l,l')\<in>\<langle>R\<rangle>list_rel; P l l' \<rbrakk> | |
\<Longrightarrow> P (x#l) (x'#l')" | |
shows "P l l'" | |
using assms unfolding list_rel_def | |
apply simp | |
by (rule list_all2_induct) | |
lemma list_rel_eq_listrel: "list_rel = listrel" | |
apply (rule ext) | |
apply safe | |
proof goal_cases | |
case (1 x a b) thus ?case | |
unfolding list_rel_def_internal | |
apply simp | |
apply (induct a b rule: list_all2_induct) | |
apply (auto intro: listrel.intros) | |
done | |
next | |
case 2 thus ?case | |
apply (induct) | |
apply (auto simp: list_rel_def_internal) | |
done | |
qed | |
lemma list_relI: | |
"([],[])\<in>\<langle>R\<rangle>list_rel" | |
"\<lbrakk> (x,x')\<in>R; (l,l')\<in>\<langle>R\<rangle>list_rel \<rbrakk> \<Longrightarrow> (x#l,x'#l')\<in>\<langle>R\<rangle>list_rel" | |
by (auto simp: list_rel_def) | |
lemma list_rel_simp[simp]: | |
"([],l')\<in>\<langle>R\<rangle>list_rel \<longleftrightarrow> l'=[]" | |
"(l,[])\<in>\<langle>R\<rangle>list_rel \<longleftrightarrow> l=[]" | |
"([],[])\<in>\<langle>R\<rangle>list_rel" | |
"(x#l,x'#l')\<in>\<langle>R\<rangle>list_rel \<longleftrightarrow> (x,x')\<in>R \<and> (l,l')\<in>\<langle>R\<rangle>list_rel" | |
by (auto simp: list_rel_def) | |
lemma list_relE1: | |
assumes "(l,[])\<in>\<langle>R\<rangle>list_rel" obtains "l=[]" using assms by auto | |
lemma list_relE2: | |
assumes "([],l)\<in>\<langle>R\<rangle>list_rel" obtains "l=[]" using assms by auto | |
lemma list_relE3: | |
assumes "(x#xs,l')\<in>\<langle>R\<rangle>list_rel" obtains x' xs' where | |
"l'=x'#xs'" and "(x,x')\<in>R" and "(xs,xs')\<in>\<langle>R\<rangle>list_rel" | |
using assms | |
apply (cases l') | |
apply auto | |
done | |
lemma list_relE4: | |
assumes "(l,x'#xs')\<in>\<langle>R\<rangle>list_rel" obtains x xs where | |
"l=x#xs" and "(x,x')\<in>R" and "(xs,xs')\<in>\<langle>R\<rangle>list_rel" | |
using assms | |
apply (cases l) | |
apply auto | |
done | |
lemmas list_relE = list_relE1 list_relE2 list_relE3 list_relE4 | |
lemma list_rel_imp_same_length: | |
"(l, l') \<in> \<langle>R\<rangle>list_rel \<Longrightarrow> length l = length l'" | |
unfolding list_rel_eq_listrel relAPP_def | |
by (rule listrel_eq_len) | |
lemma list_rel_split_right_iff: | |
"(x#xs,l)\<in>\<langle>R\<rangle>list_rel \<longleftrightarrow> (\<exists>y ys. l=y#ys \<and> (x,y)\<in>R \<and> (xs,ys)\<in>\<langle>R\<rangle>list_rel)" | |
by (cases l) auto | |
lemma list_rel_split_left_iff: | |
"(l,y#ys)\<in>\<langle>R\<rangle>list_rel \<longleftrightarrow> (\<exists>x xs. l=x#xs \<and> (x,y)\<in>R \<and> (xs,ys)\<in>\<langle>R\<rangle>list_rel)" | |
by (cases l) auto | |
subsubsection \<open>Sets\<close> | |
text \<open>Pointwise refinement: The abstract set is the image of | |
the concrete set, and the concrete set only contains elements that | |
have an abstract counterpart\<close> | |
definition set_rel where | |
set_rel_def_internal: | |
"set_rel R \<equiv> {(A,B). (\<forall>x\<in>A. \<exists>y\<in>B. (x,y)\<in>R) \<and> (\<forall>y\<in>B. \<exists>x\<in>A. (x,y)\<in>R)}" | |
term set_rel | |
lemma set_rel_def[refine_rel_defs]: | |
"\<langle>R\<rangle>set_rel \<equiv> {(A,B). (\<forall>x\<in>A. \<exists>y\<in>B. (x,y)\<in>R) \<and> (\<forall>y\<in>B. \<exists>x\<in>A. (x,y)\<in>R)}" | |
by (simp add: set_rel_def_internal relAPP_def) | |
lemma set_rel_alt: "\<langle>R\<rangle>set_rel = {(A,B). A \<subseteq> R\<inverse>``B \<and> B \<subseteq> R``A}" | |
unfolding set_rel_def by auto | |
lemma set_relI[intro?]: | |
assumes "\<And>x. x\<in>A \<Longrightarrow> \<exists>y\<in>B. (x,y)\<in>R" | |
assumes "\<And>y. y\<in>B \<Longrightarrow> \<exists>x\<in>A. (x,y)\<in>R" | |
shows "(A,B)\<in>\<langle>R\<rangle>set_rel" | |
using assms unfolding set_rel_def by blast | |
text \<open>Original definition of \<open>set_rel\<close> in refinement framework. | |
Abandoned in favour of more symmetric definition above: \<close> | |
definition old_set_rel where old_set_rel_def_internal: | |
"old_set_rel R \<equiv> {(S,S'). S'=R``S \<and> S\<subseteq>Domain R}" | |
lemma old_set_rel_def[refine_rel_defs]: | |
"\<langle>R\<rangle>old_set_rel \<equiv> {(S,S'). S'=R``S \<and> S\<subseteq>Domain R}" | |
by (simp add: old_set_rel_def_internal relAPP_def) | |
text \<open>Old definition coincides with new definition for single-valued | |
element relations. This is probably the reason why the old definition worked | |
for most applications.\<close> | |
lemma old_set_rel_sv_eq: "single_valued R \<Longrightarrow> \<langle>R\<rangle>old_set_rel = \<langle>R\<rangle>set_rel" | |
unfolding set_rel_def old_set_rel_def single_valued_def | |
by blast | |
lemma set_rel_simp[simp]: | |
"({},{})\<in>\<langle>R\<rangle>set_rel" | |
by (auto simp: set_rel_def) | |
lemma set_rel_empty_iff[simp]: | |
"({},y)\<in>\<langle>A\<rangle>set_rel \<longleftrightarrow> y={}" | |
"(x,{})\<in>\<langle>A\<rangle>set_rel \<longleftrightarrow> x={}" | |
by (auto simp: set_rel_def; fastforce)+ | |
lemma set_relD1: "(s,s')\<in>\<langle>R\<rangle>set_rel \<Longrightarrow> x\<in>s \<Longrightarrow> \<exists>x'\<in>s'. (x,x')\<in>R" | |
unfolding set_rel_def by blast | |
lemma set_relD2: "(s,s')\<in>\<langle>R\<rangle>set_rel \<Longrightarrow> x'\<in>s' \<Longrightarrow> \<exists>x\<in>s. (x,x')\<in>R" | |
unfolding set_rel_def by blast | |
lemma set_relE1[consumes 2]: | |
assumes "(s,s')\<in>\<langle>R\<rangle>set_rel" "x\<in>s" | |
obtains x' where "x'\<in>s'" "(x,x')\<in>R" | |
using set_relD1[OF assms] .. | |
lemma set_relE2[consumes 2]: | |
assumes "(s,s')\<in>\<langle>R\<rangle>set_rel" "x'\<in>s'" | |
obtains x where "x\<in>s" "(x,x')\<in>R" | |
using set_relD2[OF assms] .. | |
subsection \<open>Automation\<close> | |
subsubsection \<open>A solver for relator properties\<close> | |
lemma relprop_triggers: | |
"\<And>R. single_valued R \<Longrightarrow> single_valued R" | |
"\<And>R. R=Id \<Longrightarrow> R=Id" | |
"\<And>R. R=Id \<Longrightarrow> Id=R" | |
"\<And>R. Range R = UNIV \<Longrightarrow> Range R = UNIV" | |
"\<And>R. Range R = UNIV \<Longrightarrow> UNIV = Range R" | |
"\<And>R R'. R\<subseteq>R' \<Longrightarrow> R\<subseteq>R'" | |
by auto | |
ML \<open> | |
structure relator_props = Named_Thms ( | |
val name = @{binding relator_props} | |
val description = "Additional relator properties" | |
) | |
structure solve_relator_props = Named_Thms ( | |
val name = @{binding solve_relator_props} | |
val description = "Relator properties that solve goal" | |
) | |
\<close> | |
setup relator_props.setup | |
setup solve_relator_props.setup | |
declaration \<open> | |
Tagged_Solver.declare_solver | |
@{thms relprop_triggers} | |
@{binding relator_props_solver} | |
"Additional relator properties solver" | |
(fn ctxt => (REPEAT_ALL_NEW (CHANGED o ( | |
match_tac ctxt (solve_relator_props.get ctxt) ORELSE' | |
match_tac ctxt (relator_props.get ctxt) | |
)))) | |
\<close> | |
declaration \<open> | |
Tagged_Solver.declare_solver | |
[] | |
@{binding force_relator_props_solver} | |
"Additional relator properties solver (instantiate schematics)" | |
(fn ctxt => (REPEAT_ALL_NEW (CHANGED o ( | |
resolve_tac ctxt (solve_relator_props.get ctxt) ORELSE' | |
match_tac ctxt (relator_props.get ctxt) | |
)))) | |
\<close> | |
lemma | |
relprop_id_orient[relator_props]: "R=Id \<Longrightarrow> Id=R" and | |
relprop_eq_refl[solve_relator_props]: "t = t" | |
by auto | |
lemma | |
relprop_UNIV_orient[relator_props]: "R=UNIV \<Longrightarrow> UNIV=R" | |
by auto | |
subsubsection \<open>ML-Level utilities\<close> | |
ML \<open> | |
signature RELATORS = sig | |
val mk_relT: typ * typ -> typ | |
val dest_relT: typ -> typ * typ | |
val mk_relAPP: term -> term -> term | |
val list_relAPP: term list -> term -> term | |
val strip_relAPP: term -> term list * term | |
val mk_fun_rel: term -> term -> term | |
val list_rel: term list -> term -> term | |
val rel_absT: term -> typ | |
val rel_concT: term -> typ | |
val mk_prodrel: term * term -> term | |
val is_prodrel: term -> bool | |
val dest_prodrel: term -> term * term | |
val strip_prodrel_left: term -> term list | |
val list_prodrel_left: term list -> term | |
val declare_natural_relator: | |
(string*string) -> Context.generic -> Context.generic | |
val remove_natural_relator: string -> Context.generic -> Context.generic | |
val natural_relator_of: Proof.context -> string -> string option | |
val mk_natural_relator: Proof.context -> term list -> string -> term option | |
val setup: theory -> theory | |
end | |
structure Relators :RELATORS = struct | |
val mk_relT = HOLogic.mk_prodT #> HOLogic.mk_setT | |
fun dest_relT (Type (@{type_name set},[Type (@{type_name prod},[cT,aT])])) | |
= (cT,aT) | |
| dest_relT ty = raise TYPE ("dest_relT",[ty],[]) | |
fun mk_relAPP x f = let | |
val xT = fastype_of x | |
val fT = fastype_of f | |
val rT = range_type fT | |
in | |
Const (@{const_name relAPP},fT-->xT-->rT)$f$x | |
end | |
val list_relAPP = fold mk_relAPP | |
fun strip_relAPP R = let | |
fun aux @{mpat "\<langle>?R\<rangle>?S"} l = aux S (R::l) | |
| aux R l = (l,R) | |
in aux R [] end | |
val rel_absT = fastype_of #> HOLogic.dest_setT #> HOLogic.dest_prodT #> snd | |
val rel_concT = fastype_of #> HOLogic.dest_setT #> HOLogic.dest_prodT #> fst | |
fun mk_fun_rel r1 r2 = let | |
val (r1T,r2T) = (fastype_of r1,fastype_of r2) | |
val (c1T,a1T) = dest_relT r1T | |
val (c2T,a2T) = dest_relT r2T | |
val (cT,aT) = (c1T --> c2T, a1T --> a2T) | |
val rT = mk_relT (cT,aT) | |
in | |
list_relAPP [r1,r2] (Const (@{const_name fun_rel},r1T-->r2T-->rT)) | |
end | |
val list_rel = fold_rev mk_fun_rel | |
fun mk_prodrel (A,B) = @{mk_term "?A \<times>\<^sub>r ?B"} | |
fun is_prodrel @{mpat "_ \<times>\<^sub>r _"} = true | is_prodrel _ = false | |
fun dest_prodrel @{mpat "?A \<times>\<^sub>r ?B"} = (A,B) | dest_prodrel t = raise TERM("dest_prodrel",[t]) | |
fun strip_prodrel_left @{mpat "?A \<times>\<^sub>r ?B"} = strip_prodrel_left A @ [B] | |
| strip_prodrel_left @{mpat (typs) "unit_rel"} = [] | |
| strip_prodrel_left R = [R] | |
val list_prodrel_left = Refine_Util.list_binop_left @{term unit_rel} mk_prodrel | |
structure natural_relators = Generic_Data ( | |
type T = string Symtab.table | |
val empty = Symtab.empty | |
val merge = Symtab.join (fn _ => fn (_,cn) => cn) | |
) | |
fun declare_natural_relator tcp = | |
natural_relators.map (Symtab.update tcp) | |
fun remove_natural_relator tname = | |
natural_relators.map (Symtab.delete_safe tname) | |
fun natural_relator_of ctxt = | |
Symtab.lookup (natural_relators.get (Context.Proof ctxt)) | |
(* [R1,\<dots>,Rn] T is mapped to \<langle>R1,\<dots>,Rn\<rangle> Trel *) | |
fun mk_natural_relator ctxt args Tname = | |
case natural_relator_of ctxt Tname of | |
NONE => NONE | |
| SOME Cname => SOME let | |
val argsT = map fastype_of args | |
val (cTs, aTs) = map dest_relT argsT |> split_list | |
val aT = Type (Tname,aTs) | |
val cT = Type (Tname,cTs) | |
val rT = mk_relT (cT,aT) | |
in | |
list_relAPP args (Const (Cname,argsT--->rT)) | |
end | |
fun | |
natural_relator_from_term (t as Const (name,T)) = let | |
fun err msg = raise TERM (msg,[t]) | |
val (argTs,bodyT) = strip_type T | |
val (conTs,absTs) = argTs |> map (HOLogic.dest_setT #> HOLogic.dest_prodT) |> split_list | |
val (bconT,babsT) = bodyT |> HOLogic.dest_setT |> HOLogic.dest_prodT | |
val (Tcon,bconTs) = dest_Type bconT | |
val (Tcon',babsTs) = dest_Type babsT | |
val _ = Tcon = Tcon' orelse err "Type constructors do not match" | |
val _ = conTs = bconTs orelse err "Concrete types do not match" | |
val _ = absTs = babsTs orelse err "Abstract types do not match" | |
in | |
(Tcon,name) | |
end | |
| natural_relator_from_term t = | |
raise TERM ("Expected constant",[t]) (* TODO: Localize this! *) | |
local | |
fun decl_natrel_aux t context = let | |
fun warn msg = let | |
val tP = | |
Context.cases Syntax.pretty_term_global Syntax.pretty_term | |
context t | |
val m = Pretty.block [ | |
Pretty.str "Ignoring invalid natural_relator declaration:", | |
Pretty.brk 1, | |
Pretty.str msg, | |
Pretty.brk 1, | |
tP | |
] |> Pretty.string_of | |
val _ = warning m | |
in context end | |
in | |
declare_natural_relator (natural_relator_from_term t) context | |
handle | |
TERM (msg,_) => warn msg | |
| exn => if Exn.is_interrupt exn then Exn.reraise exn else warn "" | |
end | |
in | |
val natural_relator_attr = Scan.repeat1 Args.term >> (fn ts => | |
Thm.declaration_attribute ( fn _ => fold decl_natrel_aux ts) | |
) | |
end | |
val setup = I | |
#> Attrib.setup | |
@{binding natural_relator} natural_relator_attr "Declare natural relator" | |
end | |
\<close> | |
setup Relators.setup | |
subsection \<open>Setup\<close> | |
subsubsection "Natural Relators" | |
declare [[natural_relator | |
unit_rel int_rel nat_rel bool_rel | |
fun_rel prod_rel option_rel sum_rel list_rel | |
]] | |
(*declaration {* let open Relators in | |
fn _ => | |
declare_natural_relator (@{type_name unit},@{const_name unit_rel}) | |
#> declare_natural_relator (@{type_name fun},@{const_name fun_rel}) | |
#> declare_natural_relator (@{type_name prod},@{const_name prod_rel}) | |
#> declare_natural_relator (@{type_name option},@{const_name option_rel}) | |
#> declare_natural_relator (@{type_name sum},@{const_name sum_rel}) | |
#> declare_natural_relator (@{type_name list},@{const_name list_rel}) | |
end | |
*}*) | |
ML_val \<open> | |
Relators.mk_natural_relator | |
@{context} | |
[@{term "Ra::('c\<times>'a) set"},@{term "\<langle>Rb\<rangle>option_rel"}] | |
@{type_name prod} | |
|> the | |
|> Thm.cterm_of @{context} | |
; | |
Relators.mk_fun_rel @{term "\<langle>Id\<rangle>option_rel"} @{term "\<langle>Id\<rangle>list_rel"} | |
|> Thm.cterm_of @{context} | |
\<close> | |
subsubsection "Additional Properties" | |
lemmas [relator_props] = | |
single_valued_Id | |
subset_refl | |
refl | |
(* TODO: Move *) | |
lemma eq_UNIV_iff: "S=UNIV \<longleftrightarrow> (\<forall>x. x\<in>S)" by auto | |
lemma fun_rel_sv[relator_props]: | |
assumes RAN: "Range Ra = UNIV" | |
assumes SV: "single_valued Rv" | |
shows "single_valued (Ra \<rightarrow> Rv)" | |
proof (intro single_valuedI ext impI allI) | |
fix f g h x' | |
assume R1: "(f,g)\<in>Ra\<rightarrow>Rv" | |
and R2: "(f,h)\<in>Ra\<rightarrow>Rv" | |
from RAN obtain x where AR: "(x,x')\<in>Ra" by auto | |
from fun_relD[OF R1 AR] have "(f x,g x') \<in> Rv" . | |
moreover from fun_relD[OF R2 AR] have "(f x,h x') \<in> Rv" . | |
ultimately show "g x' = h x'" using SV by (auto dest: single_valuedD) | |
qed | |
lemmas [relator_props] = Range_Id | |
lemma fun_rel_id[relator_props]: "\<lbrakk>R1=Id; R2=Id\<rbrakk> \<Longrightarrow> R1 \<rightarrow> R2 = Id" | |
by (auto simp: fun_rel_def) | |
lemma fun_rel_id_simp[simp]: "Id\<rightarrow>Id = Id" by tagged_solver | |
lemma fun_rel_comp_dist[relator_props]: | |
"(R1\<rightarrow>R2) O (R3\<rightarrow>R4) \<subseteq> ((R1 O R3) \<rightarrow> (R2 O R4))" | |
by (auto simp: fun_rel_def) | |
lemma fun_rel_mono[relator_props]: "\<lbrakk> R1\<subseteq>R2; R3\<subseteq>R4 \<rbrakk> \<Longrightarrow> R2\<rightarrow>R3 \<subseteq> R1\<rightarrow>R4" | |
by (force simp: fun_rel_def) | |
lemma prod_rel_sv[relator_props]: | |
"\<lbrakk>single_valued R1; single_valued R2\<rbrakk> \<Longrightarrow> single_valued (\<langle>R1,R2\<rangle>prod_rel)" | |
by (auto intro: single_valuedI dest: single_valuedD simp: prod_rel_def) | |
lemma prod_rel_id[relator_props]: "\<lbrakk>R1=Id; R2=Id\<rbrakk> \<Longrightarrow> \<langle>R1,R2\<rangle>prod_rel = Id" | |
by (auto simp: prod_rel_def) | |
lemma prod_rel_id_simp[simp]: "\<langle>Id,Id\<rangle>prod_rel = Id" by tagged_solver | |
lemma prod_rel_mono[relator_props]: | |
"\<lbrakk> R2\<subseteq>R1; R3\<subseteq>R4 \<rbrakk> \<Longrightarrow> \<langle>R2,R3\<rangle>prod_rel \<subseteq> \<langle>R1,R4\<rangle>prod_rel" | |
by (auto simp: prod_rel_def) | |
lemma prod_rel_range[relator_props]: "\<lbrakk>Range Ra=UNIV; Range Rb=UNIV\<rbrakk> | |
\<Longrightarrow> Range (\<langle>Ra,Rb\<rangle>prod_rel) = UNIV" | |
apply (auto simp: prod_rel_def) | |
by (metis Range_iff UNIV_I)+ | |
lemma option_rel_sv[relator_props]: | |
"\<lbrakk>single_valued R\<rbrakk> \<Longrightarrow> single_valued (\<langle>R\<rangle>option_rel)" | |
by (auto intro: single_valuedI dest: single_valuedD simp: option_rel_def) | |
lemma option_rel_id[relator_props]: | |
"R=Id \<Longrightarrow> \<langle>R\<rangle>option_rel = Id" by (auto simp: option_rel_def) | |
lemma option_rel_id_simp[simp]: "\<langle>Id\<rangle>option_rel = Id" by tagged_solver | |
lemma option_rel_mono[relator_props]: "R\<subseteq>R' \<Longrightarrow> \<langle>R\<rangle>option_rel \<subseteq> \<langle>R'\<rangle>option_rel" | |
by (auto simp: option_rel_def) | |
lemma option_rel_range: "Range R = UNIV \<Longrightarrow> Range (\<langle>R\<rangle>option_rel) = UNIV" | |
apply (auto simp: option_rel_def Range_iff) | |
by (metis Range_iff UNIV_I option.exhaust) | |
lemma option_rel_inter[simp]: "\<langle>R1 \<inter> R2\<rangle>option_rel = \<langle>R1\<rangle>option_rel \<inter> \<langle>R2\<rangle>option_rel" | |
by (auto simp: option_rel_def) | |
lemma option_rel_constraint[simp]: | |
"(x,x)\<in>\<langle>UNIV\<times>C\<rangle>option_rel \<longleftrightarrow> (\<forall>v. x=Some v \<longrightarrow> v\<in>C)" | |
by (auto simp: option_rel_def) | |
lemma sum_rel_sv[relator_props]: | |
"\<lbrakk>single_valued Rl; single_valued Rr\<rbrakk> \<Longrightarrow> single_valued (\<langle>Rl,Rr\<rangle>sum_rel)" | |
by (auto intro: single_valuedI dest: single_valuedD simp: sum_rel_def) | |
lemma sum_rel_id[relator_props]: "\<lbrakk>Rl=Id; Rr=Id\<rbrakk> \<Longrightarrow> \<langle>Rl,Rr\<rangle>sum_rel = Id" | |
apply (auto elim: sum_relE) | |
apply (case_tac b) | |
apply simp_all | |
done | |
lemma sum_rel_id_simp[simp]: "\<langle>Id,Id\<rangle>sum_rel = Id" by tagged_solver | |
lemma sum_rel_mono[relator_props]: | |
"\<lbrakk> Rl\<subseteq>Rl'; Rr\<subseteq>Rr' \<rbrakk> \<Longrightarrow> \<langle>Rl,Rr\<rangle>sum_rel \<subseteq> \<langle>Rl',Rr'\<rangle>sum_rel" | |
by (auto simp: sum_rel_def) | |
lemma sum_rel_range[relator_props]: | |
"\<lbrakk> Range Rl=UNIV; Range Rr=UNIV \<rbrakk> \<Longrightarrow> Range (\<langle>Rl,Rr\<rangle>sum_rel) = UNIV" | |
apply (auto simp: sum_rel_def Range_iff) | |
by (metis Range_iff UNIV_I sumE) | |
lemma list_rel_sv_iff: | |
"single_valued (\<langle>R\<rangle>list_rel) \<longleftrightarrow> single_valued R" | |
apply (intro iffI[rotated] single_valuedI allI impI) | |
apply (clarsimp simp: list_rel_def) | |
proof - | |
fix x y z | |
assume SV: "single_valued R" | |
assume "list_all2 (\<lambda>x x'. (x, x') \<in> R) x y" and | |
"list_all2 (\<lambda>x x'. (x, x') \<in> R) x z" | |
thus "y=z" | |
apply (induct arbitrary: z rule: list_all2_induct) | |
apply simp | |
apply (case_tac z) | |
apply force | |
apply (force intro: single_valuedD[OF SV]) | |
done | |
next | |
fix x y z | |
assume SV: "single_valued (\<langle>R\<rangle>list_rel)" | |
assume "(x,y)\<in>R" "(x,z)\<in>R" | |
hence "([x],[y])\<in>\<langle>R\<rangle>list_rel" and "([x],[z])\<in>\<langle>R\<rangle>list_rel" | |
by (auto simp: list_rel_def) | |
with single_valuedD[OF SV] show "y=z" by blast | |
qed | |
lemma list_rel_sv[relator_props]: | |
"single_valued R \<Longrightarrow> single_valued (\<langle>R\<rangle>list_rel)" | |
by (simp add: list_rel_sv_iff) | |
lemma list_rel_id[relator_props]: "\<lbrakk>R=Id\<rbrakk> \<Longrightarrow> \<langle>R\<rangle>list_rel = Id" | |
by (auto simp add: list_rel_def list_all2_eq[symmetric]) | |
lemma list_rel_id_simp[simp]: "\<langle>Id\<rangle>list_rel = Id" by tagged_solver | |
lemma list_rel_mono[relator_props]: | |
assumes A: "R\<subseteq>R'" | |
shows "\<langle>R\<rangle>list_rel \<subseteq> \<langle>R'\<rangle>list_rel" | |
proof clarsimp | |
fix l l' | |
assume "(l,l')\<in>\<langle>R\<rangle>list_rel" | |
thus "(l,l')\<in>\<langle>R'\<rangle>list_rel" | |
apply induct | |
using A | |
by auto | |
qed | |
lemma list_rel_range[relator_props]: | |
assumes A: "Range R = UNIV" | |
shows "Range (\<langle>R\<rangle>list_rel) = UNIV" | |
proof (clarsimp simp: eq_UNIV_iff) | |
fix l | |
show "l\<in>Range (\<langle>R\<rangle>list_rel)" | |
apply (induct l) | |
using A[unfolded eq_UNIV_iff] | |
by (auto simp: Range_iff intro: list_relI) | |
qed | |
lemma bijective_imp_sv: | |
"bijective R \<Longrightarrow> single_valued R" | |
"bijective R \<Longrightarrow> single_valued (R\<inverse>)" | |
by (simp_all add: bijective_alt) | |
(* TODO: Move *) | |
declare bijective_Id[relator_props] | |
declare bijective_Empty[relator_props] | |
text \<open>Pointwise refinement for set types:\<close> | |
lemma set_rel_sv[relator_props]: | |
"single_valued R \<Longrightarrow> single_valued (\<langle>R\<rangle>set_rel)" | |
unfolding single_valued_def set_rel_def by blast | |
lemma set_rel_id[relator_props]: "R=Id \<Longrightarrow> \<langle>R\<rangle>set_rel = Id" | |
by (auto simp add: set_rel_def) | |
lemma set_rel_id_simp[simp]: "\<langle>Id\<rangle>set_rel = Id" by tagged_solver | |
lemma set_rel_csv[relator_props]: | |
"\<lbrakk> single_valued (R\<inverse>) \<rbrakk> | |
\<Longrightarrow> single_valued ((\<langle>R\<rangle>set_rel)\<inverse>)" | |
unfolding single_valued_def set_rel_def converse_iff | |
by fast | |
subsection \<open>Invariant and Abstraction\<close> | |
text \<open> | |
Quite often, a relation can be described as combination of an | |
abstraction function and an invariant, such that the invariant describes valid | |
values on the concrete domain, and the abstraction function maps valid | |
concrete values to its corresponding abstract value. | |
\<close> | |
definition build_rel where | |
"build_rel \<alpha> I \<equiv> {(c,a) . a=\<alpha> c \<and> I c}" | |
abbreviation "br\<equiv>build_rel" | |
lemmas br_def[refine_rel_defs] = build_rel_def | |
lemma in_br_conv: "(c,a)\<in>br \<alpha> I \<longleftrightarrow> a=\<alpha> c \<and> I c" | |
by (auto simp: br_def) | |
lemma brI[intro?]: "\<lbrakk> a=\<alpha> c; I c \<rbrakk> \<Longrightarrow> (c,a)\<in>br \<alpha> I" | |
by (simp add: br_def) | |
lemma br_id[simp]: "br id (\<lambda>_. True) = Id" | |
unfolding build_rel_def by auto | |
lemma br_chain: | |
"(build_rel \<beta> J) O (build_rel \<alpha> I) = build_rel (\<alpha>\<circ>\<beta>) (\<lambda>s. J s \<and> I (\<beta> s))" | |
unfolding build_rel_def by auto | |
lemma br_sv[simp, intro!,relator_props]: "single_valued (br \<alpha> I)" | |
unfolding build_rel_def | |
apply (rule single_valuedI) | |
apply auto | |
done | |
lemma converse_br_sv_iff[simp]: | |
"single_valued (converse (br \<alpha> I)) \<longleftrightarrow> inj_on \<alpha> (Collect I)" | |
by (auto intro!: inj_onI single_valuedI dest: single_valuedD inj_onD | |
simp: br_def) [] | |
lemmas [relator_props] = single_valued_relcomp | |
lemma br_comp_alt: "br \<alpha> I O R = { (c,a) . I c \<and> (\<alpha> c,a)\<in>R }" | |
by (auto simp add: br_def) | |
lemma br_comp_alt': | |
"{(c,a) . a=\<alpha> c \<and> I c} O R = { (c,a) . I c \<and> (\<alpha> c,a)\<in>R }" | |
by auto | |
lemma single_valued_as_brE: | |
assumes "single_valued R" | |
obtains \<alpha> invar where "R=br \<alpha> invar" | |
apply (rule that[of "\<lambda>x. THE y. (x,y)\<in>R" "\<lambda>x. x\<in>Domain R"]) | |
using assms unfolding br_def | |
by (auto dest: single_valuedD | |
intro: the_equality[symmetric] theI) | |
lemma sv_add_invar: | |
"single_valued R \<Longrightarrow> single_valued {(c, a). (c, a) \<in> R \<and> I c}" | |
by (auto dest: single_valuedD intro: single_valuedI) | |
lemma br_Image_conv[simp]: "br \<alpha> I `` S = {\<alpha> x | x. x\<in>S \<and> I x}" | |
by (auto simp: br_def) | |
subsection \<open>Miscellanneous\<close> | |
lemma rel_cong: "(f,g)\<in>Id \<Longrightarrow> (x,y)\<in>Id \<Longrightarrow> (f x, g y)\<in>Id" by simp | |
lemma rel_fun_cong: "(f,g)\<in>Id \<Longrightarrow> (f x, g x)\<in>Id" by simp | |
lemma rel_arg_cong: "(x,y)\<in>Id \<Longrightarrow> (f x, f y)\<in>Id" by simp | |
subsection \<open>Conversion between Predicate and Set Based Relators\<close> | |
text \<open> | |
Autoref uses set-based relators of type @{typ \<open>('a\<times>'b) set\<close>}, while the | |
transfer and lifting package of Isabelle/HOL uses predicate based relators | |
of type @{typ \<open>'a \<Rightarrow> 'b \<Rightarrow> bool\<close>}. This section defines some utilities | |
to convert between the two. | |
\<close> | |
definition "rel2p R x y \<equiv> (x,y)\<in>R" | |
definition "p2rel P \<equiv> {(x,y). P x y}" | |
lemma rel2pD: "\<lbrakk>rel2p R a b\<rbrakk> \<Longrightarrow> (a,b)\<in>R" by (auto simp: rel2p_def) | |
lemma p2relD: "\<lbrakk>(a,b) \<in> p2rel R\<rbrakk> \<Longrightarrow> R a b" by (auto simp: p2rel_def) | |
lemma rel2p_inv[simp]: | |
"rel2p (p2rel P) = P" | |
"p2rel (rel2p R) = R" | |
by (auto simp: rel2p_def[abs_def] p2rel_def) | |
named_theorems rel2p | |
named_theorems p2rel | |
lemma rel2p_dflt[rel2p]: | |
"rel2p Id = (=)" | |
"rel2p (A\<rightarrow>B) = rel_fun (rel2p A) (rel2p B)" | |
"rel2p (A\<times>\<^sub>rB) = rel_prod (rel2p A) (rel2p B)" | |
"rel2p (\<langle>A,B\<rangle>sum_rel) = rel_sum (rel2p A) (rel2p B)" | |
"rel2p (\<langle>A\<rangle>option_rel) = rel_option (rel2p A)" | |
"rel2p (\<langle>A\<rangle>list_rel) = list_all2 (rel2p A)" | |
by (auto | |
simp: rel2p_def[abs_def] | |
intro!: ext | |
simp: fun_rel_def rel_fun_def | |
simp: sum_rel_def elim: rel_sum.cases | |
simp: option_rel_def elim: option.rel_cases | |
simp: list_rel_def | |
simp: set_rel_def rel_set_def Image_def | |
) | |
lemma p2rel_dflt[p2rel]: | |
"p2rel (=) = Id" | |
"p2rel (rel_fun A B) = p2rel A \<rightarrow> p2rel B" | |
"p2rel (rel_prod A B) = p2rel A \<times>\<^sub>r p2rel B" | |
"p2rel (rel_sum A B) = \<langle>p2rel A, p2rel B\<rangle>sum_rel" | |
"p2rel (rel_option A) = \<langle>p2rel A\<rangle>option_rel" | |
"p2rel (list_all2 A) = \<langle>p2rel A\<rangle>list_rel" | |
by (auto | |
simp: p2rel_def[abs_def] | |
simp: fun_rel_def rel_fun_def | |
simp: sum_rel_def elim: rel_sum.cases | |
simp: option_rel_def elim: option.rel_cases | |
simp: list_rel_def | |
) | |
lemma [rel2p]: "rel2p (\<langle>A\<rangle>set_rel) = rel_set (rel2p A)" | |
unfolding set_rel_def rel_set_def rel2p_def[abs_def] | |
by blast | |
lemma [p2rel]: "left_unique A \<Longrightarrow> p2rel (rel_set A) = (\<langle>p2rel A\<rangle>set_rel)" | |
unfolding set_rel_def rel_set_def p2rel_def[abs_def] | |
by blast | |
lemma rel2p_comp: "rel2p A OO rel2p B = rel2p (A O B)" | |
by (auto simp: rel2p_def[abs_def] intro!: ext) | |
lemma rel2p_inj[simp]: "rel2p A = rel2p B \<longleftrightarrow> A=B" | |
by (auto simp: rel2p_def[abs_def]; meson) | |
subsection \<open>More Properties\<close> | |
(* TODO: Do compp-lemmas for other standard relations *) | |
lemma list_rel_compp: "\<langle>A O B\<rangle>list_rel = \<langle>A\<rangle>list_rel O \<langle>B\<rangle>list_rel" | |
using list.rel_compp[of "rel2p A" "rel2p B"] | |
by (auto simp: rel2p(2-)[symmetric] rel2p_comp) (* TODO: Not very systematic proof *) | |
lemma option_rel_compp: "\<langle>A O B\<rangle>option_rel = \<langle>A\<rangle>option_rel O \<langle>B\<rangle>option_rel" | |
using option.rel_compp[of "rel2p A" "rel2p B"] | |
by (auto simp: rel2p(2-)[symmetric] rel2p_comp) (* TODO: Not very systematic proof *) | |
lemma prod_rel_compp: "\<langle>A O B, C O D\<rangle>prod_rel = \<langle>A,C\<rangle>prod_rel O \<langle>B,D\<rangle>prod_rel" | |
using prod.rel_compp[of "rel2p A" "rel2p B" "rel2p C" "rel2p D"] | |
by (auto simp: rel2p(2-)[symmetric] rel2p_comp) (* TODO: Not very systematic proof *) | |
lemma sum_rel_compp: "\<langle>A O B, C O D\<rangle>sum_rel = \<langle>A,C\<rangle>sum_rel O \<langle>B,D\<rangle>sum_rel" | |
using sum.rel_compp[of "rel2p A" "rel2p B" "rel2p C" "rel2p D"] | |
by (auto simp: rel2p(2-)[symmetric] rel2p_comp) (* TODO: Not very systematic proof *) | |
lemma set_rel_compp: "\<langle>A O B\<rangle>set_rel = \<langle>A\<rangle>set_rel O \<langle>B\<rangle>set_rel" | |
using rel_set_OO[of "rel2p A" "rel2p B"] | |
by (auto simp: rel2p(2-)[symmetric] rel2p_comp) (* TODO: Not very systematic proof *) | |
lemma map_in_list_rel_conv: | |
shows "(l, map \<alpha> l) \<in> \<langle>br \<alpha> I\<rangle>list_rel \<longleftrightarrow> (\<forall>x\<in>set l. I x)" | |
by (induction l) (auto simp: in_br_conv) | |
lemma br_set_rel_alt: "(s',s)\<in>\<langle>br \<alpha> I\<rangle>set_rel \<longleftrightarrow> (s=\<alpha>`s' \<and> (\<forall>x\<in>s'. I x))" | |
by (auto simp: set_rel_def br_def) | |
(* TODO: Find proof that does not depend on br, and move to Misc *) | |
lemma finite_Image_sv: "single_valued R \<Longrightarrow> finite s \<Longrightarrow> finite (R``s)" | |
by (erule single_valued_as_brE) simp | |
lemma finite_set_rel_transfer: "\<lbrakk>(s,s')\<in>\<langle>R\<rangle>set_rel; single_valued R; finite s\<rbrakk> \<Longrightarrow> finite s'" | |
unfolding set_rel_alt | |
by (blast intro: finite_subset[OF _ finite_Image_sv]) | |
lemma finite_set_rel_transfer_back: "\<lbrakk>(s,s')\<in>\<langle>R\<rangle>set_rel; single_valued (R\<inverse>); finite s'\<rbrakk> \<Longrightarrow> finite s" | |
unfolding set_rel_alt | |
by (blast intro: finite_subset[OF _ finite_Image_sv]) | |
end | |