Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Properties of complex polynomials (not canonically represented). *) | |
(* ========================================================================= *) | |
needs "Complex/complexnumbers.ml";; | |
prioritize_complex();; | |
parse_as_infix("++",(16,"right"));; | |
parse_as_infix("**",(20,"right"));; | |
parse_as_infix("##",(20,"right"));; | |
parse_as_infix("divides",(14,"right"));; | |
parse_as_infix("exp",(22,"right"));; | |
do_list override_interface | |
["++",`poly_add:complex list->complex list->complex list`; | |
"**",`poly_mul:complex list->complex list->complex list`; | |
"##",`poly_cmul:complex->complex list->complex list`; | |
"neg",`poly_neg:complex list->complex list`; | |
"divides",`poly_divides:complex list->complex list->bool`; | |
"exp",`poly_exp:complex list -> num -> complex list`; | |
"diff",`poly_diff:complex list->complex list`];; | |
let SIMPLE_COMPLEX_ARITH tm = prove(tm,SIMPLE_COMPLEX_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Polynomials. *) | |
(* ------------------------------------------------------------------------- *) | |
let poly = new_recursive_definition list_RECURSION | |
`(poly [] x = Cx(&0)) /\ | |
(poly (CONS h t) x = h + x * poly t x)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Arithmetic operations on polynomials. *) | |
(* ------------------------------------------------------------------------- *) | |
let poly_add = new_recursive_definition list_RECURSION | |
`([] ++ l2 = l2) /\ | |
((CONS h t) ++ l2 = | |
(if l2 = [] then CONS h t | |
else CONS (h + HD l2) (t ++ TL l2)))`;; | |
let poly_cmul = new_recursive_definition list_RECURSION | |
`(c ## [] = []) /\ | |
(c ## (CONS h t) = CONS (c * h) (c ## t))`;; | |
let poly_neg = new_definition | |
`neg = (##) (--(Cx(&1)))`;; | |
let poly_mul = new_recursive_definition list_RECURSION | |
`([] ** l2 = []) /\ | |
((CONS h t) ** l2 = | |
if t = [] then h ## l2 | |
else (h ## l2) ++ CONS (Cx(&0)) (t ** l2))`;; | |
let poly_exp = new_recursive_definition num_RECURSION | |
`(p exp 0 = [Cx(&1)]) /\ | |
(p exp (SUC n) = p ** p exp n)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Useful clausifications. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ADD_CLAUSES = prove | |
(`([] ++ p2 = p2) /\ | |
(p1 ++ [] = p1) /\ | |
((CONS h1 t1) ++ (CONS h2 t2) = CONS (h1 + h2) (t1 ++ t2))`, | |
REWRITE_TAC[poly_add; NOT_CONS_NIL; HD; TL] THEN | |
SPEC_TAC(`p1:complex list`,`p1:complex list`) THEN | |
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[poly_add]);; | |
let POLY_CMUL_CLAUSES = prove | |
(`(c ## [] = []) /\ | |
(c ## (CONS h t) = CONS (c * h) (c ## t))`, | |
REWRITE_TAC[poly_cmul]);; | |
let POLY_NEG_CLAUSES = prove | |
(`(neg [] = []) /\ | |
(neg (CONS h t) = CONS (--h) (neg t))`, | |
REWRITE_TAC[poly_neg; POLY_CMUL_CLAUSES; | |
COMPLEX_MUL_LNEG; COMPLEX_MUL_LID]);; | |
let POLY_MUL_CLAUSES = prove | |
(`([] ** p2 = []) /\ | |
([h1] ** p2 = h1 ## p2) /\ | |
((CONS h1 (CONS k1 t1)) ** p2 = | |
h1 ## p2 ++ CONS (Cx(&0)) (CONS k1 t1 ** p2))`, | |
REWRITE_TAC[poly_mul; NOT_CONS_NIL]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Various natural consequences of syntactic definitions. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ADD = prove | |
(`!p1 p2 x. poly (p1 ++ p2) x = poly p1 x + poly p2 x`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC[poly_add; poly; COMPLEX_ADD_LID] THEN | |
LIST_INDUCT_TAC THEN | |
ASM_REWRITE_TAC[NOT_CONS_NIL; HD; TL; poly; COMPLEX_ADD_RID] THEN | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let POLY_CMUL = prove | |
(`!p c x. poly (c ## p) x = c * poly p x`, | |
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[poly; poly_cmul] THEN | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let POLY_NEG = prove | |
(`!p x. poly (neg p) x = --(poly p x)`, | |
REWRITE_TAC[poly_neg; POLY_CMUL] THEN | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let POLY_MUL = prove | |
(`!x p1 p2. poly (p1 ** p2) x = poly p1 x * poly p2 x`, | |
GEN_TAC THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[poly_mul; poly; COMPLEX_MUL_LZERO; POLY_CMUL; POLY_ADD] THEN | |
SPEC_TAC(`h:complex`,`h:complex`) THEN | |
SPEC_TAC(`t:complex list`,`t:complex list`) THEN | |
LIST_INDUCT_TAC THEN | |
REWRITE_TAC[poly_mul; POLY_CMUL; POLY_ADD; poly; POLY_CMUL; | |
COMPLEX_MUL_RZERO; COMPLEX_ADD_RID; NOT_CONS_NIL] THEN | |
ASM_REWRITE_TAC[POLY_ADD; POLY_CMUL; poly] THEN | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let POLY_EXP = prove | |
(`!p n x. poly (p exp n) x = (poly p x) pow n`, | |
GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[poly_exp; complex_pow; POLY_MUL] THEN | |
REWRITE_TAC[poly] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ADD_RZERO = prove | |
(`!p. poly (p ++ []) = poly p`, | |
REWRITE_TAC[FUN_EQ_THM; POLY_ADD; poly; COMPLEX_ADD_RID]);; | |
let POLY_MUL_ASSOC = prove | |
(`!p q r. poly (p ** (q ** r)) = poly ((p ** q) ** r)`, | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; COMPLEX_MUL_ASSOC]);; | |
let POLY_EXP_ADD = prove | |
(`!d n p. poly(p exp (n + d)) = poly(p exp n ** p exp d)`, | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN | |
INDUCT_TAC THEN ASM_REWRITE_TAC[POLY_MUL; ADD_CLAUSES; poly_exp; poly] THEN | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Key property that f(a) = 0 ==> (x - a) divides p(x). Very delicate! *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_LINEAR_REM = prove | |
(`!t h. ?q r. CONS h t = [r] ++ [--a; Cx(&1)] ** q`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC[] THENL | |
[GEN_TAC THEN EXISTS_TAC `[]:complex list` THEN | |
EXISTS_TAC `h:complex` THEN | |
REWRITE_TAC[poly_add; poly_mul; poly_cmul; NOT_CONS_NIL] THEN | |
REWRITE_TAC[HD; TL; COMPLEX_ADD_RID]; | |
X_GEN_TAC `k:complex` THEN | |
POP_ASSUM(STRIP_ASSUME_TAC o SPEC `h:complex`) THEN | |
EXISTS_TAC `CONS (r:complex) q` THEN EXISTS_TAC `r * a + k` THEN | |
ASM_REWRITE_TAC[POLY_ADD_CLAUSES; POLY_MUL_CLAUSES; poly_cmul] THEN | |
REWRITE_TAC[CONS_11] THEN CONJ_TAC THENL | |
[SIMPLE_COMPLEX_ARITH_TAC; ALL_TAC] THEN | |
SPEC_TAC(`q:complex list`,`q:complex list`) THEN | |
LIST_INDUCT_TAC THEN | |
REWRITE_TAC[POLY_ADD_CLAUSES; POLY_MUL_CLAUSES; poly_cmul] THEN | |
REWRITE_TAC[COMPLEX_ADD_RID; COMPLEX_MUL_LID] THEN | |
REWRITE_TAC[COMPLEX_ADD_AC]]);; | |
let POLY_LINEAR_DIVIDES = prove | |
(`!a p. (poly p a = Cx(&0)) <=> (p = []) \/ ?q. p = [--a; Cx(&1)] ** q`, | |
GEN_TAC THEN LIST_INDUCT_TAC THENL | |
[REWRITE_TAC[poly]; ALL_TAC] THEN | |
EQ_TAC THEN STRIP_TAC THENL | |
[DISJ2_TAC THEN STRIP_ASSUME_TAC(SPEC_ALL POLY_LINEAR_REM) THEN | |
EXISTS_TAC `q:complex list` THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `r = Cx(&0)` SUBST_ALL_TAC THENL | |
[UNDISCH_TAC `poly (CONS h t) a = Cx(&0)` THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[POLY_ADD; POLY_MUL] THEN | |
REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID; | |
COMPLEX_MUL_RID] THEN | |
REWRITE_TAC[COMPLEX_ADD_LINV] THEN SIMPLE_COMPLEX_ARITH_TAC; | |
REWRITE_TAC[poly_mul] THEN REWRITE_TAC[NOT_CONS_NIL] THEN | |
SPEC_TAC(`q:complex list`,`q:complex list`) THEN LIST_INDUCT_TAC THENL | |
[REWRITE_TAC[poly_cmul; poly_add; NOT_CONS_NIL; | |
HD; TL; COMPLEX_ADD_LID]; | |
REWRITE_TAC[poly_cmul; poly_add; NOT_CONS_NIL; | |
HD; TL; COMPLEX_ADD_LID]]]; | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[poly]; | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[poly] THEN | |
REWRITE_TAC[POLY_MUL] THEN REWRITE_TAC[poly] THEN | |
REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID; COMPLEX_MUL_RID] THEN | |
REWRITE_TAC[COMPLEX_ADD_LINV] THEN SIMPLE_COMPLEX_ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Thanks to the finesse of the above, we can use length rather than degree. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_LENGTH_MUL = prove | |
(`!q. LENGTH([--a; Cx(&1)] ** q) = SUC(LENGTH q)`, | |
let lemma = prove | |
(`!p h k a. LENGTH (k ## p ++ CONS h (a ## p)) = SUC(LENGTH p)`, | |
LIST_INDUCT_TAC THEN | |
ASM_REWRITE_TAC[poly_cmul; POLY_ADD_CLAUSES; LENGTH]) in | |
REWRITE_TAC[poly_mul; NOT_CONS_NIL; lemma]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Thus a nontrivial polynomial of degree n has no more than n roots. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ROOTS_INDEX_LEMMA = prove | |
(`!n. !p. ~(poly p = poly []) /\ (LENGTH p = n) | |
==> ?i. !x. (poly p x = Cx(&0)) ==> ?m. m <= n /\ (x = i m)`, | |
INDUCT_TAC THENL | |
[REWRITE_TAC[LENGTH_EQ_NIL] THEN MESON_TAC[]; | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `?a. poly p a = Cx(&0)` THENL | |
[UNDISCH_TAC `?a. poly p a = Cx(&0)` THEN | |
DISCH_THEN(CHOOSE_THEN MP_TAC) THEN | |
GEN_REWRITE_TAC LAND_CONV [POLY_LINEAR_DIVIDES] THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `q:complex list` SUBST_ALL_TAC) THEN | |
FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN | |
UNDISCH_TAC `~(poly ([-- a; Cx(&1)] ** q) = poly [])` THEN | |
POP_ASSUM MP_TAC THEN REWRITE_TAC[POLY_LENGTH_MUL; SUC_INJ] THEN | |
DISCH_TAC THEN ASM_CASES_TAC `poly q = poly []` THENL | |
[ASM_REWRITE_TAC[POLY_MUL; poly; COMPLEX_MUL_RZERO; FUN_EQ_THM]; | |
DISCH_THEN(K ALL_TAC)] THEN | |
DISCH_THEN(MP_TAC o SPEC `q:complex list`) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_TAC `i:num->complex`) THEN | |
EXISTS_TAC `\m. if m = SUC n then a:complex else i m` THEN | |
REWRITE_TAC[POLY_MUL; LE; COMPLEX_ENTIRE] THEN | |
X_GEN_TAC `x:complex` THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[DISCH_THEN(fun th -> EXISTS_TAC `SUC n` THEN MP_TAC th) THEN | |
REWRITE_TAC[poly] THEN SIMPLE_COMPLEX_ARITH_TAC; | |
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `m:num <= n` THEN ASM_REWRITE_TAC[] THEN ARITH_TAC]; | |
UNDISCH_TAC `~(?a. poly p a = Cx(&0))` THEN | |
REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN ASM_REWRITE_TAC[]]]);; | |
let POLY_ROOTS_INDEX_LENGTH = prove | |
(`!p. ~(poly p = poly []) | |
==> ?i. !x. (poly p(x) = Cx(&0)) ==> ?n. n <= LENGTH p /\ (x = i n)`, | |
MESON_TAC[POLY_ROOTS_INDEX_LEMMA]);; | |
let POLY_ROOTS_FINITE_LEMMA = prove | |
(`!p. ~(poly p = poly []) | |
==> ?N i. !x. (poly p(x) = Cx(&0)) ==> ?n:num. n < N /\ (x = i n)`, | |
MESON_TAC[POLY_ROOTS_INDEX_LENGTH; LT_SUC_LE]);; | |
let FINITE_LEMMA = prove | |
(`!i N P. (!x. P x ==> ?n:num. n < N /\ (x = i n)) | |
==> ?a. !x. P x ==> norm(x) < a`, | |
GEN_TAC THEN ONCE_REWRITE_TAC[RIGHT_IMP_EXISTS_THM] THEN INDUCT_TAC THENL | |
[REWRITE_TAC[LT] THEN MESON_TAC[]; ALL_TAC] THEN | |
X_GEN_TAC `P:complex->bool` THEN | |
POP_ASSUM(MP_TAC o SPEC `\z. P z /\ ~(z = (i:num->complex) N)`) THEN | |
DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN | |
EXISTS_TAC `abs(a) + norm(i(N:num)) + &1` THEN | |
POP_ASSUM MP_TAC THEN REWRITE_TAC[LT] THEN | |
SUBGOAL_THEN `(!x. norm(x) < abs(a) + norm(x) + &1) /\ | |
(!x y. norm(x) < a ==> norm(x) < abs(a) + norm(y) + &1)` | |
(fun th -> MP_TAC th THEN MESON_TAC[]) THEN | |
CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN | |
REPEAT GEN_TAC THEN MP_TAC(SPEC `y:complex` COMPLEX_NORM_POS) THEN | |
REAL_ARITH_TAC);; | |
let POLY_ROOTS_FINITE = prove | |
(`!p. ~(poly p = poly []) <=> | |
?N i. !x. (poly p(x) = Cx(&0)) ==> ?n:num. n < N /\ (x = i n)`, | |
GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE_LEMMA] THEN | |
REWRITE_TAC[FUN_EQ_THM; LEFT_IMP_EXISTS_THM; NOT_FORALL_THM; poly] THEN | |
MP_TAC(GENL [`i:num->complex`; `N:num`] | |
(SPECL [`i:num->complex`; `N:num`; `\x. poly p x = Cx(&0)`] | |
FINITE_LEMMA)) THEN | |
REWRITE_TAC[] THEN MESON_TAC[REAL_ARITH `~(abs(x) < x)`; COMPLEX_NORM_CX]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence get entirety and cancellation for polynomials. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ENTIRE_LEMMA = prove | |
(`!p q. ~(poly p = poly []) /\ ~(poly q = poly []) | |
==> ~(poly (p ** q) = poly [])`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE] THEN | |
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `N2:num` (X_CHOOSE_TAC `i2:num->complex`)) THEN | |
DISCH_THEN(X_CHOOSE_THEN `N1:num` (X_CHOOSE_TAC `i1:num->complex`)) THEN | |
EXISTS_TAC `N1 + N2:num` THEN | |
EXISTS_TAC `\n:num. if n < N1 then i1(n):complex else i2(n - N1)` THEN | |
X_GEN_TAC `x:complex` THEN REWRITE_TAC[COMPLEX_ENTIRE; POLY_MUL] THEN | |
DISCH_THEN(DISJ_CASES_THEN (ANTE_RES_THEN (X_CHOOSE_TAC `n:num`))) THENL | |
[EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(MP_TAC o CONJUNCT1) THEN ARITH_TAC; | |
EXISTS_TAC `N1 + n:num` THEN ASM_REWRITE_TAC[LT_ADD_LCANCEL] THEN | |
REWRITE_TAC[ARITH_RULE `~(m + n < m:num)`] THEN | |
AP_TERM_TAC THEN ARITH_TAC]);; | |
let POLY_ENTIRE = prove | |
(`!p q. (poly (p ** q) = poly []) <=> | |
(poly p = poly []) \/ (poly q = poly [])`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[MESON_TAC[POLY_ENTIRE_LEMMA]; | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN | |
STRIP_TAC THEN | |
ASM_REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_MUL_LZERO; poly]]);; | |
let POLY_MUL_LCANCEL = prove | |
(`!p q r. (poly (p ** q) = poly (p ** r)) <=> | |
(poly p = poly []) \/ (poly q = poly r)`, | |
let lemma1 = prove | |
(`!p q. (poly (p ++ neg q) = poly []) <=> (poly p = poly q)`, | |
REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_NEG; poly] THEN | |
REWRITE_TAC[SIMPLE_COMPLEX_ARITH `(p + --q = Cx(&0)) <=> (p = q)`]) in | |
let lemma2 = prove | |
(`!p q r. poly (p ** q ++ neg(p ** r)) = poly (p ** (q ++ neg(r)))`, | |
REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_NEG; POLY_MUL] THEN | |
SIMPLE_COMPLEX_ARITH_TAC) in | |
ONCE_REWRITE_TAC[GSYM lemma1] THEN | |
REWRITE_TAC[lemma2; POLY_ENTIRE] THEN | |
REWRITE_TAC[lemma1]);; | |
let POLY_EXP_EQ_0 = prove | |
(`!p n. (poly (p exp n) = poly []) <=> (poly p = poly []) /\ ~(n = 0)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN | |
REWRITE_TAC[LEFT_AND_FORALL_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN | |
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN | |
REWRITE_TAC[poly_exp; poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID; | |
CX_INJ; REAL_OF_NUM_EQ; ARITH; NOT_SUC] THEN | |
ASM_REWRITE_TAC[POLY_MUL; poly; COMPLEX_ENTIRE] THEN | |
CONV_TAC TAUT);; | |
let POLY_PRIME_EQ_0 = prove | |
(`!a. ~(poly [a ; Cx(&1)] = poly [])`, | |
GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN | |
DISCH_THEN(MP_TAC o SPEC `Cx(&1) - a`) THEN | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let POLY_EXP_PRIME_EQ_0 = prove | |
(`!a n. ~(poly ([a ; Cx(&1)] exp n) = poly [])`, | |
MESON_TAC[POLY_EXP_EQ_0; POLY_PRIME_EQ_0]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Can also prove a more "constructive" notion of polynomial being trivial. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ZERO_LEMMA = prove | |
(`!h t. (poly (CONS h t) = poly []) ==> (h = Cx(&0)) /\ (poly t = poly [])`, | |
let lemma = REWRITE_RULE[FUN_EQ_THM; poly] POLY_ROOTS_FINITE in | |
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN | |
ASM_CASES_TAC `h = Cx(&0)` THEN ASM_REWRITE_TAC[] THENL | |
[REWRITE_TAC[COMPLEX_ADD_LID]; | |
DISCH_THEN(MP_TAC o SPEC `Cx(&0)`) THEN | |
POP_ASSUM MP_TAC THEN SIMPLE_COMPLEX_ARITH_TAC] THEN | |
CONV_TAC CONTRAPOS_CONV THEN | |
DISCH_THEN(MP_TAC o REWRITE_RULE[lemma]) THEN | |
DISCH_THEN(X_CHOOSE_THEN `N:num` (X_CHOOSE_TAC `i:num->complex`)) THEN | |
MP_TAC(SPECL | |
[`i:num->complex`; `N:num`; `\x. poly t x = Cx(&0)`] FINITE_LEMMA) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN | |
DISCH_THEN(MP_TAC o SPEC `Cx(abs(a) + &1)`) THEN | |
REWRITE_TAC[COMPLEX_ENTIRE; DE_MORGAN_THM] THEN CONJ_TAC THENL | |
[REWRITE_TAC[CX_INJ] THEN REAL_ARITH_TAC; | |
DISCH_THEN(MP_TAC o MATCH_MP | |
(ASSUME `!x. (poly t x = Cx(&0)) ==> norm(x) < a`)) THEN | |
REWRITE_TAC[COMPLEX_NORM_CX] THEN REAL_ARITH_TAC]);; | |
let POLY_ZERO = prove | |
(`!p. (poly p = poly []) <=> ALL (\c. c = Cx(&0)) p`, | |
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN EQ_TAC THENL | |
[DISCH_THEN(MP_TAC o MATCH_MP POLY_ZERO_LEMMA) THEN ASM_REWRITE_TAC[]; | |
POP_ASSUM(SUBST1_TAC o SYM) THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[FUN_EQ_THM; poly] THEN SIMPLE_COMPLEX_ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Basics of divisibility. *) | |
(* ------------------------------------------------------------------------- *) | |
let divides = new_definition | |
`p1 divides p2 <=> ?q. poly p2 = poly (p1 ** q)`;; | |
let POLY_PRIMES = prove | |
(`!a p q. [a; Cx(&1)] divides (p ** q) <=> | |
[a; Cx(&1)] divides p \/ [a; Cx(&1)] divides q`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[divides; POLY_MUL; FUN_EQ_THM; poly] THEN | |
REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_ADD_RID; COMPLEX_MUL_RID] THEN | |
EQ_TAC THENL | |
[DISCH_THEN(X_CHOOSE_THEN `r:complex list` (MP_TAC o SPEC `--a`)) THEN | |
REWRITE_TAC[COMPLEX_ENTIRE; GSYM complex_sub; | |
COMPLEX_SUB_REFL; COMPLEX_MUL_LZERO] THEN | |
DISCH_THEN DISJ_CASES_TAC THENL [DISJ1_TAC; DISJ2_TAC] THEN | |
(POP_ASSUM(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN | |
REWRITE_TAC[COMPLEX_NEG_NEG] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC | |
(X_CHOOSE_THEN `s:complex list` SUBST_ALL_TAC)) THENL | |
[EXISTS_TAC `[]:complex list` THEN REWRITE_TAC[poly; COMPLEX_MUL_RZERO]; | |
EXISTS_TAC `s:complex list` THEN GEN_TAC THEN | |
REWRITE_TAC[POLY_MUL; poly] THEN SIMPLE_COMPLEX_ARITH_TAC]); | |
DISCH_THEN(DISJ_CASES_THEN(X_CHOOSE_TAC `s:complex list`)) THEN | |
ASM_REWRITE_TAC[] THENL | |
[EXISTS_TAC `s ** q`; EXISTS_TAC `p ** s`] THEN | |
GEN_TAC THEN REWRITE_TAC[POLY_MUL] THEN SIMPLE_COMPLEX_ARITH_TAC]);; | |
let POLY_DIVIDES_REFL = prove | |
(`!p. p divides p`, | |
GEN_TAC THEN REWRITE_TAC[divides] THEN EXISTS_TAC `[Cx(&1)]` THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let POLY_DIVIDES_TRANS = prove | |
(`!p q r. p divides q /\ q divides r ==> p divides r`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN | |
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:complex list` ASSUME_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:complex list` ASSUME_TAC) THEN | |
EXISTS_TAC `t ** s` THEN | |
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; COMPLEX_MUL_ASSOC]);; | |
let POLY_DIVIDES_EXP = prove | |
(`!p m n. m <= n ==> (p exp m) divides (p exp n)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS] THEN | |
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN | |
SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THEN | |
REWRITE_TAC[ADD_CLAUSES; POLY_DIVIDES_REFL] THEN | |
MATCH_MP_TAC POLY_DIVIDES_TRANS THEN | |
EXISTS_TAC `p exp (m + d)` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[divides] THEN EXISTS_TAC `p:complex list` THEN | |
REWRITE_TAC[poly_exp; FUN_EQ_THM; POLY_MUL] THEN | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let POLY_EXP_DIVIDES = prove | |
(`!p q m n. (p exp n) divides q /\ m <= n ==> (p exp m) divides q`, | |
MESON_TAC[POLY_DIVIDES_TRANS; POLY_DIVIDES_EXP]);; | |
let POLY_DIVIDES_ADD = prove | |
(`!p q r. p divides q /\ p divides r ==> p divides (q ++ r)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN | |
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:complex list` ASSUME_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:complex list` ASSUME_TAC) THEN | |
EXISTS_TAC `t ++ s` THEN | |
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_MUL] THEN | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let POLY_DIVIDES_SUB = prove | |
(`!p q r. p divides q /\ p divides (q ++ r) ==> p divides r`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN | |
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:complex list` ASSUME_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:complex list` ASSUME_TAC) THEN | |
EXISTS_TAC `s ++ neg(t)` THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_MUL; POLY_NEG] THEN | |
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN | |
REWRITE_TAC[COMPLEX_ADD_LDISTRIB; COMPLEX_MUL_RNEG] THEN | |
ASM_REWRITE_TAC[] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let POLY_DIVIDES_SUB2 = prove | |
(`!p q r. p divides r /\ p divides (q ++ r) ==> p divides q`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC POLY_DIVIDES_SUB THEN | |
EXISTS_TAC `r:complex list` THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `p divides (q ++ r)` THEN | |
REWRITE_TAC[divides; POLY_ADD; FUN_EQ_THM; POLY_MUL] THEN | |
DISCH_THEN(X_CHOOSE_TAC `s:complex list`) THEN | |
EXISTS_TAC `s:complex list` THEN | |
X_GEN_TAC `x:complex` THEN POP_ASSUM(MP_TAC o SPEC `x:complex`) THEN | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let POLY_DIVIDES_ZERO = prove | |
(`!p q. (poly p = poly []) ==> q divides p`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[divides] THEN | |
EXISTS_TAC `[]:complex list` THEN | |
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO]);; | |
(* ------------------------------------------------------------------------- *) | |
(* At last, we can consider the order of a root. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ORDER_EXISTS = prove | |
(`!a d. !p. (LENGTH p = d) /\ ~(poly p = poly []) | |
==> ?n. ([--a; Cx(&1)] exp n) divides p /\ | |
~(([--a; Cx(&1)] exp (SUC n)) divides p)`, | |
GEN_TAC THEN | |
(STRIP_ASSUME_TAC o prove_recursive_functions_exist num_RECURSION) | |
`(!p q. mulexp 0 p q = q) /\ | |
(!p q n. mulexp (SUC n) p q = p ** (mulexp n p q))` THEN | |
SUBGOAL_THEN | |
`!d. !p. (LENGTH p = d) /\ ~(poly p = poly []) | |
==> ?n q. (p = mulexp (n:num) [--a; Cx(&1)] q) /\ | |
~(poly q a = Cx(&0))` | |
MP_TAC THENL | |
[INDUCT_TAC THENL | |
[REWRITE_TAC[LENGTH_EQ_NIL] THEN MESON_TAC[]; ALL_TAC] THEN | |
X_GEN_TAC `p:complex list` THEN | |
ASM_CASES_TAC `poly p a = Cx(&0)` THENL | |
[STRIP_TAC THEN UNDISCH_TAC `poly p a = Cx(&0)` THEN | |
DISCH_THEN(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `q:complex list` SUBST_ALL_TAC) THEN | |
UNDISCH_TAC | |
`!p. (LENGTH p = d) /\ ~(poly p = poly []) | |
==> ?n q. (p = mulexp (n:num) [--a; Cx(&1)] q) /\ | |
~(poly q a = Cx(&0))` THEN | |
DISCH_THEN(MP_TAC o SPEC `q:complex list`) THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[POLY_LENGTH_MUL; POLY_ENTIRE; | |
DE_MORGAN_THM; SUC_INJ]) THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `n:num` | |
(X_CHOOSE_THEN `s:complex list` STRIP_ASSUME_TAC)) THEN | |
EXISTS_TAC `SUC n` THEN EXISTS_TAC `s:complex list` THEN | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC THEN EXISTS_TAC `0` THEN EXISTS_TAC `p:complex list` THEN | |
ASM_REWRITE_TAC[]]; | |
DISCH_TAC THEN REPEAT GEN_TAC THEN | |
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `n:num` | |
(X_CHOOSE_THEN `s:complex list` STRIP_ASSUME_TAC)) THEN | |
EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[divides] THEN CONJ_TAC THENL | |
[EXISTS_TAC `s:complex list` THEN | |
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[poly_exp; FUN_EQ_THM; POLY_MUL; poly] THEN | |
SIMPLE_COMPLEX_ARITH_TAC; | |
DISCH_THEN(X_CHOOSE_THEN `r:complex list` MP_TAC) THEN | |
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[] THENL | |
[UNDISCH_TAC `~(poly s a = Cx(&0))` THEN CONV_TAC CONTRAPOS_CONV THEN | |
REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN | |
REWRITE_TAC[poly; poly_exp; POLY_MUL] THEN SIMPLE_COMPLEX_ARITH_TAC; | |
REWRITE_TAC[] THEN ONCE_ASM_REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[poly_exp] THEN | |
REWRITE_TAC[GSYM POLY_MUL_ASSOC; POLY_MUL_LCANCEL] THEN | |
REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THENL | |
[REWRITE_TAC[FUN_EQ_THM] THEN | |
DISCH_THEN(MP_TAC o SPEC `a + Cx(&1)`) THEN | |
REWRITE_TAC[poly] THEN SIMPLE_COMPLEX_ARITH_TAC; | |
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[]]]]]);; | |
let POLY_ORDER = prove | |
(`!p a. ~(poly p = poly []) | |
==> ?!n. ([--a; Cx(&1)] exp n) divides p /\ | |
~(([--a; Cx(&1)] exp (SUC n)) divides p)`, | |
MESON_TAC[POLY_ORDER_EXISTS; POLY_EXP_DIVIDES; LE_SUC_LT; LT_CASES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of order. *) | |
(* ------------------------------------------------------------------------- *) | |
let order = new_definition | |
`order a p = @n. ([--a; Cx(&1)] exp n) divides p /\ | |
~(([--a; Cx(&1)] exp (SUC n)) divides p)`;; | |
let ORDER = prove | |
(`!p a n. ([--a; Cx(&1)] exp n) divides p /\ | |
~(([--a; Cx(&1)] exp (SUC n)) divides p) <=> | |
(n = order a p) /\ | |
~(poly p = poly [])`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[order] THEN | |
EQ_TAC THEN STRIP_TAC THENL | |
[SUBGOAL_THEN `~(poly p = poly [])` ASSUME_TAC THENL | |
[FIRST_ASSUM(UNDISCH_TAC o check is_neg o concl) THEN | |
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[divides] THEN | |
DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `[]:complex list` THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO]; | |
ASM_REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN | |
MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[]]; | |
ONCE_ASM_REWRITE_TAC[] THEN CONV_TAC SELECT_CONV] THEN | |
ASM_MESON_TAC[POLY_ORDER]);; | |
let ORDER_THM = prove | |
(`!p a. ~(poly p = poly []) | |
==> ([--a; Cx(&1)] exp (order a p)) divides p /\ | |
~(([--a; Cx(&1)] exp (SUC(order a p))) divides p)`, | |
MESON_TAC[ORDER]);; | |
let ORDER_UNIQUE = prove | |
(`!p a n. ~(poly p = poly []) /\ | |
([--a; Cx(&1)] exp n) divides p /\ | |
~(([--a; Cx(&1)] exp (SUC n)) divides p) | |
==> (n = order a p)`, | |
MESON_TAC[ORDER]);; | |
let ORDER_POLY = prove | |
(`!p q a. (poly p = poly q) ==> (order a p = order a q)`, | |
REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC[order; divides; FUN_EQ_THM; POLY_MUL]);; | |
let ORDER_ROOT = prove | |
(`!p a. (poly p a = Cx(&0)) <=> (poly p = poly []) \/ ~(order a p = 0)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `poly p = poly []` THEN | |
ASM_REWRITE_TAC[poly] THEN EQ_TAC THENL | |
[DISCH_THEN(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN | |
ASM_CASES_TAC `p:complex list = []` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `q:complex list` SUBST_ALL_TAC) THEN DISCH_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPEC `a:complex` o MATCH_MP ORDER_THM) THEN | |
ASM_REWRITE_TAC[poly_exp; DE_MORGAN_THM] THEN DISJ2_TAC THEN | |
REWRITE_TAC[divides] THEN EXISTS_TAC `q:complex list` THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly] THEN SIMPLE_COMPLEX_ARITH_TAC; | |
DISCH_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPEC `a:complex` o MATCH_MP ORDER_THM) THEN | |
UNDISCH_TAC `~(order a p = 0)` THEN | |
SPEC_TAC(`order a p`,`n:num`) THEN | |
INDUCT_TAC THEN ASM_REWRITE_TAC[poly_exp; NOT_SUC] THEN | |
DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[divides] THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:complex list` SUBST1_TAC) THEN | |
REWRITE_TAC[POLY_MUL; poly] THEN SIMPLE_COMPLEX_ARITH_TAC]);; | |
let ORDER_DIVIDES = prove | |
(`!p a n. ([--a; Cx(&1)] exp n) divides p <=> | |
(poly p = poly []) \/ n <= order a p`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `poly p = poly []` THEN | |
ASM_REWRITE_TAC[] THENL | |
[ASM_REWRITE_TAC[divides] THEN EXISTS_TAC `[]:complex list` THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO]; | |
ASM_MESON_TAC[ORDER_THM; POLY_EXP_DIVIDES; NOT_LE; LE_SUC_LT]]);; | |
let ORDER_DECOMP = prove | |
(`!p a. ~(poly p = poly []) | |
==> ?q. (poly p = poly (([--a; Cx(&1)] exp (order a p)) ** q)) /\ | |
~([--a; Cx(&1)] divides q)`, | |
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP ORDER_THM) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC o SPEC `a:complex`) THEN | |
DISCH_THEN(X_CHOOSE_TAC `q:complex list` o REWRITE_RULE[divides]) THEN | |
EXISTS_TAC `q:complex list` THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_TAC `r: complex list` o REWRITE_RULE[divides]) THEN | |
UNDISCH_TAC `~([-- a; Cx(&1)] exp SUC (order a p) divides p)` THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[divides] THEN | |
EXISTS_TAC `r:complex list` THEN | |
ASM_REWRITE_TAC[POLY_MUL; FUN_EQ_THM; poly_exp] THEN | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Important composition properties of orders. *) | |
(* ------------------------------------------------------------------------- *) | |
let ORDER_MUL = prove | |
(`!a p q. ~(poly (p ** q) = poly []) ==> | |
(order a (p ** q) = order a p + order a q)`, | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN | |
REWRITE_TAC[POLY_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN | |
SUBGOAL_THEN `(order a p + order a q = order a (p ** q)) /\ | |
~(poly (p ** q) = poly [])` | |
MP_TAC THENL [ALL_TAC; MESON_TAC[]] THEN | |
REWRITE_TAC[GSYM ORDER] THEN CONJ_TAC THENL | |
[MP_TAC(CONJUNCT1 (SPEC `a:complex` | |
(MATCH_MP ORDER_THM (ASSUME `~(poly p = poly [])`)))) THEN | |
DISCH_THEN(X_CHOOSE_TAC `r: complex list` o REWRITE_RULE[divides]) THEN | |
MP_TAC(CONJUNCT1 (SPEC `a:complex` | |
(MATCH_MP ORDER_THM (ASSUME `~(poly q = poly [])`)))) THEN | |
DISCH_THEN(X_CHOOSE_TAC `s: complex list` o REWRITE_RULE[divides]) THEN | |
REWRITE_TAC[divides; FUN_EQ_THM] THEN EXISTS_TAC `s ** r` THEN | |
ASM_REWRITE_TAC[POLY_MUL; POLY_EXP_ADD] THEN SIMPLE_COMPLEX_ARITH_TAC; | |
X_CHOOSE_THEN `r: complex list` STRIP_ASSUME_TAC | |
(SPEC `a:complex` (MATCH_MP ORDER_DECOMP | |
(ASSUME `~(poly p = poly [])`))) THEN | |
X_CHOOSE_THEN `s: complex list` STRIP_ASSUME_TAC | |
(SPEC `a:complex` (MATCH_MP ORDER_DECOMP | |
(ASSUME `~(poly q = poly [])`))) THEN | |
ASM_REWRITE_TAC[divides; FUN_EQ_THM; POLY_EXP_ADD; POLY_MUL; poly_exp] THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:complex list` STRIP_ASSUME_TAC) THEN | |
SUBGOAL_THEN `[--a; Cx(&1)] divides (r ** s)` MP_TAC THENL | |
[ALL_TAC; ASM_REWRITE_TAC[POLY_PRIMES]] THEN | |
REWRITE_TAC[divides] THEN EXISTS_TAC `t:complex list` THEN | |
SUBGOAL_THEN `poly ([-- a; Cx(&1)] exp (order a p) ** r ** s) = | |
poly ([-- a; Cx(&1)] exp (order a p) ** | |
([-- a; Cx(&1)] ** t))` | |
MP_TAC THENL | |
[ALL_TAC; MESON_TAC[POLY_MUL_LCANCEL; POLY_EXP_PRIME_EQ_0]] THEN | |
SUBGOAL_THEN `poly ([-- a; Cx(&1)] exp (order a q) ** | |
[-- a; Cx(&1)] exp (order a p) ** r ** s) = | |
poly ([-- a; Cx(&1)] exp (order a q) ** | |
[-- a; Cx(&1)] exp (order a p) ** | |
[-- a; Cx(&1)] ** t)` | |
MP_TAC THENL | |
[ALL_TAC; MESON_TAC[POLY_MUL_LCANCEL; POLY_EXP_PRIME_EQ_0]] THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_ADD] THEN | |
FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN | |
REWRITE_TAC[COMPLEX_MUL_AC]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Normalization of a polynomial. *) | |
(* ------------------------------------------------------------------------- *) | |
let normalize = new_recursive_definition list_RECURSION | |
`(normalize [] = []) /\ | |
(normalize (CONS h t) = | |
if normalize t = [] then if h = Cx(&0) then [] else [h] | |
else CONS h (normalize t))`;; | |
let POLY_NORMALIZE = prove | |
(`!p. poly (normalize p) = poly p`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC[normalize; poly] THEN | |
ASM_CASES_TAC `h = Cx(&0)` THEN ASM_REWRITE_TAC[] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[poly; FUN_EQ_THM] THEN | |
UNDISCH_TAC `poly (normalize t) = poly t` THEN | |
DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[poly] THEN | |
REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_ADD_LID]);; | |
let LENGTH_NORMALIZE_LE = prove | |
(`!p. LENGTH(normalize p) <= LENGTH p`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; normalize; LE_REFL] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH; LE_SUC] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[LENGTH] THEN ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* The degree of a polynomial. *) | |
(* ------------------------------------------------------------------------- *) | |
let degree = new_definition | |
`degree p = PRE(LENGTH(normalize p))`;; | |
let DEGREE_ZERO = prove | |
(`!p. (poly p = poly []) ==> (degree p = 0)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[degree] THEN | |
SUBGOAL_THEN `normalize p = []` SUBST1_TAC THENL | |
[POP_ASSUM MP_TAC THEN SPEC_TAC(`p:complex list`,`p:complex list`) THEN | |
REWRITE_TAC[POLY_ZERO] THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[normalize; ALL] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `normalize t = []` (fun th -> REWRITE_TAC[th]) THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; | |
REWRITE_TAC[LENGTH; PRE]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Show that the degree is welldefined. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_CONS_EQ = prove | |
(`(poly (CONS h1 t1) = poly (CONS h2 t2)) <=> | |
(h1 = h2) /\ (poly t1 = poly t2)`, | |
REWRITE_TAC[FUN_EQ_THM] THEN EQ_TAC THENL [ALL_TAC; SIMP_TAC[poly]] THEN | |
ONCE_REWRITE_TAC[SIMPLE_COMPLEX_ARITH `(a = b) <=> (a + --b = Cx(&0))`] THEN | |
REWRITE_TAC[GSYM POLY_NEG; GSYM POLY_ADD] THEN DISCH_TAC THEN | |
SUBGOAL_THEN `poly (CONS h1 t1 ++ neg(CONS h2 t2)) = poly []` MP_TAC THENL | |
[ASM_REWRITE_TAC[poly; FUN_EQ_THM]; ALL_TAC] THEN | |
REWRITE_TAC[poly_neg; poly_cmul; poly_add; NOT_CONS_NIL; HD; TL] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP POLY_ZERO_LEMMA) THEN | |
SIMP_TAC[poly; COMPLEX_MUL_LNEG; COMPLEX_MUL_LID]);; | |
let POLY_NORMALIZE_ZERO = prove | |
(`!p. (poly p = poly []) <=> (normalize p = [])`, | |
REWRITE_TAC[POLY_ZERO] THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; normalize] THEN | |
ASM_CASES_TAC `normalize t = []` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[NOT_CONS_NIL] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[NOT_CONS_NIL]);; | |
let POLY_NORMALIZE_EQ_LEMMA = prove | |
(`!p q. (poly p = poly q) ==> (normalize p = normalize q)`, | |
LIST_INDUCT_TAC THENL | |
[MESON_TAC[POLY_NORMALIZE_ZERO]; ALL_TAC] THEN | |
LIST_INDUCT_TAC THENL | |
[MESON_TAC[POLY_NORMALIZE_ZERO]; ALL_TAC] THEN | |
REWRITE_TAC[POLY_CONS_EQ] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[normalize] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `t':complex list`) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN SUBST1_TAC THEN REFL_TAC);; | |
let POLY_NORMALIZE_EQ = prove | |
(`!p q. (poly p = poly q) <=> (normalize p = normalize q)`, | |
MESON_TAC[POLY_NORMALIZE_EQ_LEMMA; POLY_NORMALIZE]);; | |
let DEGREE_WELLDEF = prove | |
(`!p q. (poly p = poly q) ==> (degree p = degree q)`, | |
SIMP_TAC[degree; POLY_NORMALIZE_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Degree of a product with a power of linear terms. *) | |
(* ------------------------------------------------------------------------- *) | |
let NORMALIZE_EQ = prove | |
(`!p. ~(LAST p = Cx(&0)) ==> (normalize p = p)`, | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[NOT_CONS_NIL] THEN | |
REWRITE_TAC[normalize; LAST] THEN REPEAT GEN_TAC THEN | |
REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[normalize]));; | |
let NORMAL_DEGREE = prove | |
(`!p. ~(LAST p = Cx(&0)) ==> (degree p = LENGTH p - 1)`, | |
SIMP_TAC[degree; NORMALIZE_EQ] THEN REPEAT STRIP_TAC THEN ARITH_TAC);; | |
let LAST_LINEAR_MUL_LEMMA = prove | |
(`!p a b x. | |
LAST(a ## p ++ CONS x (b ## p)) = if p = [] then x else b * LAST(p)`, | |
LIST_INDUCT_TAC THEN | |
REWRITE_TAC[poly_cmul; poly_add; LAST; HD; TL; NOT_CONS_NIL] THEN | |
REPEAT GEN_TAC THEN | |
SUBGOAL_THEN `~(a ## t ++ CONS (b * h) (b ## t) = [])` | |
ASSUME_TAC THENL | |
[SPEC_TAC(`t:complex list`,`t:complex list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[poly_cmul; poly_add; NOT_CONS_NIL]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);; | |
let LAST_LINEAR_MUL = prove | |
(`!p. ~(p = []) ==> (LAST([a; Cx(&1)] ** p) = LAST p)`, | |
SIMP_TAC[poly_mul; NOT_CONS_NIL; LAST_LINEAR_MUL_LEMMA; COMPLEX_MUL_LID]);; | |
let NORMAL_NORMALIZE = prove | |
(`!p. ~(normalize p = []) ==> ~(LAST(normalize p) = Cx(&0))`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC[normalize] THEN | |
POP_ASSUM MP_TAC THEN ASM_CASES_TAC `normalize t = []` THEN | |
ASM_REWRITE_TAC[LAST; NOT_CONS_NIL] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[LAST]);; | |
let LINEAR_MUL_DEGREE = prove | |
(`!p a. ~(poly p = poly []) ==> (degree([a; Cx(&1)] ** p) = degree(p) + 1)`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `degree([a; Cx(&1)] ** normalize p) = degree(normalize p) + 1` | |
MP_TAC THENL | |
[FIRST_ASSUM(ASSUME_TAC o | |
GEN_REWRITE_RULE RAND_CONV [POLY_NORMALIZE_ZERO]) THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP NORMAL_NORMALIZE) THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP LAST_LINEAR_MUL) THEN | |
SIMP_TAC[NORMAL_DEGREE] THEN REPEAT STRIP_TAC THEN | |
SUBST1_TAC(SYM(SPEC `a:complex` COMPLEX_NEG_NEG)) THEN | |
REWRITE_TAC[POLY_LENGTH_MUL] THEN | |
UNDISCH_TAC `~(normalize p = [])` THEN | |
SPEC_TAC(`normalize p`,`p:complex list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[NOT_CONS_NIL; LENGTH] THEN ARITH_TAC; | |
MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THEN | |
TRY(AP_THM_TAC THEN AP_TERM_TAC) THEN MATCH_MP_TAC DEGREE_WELLDEF THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_NORMALIZE]]);; | |
let LINEAR_POW_MUL_DEGREE = prove | |
(`!n a p. degree([a; Cx(&1)] exp n ** p) = | |
if poly p = poly [] then 0 else degree p + n`, | |
INDUCT_TAC THEN REWRITE_TAC[poly_exp] THENL | |
[GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL | |
[MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `degree(p)` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC DEGREE_WELLDEF THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO; | |
COMPLEX_ADD_RID; COMPLEX_MUL_LID]; | |
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `degree []` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC DEGREE_WELLDEF THEN ASM_REWRITE_TAC[]; | |
REWRITE_TAC[degree; LENGTH; normalize; ARITH]]]; | |
REWRITE_TAC[ADD_CLAUSES] THEN MATCH_MP_TAC DEGREE_WELLDEF THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO; | |
COMPLEX_ADD_RID; COMPLEX_MUL_LID]]; | |
ALL_TAC] THEN | |
REPEAT GEN_TAC THEN MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `degree([a; Cx (&1)] exp n ** ([a; Cx (&1)] ** p))` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC DEGREE_WELLDEF THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; COMPLEX_MUL_AC]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[POLY_ENTIRE] THEN | |
ASM_CASES_TAC `poly p = poly []` THEN ASM_REWRITE_TAC[] THEN | |
ASM_SIMP_TAC[LINEAR_MUL_DEGREE] THEN | |
SUBGOAL_THEN `~(poly [a; Cx (&1)] = poly [])` | |
(fun th -> REWRITE_TAC[th] THEN ARITH_TAC) THEN | |
REWRITE_TAC[POLY_NORMALIZE_EQ] THEN | |
REWRITE_TAC[normalize; CX_INJ; REAL_OF_NUM_EQ; ARITH; NOT_CONS_NIL]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Show that the order of a root (or nonroot!) is bounded by degree. *) | |
(* ------------------------------------------------------------------------- *) | |
let ORDER_DEGREE = prove | |
(`!a p. ~(poly p = poly []) ==> order a p <= degree p`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPEC `a:complex` o MATCH_MP ORDER_THM) THEN | |
DISCH_THEN(MP_TAC o REWRITE_RULE[divides] o CONJUNCT1) THEN | |
DISCH_THEN(X_CHOOSE_THEN `q:complex list` ASSUME_TAC) THEN | |
FIRST_ASSUM(SUBST1_TAC o MATCH_MP DEGREE_WELLDEF) THEN | |
ASM_REWRITE_TAC[LINEAR_POW_MUL_DEGREE] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FUN_EQ_THM]) THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[POLY_MUL] THENL | |
[UNDISCH_TAC `~(poly p = poly [])` THEN | |
SIMP_TAC[FUN_EQ_THM; POLY_MUL; poly; COMPLEX_MUL_RZERO]; | |
DISCH_TAC THEN ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Tidier versions of finiteness of roots. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ROOTS_FINITE_SET = prove | |
(`!p. ~(poly p = poly []) ==> FINITE { x | poly p x = Cx(&0)}`, | |
GEN_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE] THEN | |
DISCH_THEN(X_CHOOSE_THEN `N:num` MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `i:num->complex` ASSUME_TAC) THEN | |
MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `{x:complex | ?n:num. n < N /\ (x = i n)}` THEN | |
CONJ_TAC THENL | |
[SPEC_TAC(`N:num`,`N:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN | |
INDUCT_TAC THENL | |
[SUBGOAL_THEN `{x:complex | ?n. n < 0 /\ (x = i n)} = {}` | |
(fun th -> REWRITE_TAC[th; FINITE_RULES]) THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; LT]; | |
SUBGOAL_THEN `{x:complex | ?n. n < SUC N /\ (x = i n)} = | |
(i N) INSERT {x:complex | ?n. n < N /\ (x = i n)}` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; LT] THEN MESON_TAC[]; | |
MATCH_MP_TAC(CONJUNCT2 FINITE_RULES) THEN ASM_REWRITE_TAC[]]]; | |
ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Conversions to perform operations if coefficients are rational constants. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_RAT_MUL_CONV = | |
GEN_REWRITE_CONV I [GSYM CX_MUL] THENC RAND_CONV REAL_RAT_MUL_CONV;; | |
let COMPLEX_RAT_ADD_CONV = | |
GEN_REWRITE_CONV I [GSYM CX_ADD] THENC RAND_CONV REAL_RAT_ADD_CONV;; | |
let COMPLEX_RAT_EQ_CONV = | |
GEN_REWRITE_CONV I [CX_INJ] THENC REAL_RAT_EQ_CONV;; | |
let POLY_CMUL_CONV = | |
let cmul_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 poly_cmul] | |
and cmul_conv1 = GEN_REWRITE_CONV I [CONJUNCT2 poly_cmul] in | |
let rec POLY_CMUL_CONV tm = | |
(cmul_conv0 ORELSEC | |
(cmul_conv1 THENC | |
LAND_CONV COMPLEX_RAT_MUL_CONV THENC | |
RAND_CONV POLY_CMUL_CONV)) tm in | |
POLY_CMUL_CONV;; | |
let POLY_ADD_CONV = | |
let add_conv0 = GEN_REWRITE_CONV I (butlast (CONJUNCTS POLY_ADD_CLAUSES)) | |
and add_conv1 = GEN_REWRITE_CONV I [last (CONJUNCTS POLY_ADD_CLAUSES)] in | |
let rec POLY_ADD_CONV tm = | |
(add_conv0 ORELSEC | |
(add_conv1 THENC | |
LAND_CONV COMPLEX_RAT_ADD_CONV THENC | |
RAND_CONV POLY_ADD_CONV)) tm in | |
POLY_ADD_CONV;; | |
let POLY_MUL_CONV = | |
let mul_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 POLY_MUL_CLAUSES] | |
and mul_conv1 = GEN_REWRITE_CONV I [CONJUNCT1(CONJUNCT2 POLY_MUL_CLAUSES)] | |
and mul_conv2 = GEN_REWRITE_CONV I [CONJUNCT2(CONJUNCT2 POLY_MUL_CLAUSES)] in | |
let rec POLY_MUL_CONV tm = | |
(mul_conv0 ORELSEC | |
(mul_conv1 THENC POLY_CMUL_CONV) ORELSEC | |
(mul_conv2 THENC | |
LAND_CONV POLY_CMUL_CONV THENC | |
RAND_CONV(RAND_CONV POLY_MUL_CONV) THENC | |
POLY_ADD_CONV)) tm in | |
POLY_MUL_CONV;; | |
let POLY_NORMALIZE_CONV = | |
let pth = prove | |
(`normalize (CONS h t) = | |
(\n. if n = [] then if h = Cx(&0) then [] else [h] else CONS h n) | |
(normalize t)`, | |
REWRITE_TAC[normalize]) in | |
let norm_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 normalize] | |
and norm_conv1 = GEN_REWRITE_CONV I [pth] | |
and norm_conv2 = GEN_REWRITE_CONV DEPTH_CONV | |
[COND_CLAUSES; NOT_CONS_NIL; EQT_INTRO(SPEC_ALL EQ_REFL)] in | |
let rec POLY_NORMALIZE_CONV tm = | |
(norm_conv0 ORELSEC | |
(norm_conv1 THENC | |
RAND_CONV POLY_NORMALIZE_CONV THENC | |
BETA_CONV THENC | |
RATOR_CONV(RAND_CONV(RATOR_CONV(LAND_CONV COMPLEX_RAT_EQ_CONV))) THENC | |
norm_conv2)) tm in | |
POLY_NORMALIZE_CONV;; | |
(* ------------------------------------------------------------------------- *) | |
(* Now we're finished with polynomials... *) | |
(* ------------------------------------------------------------------------- *) | |
(************** keep this for now | |
do_list reduce_interface | |
["divides",`poly_divides:complex list->complex list->bool`; | |
"exp",`poly_exp:complex list -> num -> complex list`; | |
"diff",`poly_diff:complex list->complex list`];; | |
unparse_as_infix "exp";; | |
****************) | |