Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
17.5 kB
(* ========================================================================= *)
(* Binomial coefficients and the binomial theorem. *)
(* ========================================================================= *)
let binom = define
`(!n. binom(n,0) = 1) /\
(!k. binom(0,SUC(k)) = 0) /\
(!n k. binom(SUC(n),SUC(k)) = binom(n,SUC(k)) + binom(n,k))`;;
let BINOM_0 = prove
(`!n. binom(0,n) = if n = 0 then 1 else 0`,
INDUCT_TAC THEN REWRITE_TAC[binom; NOT_SUC]);;
let BINOM_LT = prove
(`!n k. n < k ==> binom(n,k) = 0`,
INDUCT_TAC THEN INDUCT_TAC THEN REWRITE_TAC[binom; ARITH; LT_SUC; LT] THEN
ASM_SIMP_TAC[ARITH_RULE `n < k ==> n < SUC(k)`; ARITH]);;
let BINOM_REFL = prove
(`!n. binom(n,n) = 1`,
INDUCT_TAC THEN ASM_SIMP_TAC[binom; BINOM_LT; LT; ARITH]);;
let BINOM_1 = prove
(`!n. binom(n,1) = n`,
REWRITE_TAC[num_CONV `1`] THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[binom] THEN ARITH_TAC);;
let BINOM_FACT = prove
(`!n k. FACT n * FACT k * binom(n+k,k) = FACT(n + k)`,
INDUCT_TAC THEN REWRITE_TAC[FACT; ADD_CLAUSES; MULT_CLAUSES; BINOM_REFL] THEN
INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; FACT; MULT_CLAUSES; binom] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `SUC k`) THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[ADD_CLAUSES; FACT; binom] THEN CONV_TAC NUM_RING);;
let BINOM_EQ_0 = prove
(`!n k. binom(n,k) = 0 <=> n < k`,
REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[BINOM_LT]] THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[NOT_LT; LE_EXISTS] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
DISCH_TAC THEN MP_TAC(SYM(SPECL [`d:num`; `k:num`] BINOM_FACT)) THEN
ASM_REWRITE_TAC[GSYM LT_NZ; MULT_CLAUSES; FACT_LT]);;
let BINOM_PENULT = prove
(`!n. binom(SUC n,n) = SUC n`,
INDUCT_TAC THEN ASM_REWRITE_TAC [binom; ONE; BINOM_REFL] THEN
SUBGOAL_THEN `binom(n,SUC n) = 0` SUBST1_TAC THENL
[REWRITE_TAC [BINOM_EQ_0; LT]; REWRITE_TAC [ADD; ADD_0; ADD_SUC; SUC_INJ]]);;
let BINOM_GE_TOP = prove
(`!m n. 1 <= m /\ m < n ==> n <= binom(n,m)`,
INDUCT_TAC THEN INDUCT_TAC THEN REWRITE_TAC[binom] THEN
CONV_TAC NUM_REDUCE_CONV THEN STRIP_TAC THEN ASM_CASES_TAC `m = 0` THEN
ASM_SIMP_TAC[BINOM_1; ARITH_SUC; binom] THEN REWRITE_TAC[ADD1; LE_REFL] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `n:num`) THEN
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC(ARITH_RULE `~(c = 0) ==> n <= b ==> n + 1 <= c + b`) THEN
REWRITE_TAC[BINOM_EQ_0] THEN ASM_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* More potentially useful lemmas. *)
(* ------------------------------------------------------------------------- *)
let BINOM_TOP_STEP = prove
(`!n k. ((n + 1) - k) * binom(n + 1,k) = (n + 1) * binom(n,k)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n < k:num` THENL
[FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP
(ARITH_RULE `n < k ==> n + 1 = k \/ n + 1 < k`)) THEN
ASM_SIMP_TAC[BINOM_LT; SUB_REFL; MULT_CLAUSES];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o REWRITE_RULE[NOT_LT; LE_EXISTS]) THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
REWRITE_TAC[GSYM ADD_ASSOC; ADD_SUB; ADD_SUB2] THEN
MP_TAC(SPECL [`d + 1`; `k:num`] BINOM_FACT) THEN
MP_TAC(SPECL [`d:num`; `k:num`] BINOM_FACT) THEN
REWRITE_TAC[GSYM ADD1; ADD_CLAUSES; FACT; ADD_AC] THEN
MAP_EVERY (fun t -> MP_TAC(SPEC t FACT_LT)) [`d:num`; `k:num`] THEN
REWRITE_TAC[LT_NZ] THEN CONV_TAC NUM_RING);;
let BINOM_BOTTOM_STEP = prove
(`!n k. (k + 1) * binom(n,k + 1) = (n - k) * binom(n,k)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n < k + 1` THENL
[FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP
(ARITH_RULE `n < k + 1 ==> n = k \/ n < k`)) THEN
ASM_SIMP_TAC[BINOM_LT; SUB_REFL; MULT_CLAUSES];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o REWRITE_RULE[NOT_LT; LE_EXISTS]) THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
REWRITE_TAC[GSYM ADD_ASSOC; ADD_SUB; ADD_SUB2] THEN
MP_TAC(SPECL [`d + 1`; `k:num`] BINOM_FACT) THEN
MP_TAC(SPECL [`d:num`; `k + 1`] BINOM_FACT) THEN
REWRITE_TAC[GSYM ADD1; ADD_CLAUSES; FACT; ADD_AC] THEN
MAP_EVERY (fun t -> MP_TAC(SPEC t FACT_LT)) [`d:num`; `k:num`] THEN
REWRITE_TAC[LT_NZ] THEN CONV_TAC NUM_RING);;
(* ------------------------------------------------------------------------- *)
(* The "number of combinations", number of size-m subsets of a size-n set. *)
(* ------------------------------------------------------------------------- *)
let HAS_SIZE_RESTRICTED_POWERSET = prove
(`!n m s:A->bool.
s HAS_SIZE n ==> {t | t SUBSET s /\ t HAS_SIZE m} HAS_SIZE binom(n,m)`,
let binom_induct = prove
(`!P. (!n. P n 0) /\
(!k. P 0 (SUC k)) /\
(!n k. P n (SUC k) /\ P n k ==> P (SUC n) (SUC k))
==> !m n. P m n`,
GEN_TAC THEN STRIP_TAC THEN REPEAT INDUCT_TAC THEN ASM_MESON_TAC[])
and setstep_lemma = prove
(`~(a IN t)
==> {u | u SUBSET (a:A INSERT t) /\ u HAS_SIZE (SUC m)} =
{u | u SUBSET t /\ u HAS_SIZE (SUC m)} UNION
IMAGE (\u. a INSERT u) {u | u SUBSET t /\ u HAS_SIZE m}`,
REWRITE_TAC[REWRITE_RULE[EXTENSION; IN_ELIM_THM] POWERSET_CLAUSES] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[IN_ELIM_THM; SET_RULE
`{y | y IN t UNION IMAGE f s /\ P y} =
{y | y IN t /\ P y} UNION IMAGE f {x | x IN s /\ P(f x)}`] THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[HAS_SIZE; FINITE_INSERT] THEN
ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> ~(p /\ q ==> ~r)`] THEN
SIMP_TAC[CARD_CLAUSES] THEN MP_TAC SUC_INJ THEN ASM SET_TAC[]) in
MATCH_MP_TAC binom_induct THEN REWRITE_TAC[binom] THEN REPEAT CONJ_TAC THENL
[REPEAT STRIP_TAC THEN CONV_TAC HAS_SIZE_CONV THEN
EXISTS_TAC `{}:A->bool` THEN SIMP_TAC[EXTENSION; IN_SING; IN_ELIM_THM] THEN
REWRITE_TAC[NOT_IN_EMPTY; HAS_SIZE_0] THEN SET_TAC[];
SIMP_TAC[HAS_SIZE_0; SUBSET_EMPTY; HAS_SIZE_SUC] THEN SET_TAC[];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`n:num`; `m:num`] THEN STRIP_TAC THEN
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [HAS_SIZE_CLAUSES] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a:A`; `t:A->bool`] THEN
STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
ASM_SIMP_TAC[setstep_lemma] THEN MATCH_MP_TAC HAS_SIZE_UNION THEN
ASM_SIMP_TAC[] THEN CONJ_TAC THENL
[MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN ASM_SIMP_TAC[] THEN
UNDISCH_TAC `~(a:A IN t)` THEN SET_TAC[];
ALL_TAC] THEN
REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_IMAGE; IN_ELIM_THM; HAS_SIZE_SUC] THEN
UNDISCH_TAC `~(a:A IN t)` THEN SET_TAC[]);;
let CARD_RESTRICTED_POWERSET = prove
(`!s k. FINITE s ==> CARD {t | t SUBSET s /\ t HAS_SIZE k} = binom(CARD s,k)`,
REPEAT GEN_TAC THEN REWRITE_TAC[FINITE_HAS_SIZE] THEN DISCH_THEN
(MP_TAC o SPEC `k:num` o MATCH_MP HAS_SIZE_RESTRICTED_POWERSET) THEN
SIMP_TAC[HAS_SIZE]);;
(* ------------------------------------------------------------------------- *)
(* Binomial expansion. *)
(* ------------------------------------------------------------------------- *)
let BINOMIAL_THEOREM = prove
(`!n x y.
(x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k))`,
INDUCT_TAC THEN REPEAT GEN_TAC THEN ASM_REWRITE_TAC[EXP] THEN
REWRITE_TAC[NSUM_SING_NUMSEG; binom; SUB_REFL; EXP; MULT_CLAUSES] THEN
SIMP_TAC[NSUM_CLAUSES_LEFT; ADD1; ARITH_RULE `0 <= n + 1`; NSUM_OFFSET] THEN
ASM_REWRITE_TAC[EXP; binom; GSYM ADD1; GSYM NSUM_LMUL] THEN
REWRITE_TAC[RIGHT_ADD_DISTRIB; NSUM_ADD_NUMSEG; MULT_CLAUSES; SUB_0] THEN
MATCH_MP_TAC(ARITH_RULE `a:num = e /\ b = c + d ==> a + b = c + d + e`) THEN
CONJ_TAC THENL [REWRITE_TAC[MULT_AC; SUB_SUC]; REWRITE_TAC[GSYM EXP]] THEN
SIMP_TAC[ADD1; SYM(REWRITE_CONV[NSUM_OFFSET]`nsum(m+1..n+1) (\i. f i)`)] THEN
REWRITE_TAC[NSUM_CLAUSES_NUMSEG; GSYM ADD1; LE_SUC; LE_0] THEN
SIMP_TAC[NSUM_CLAUSES_LEFT; LE_0] THEN
SIMP_TAC[BINOM_LT; LT; MULT_CLAUSES; ADD_CLAUSES; SUB_0; EXP; binom] THEN
SIMP_TAC[ARITH; ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; EXP] THEN
REWRITE_TAC[MULT_AC]);;
(* ------------------------------------------------------------------------- *)
(* Same thing for the reals. *)
(* ------------------------------------------------------------------------- *)
let REAL_BINOMIAL_THEOREM = prove
(`!n x y.
(x + y) pow n = sum(0..n) (\k. &(binom(n,k)) * x pow k * y pow (n - k))`,
INDUCT_TAC THEN REPEAT GEN_TAC THEN ASM_REWRITE_TAC[real_pow] THEN
REWRITE_TAC[SUM_SING_NUMSEG; binom; SUB_REFL; real_pow; REAL_MUL_LID] THEN
SIMP_TAC[SUM_CLAUSES_LEFT; ADD1; ARITH_RULE `0 <= n + 1`; SUM_OFFSET] THEN
ASM_REWRITE_TAC[real_pow; binom; GSYM ADD1; GSYM SUM_LMUL] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN
REWRITE_TAC[REAL_ADD_RDISTRIB; SUM_ADD_NUMSEG; REAL_MUL_LID; SUB_0] THEN
MATCH_MP_TAC(REAL_ARITH `a:real = e /\ b = c + d ==> a + b = c + d + e`) THEN
CONJ_TAC THENL [SIMP_TAC[REAL_MUL_AC; SUB_SUC]; SIMP_TAC[GSYM real_pow]] THEN
SIMP_TAC[ADD1; SYM(REWRITE_CONV[SUM_OFFSET]`sum(m+1..n+1) (\i. f i)`)] THEN
REWRITE_TAC[SUM_CLAUSES_NUMSEG; GSYM ADD1; LE_SUC; LE_0] THEN
SIMP_TAC[SUM_CLAUSES_LEFT; LE_0; BINOM_LT; LT; REAL_MUL_LID; SUB_0; real_pow;
binom; REAL_MUL_LZERO; REAL_ADD_RID] THEN
SIMP_TAC[ARITH; ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; real_pow] THEN
REWRITE_TAC[REAL_MUL_AC]);;
(* ------------------------------------------------------------------------- *)
(* More direct stepping theorems over the reals. *)
(* ------------------------------------------------------------------------- *)
let BINOM_TOP_STEP_REAL = prove
(`!n k. &(binom(n + 1,k)):real =
if k = n + 1 then &1
else (&n + &1) / (&n + &1 - &k) * &(binom(n,k))`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[BINOM_REFL] THEN
FIRST_X_ASSUM(STRIP_ASSUME_TAC o MATCH_MP (ARITH_RULE
`~(k = n + 1) ==> n < k /\ n + 1 < k \/ k <= n /\ k <= n + 1`)) THEN
ASM_SIMP_TAC[BINOM_LT; REAL_MUL_RZERO] THEN
MP_TAC(SPECL [`n:num`; `k:num`] BINOM_TOP_STEP) THEN
ASM_SIMP_TAC[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD;
GSYM REAL_OF_NUM_SUB] THEN
UNDISCH_TAC `k <= n:num` THEN REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN
CONV_TAC REAL_FIELD);;
let BINOM_BOTTOM_STEP_REAL = prove
(`!n k. &(binom(n,k+1)):real = (&n - &k) / (&k + &1) * &(binom(n,k))`,
REPEAT GEN_TAC THEN DISJ_CASES_TAC(ARITH_RULE `n:num < k \/ k <= n`) THENL
[ASM_SIMP_TAC[BINOM_LT; ARITH_RULE `n < k ==> n < k + 1`; REAL_MUL_RZERO];
MP_TAC(SPECL [`n:num`; `k:num`] BINOM_BOTTOM_STEP) THEN
ASM_SIMP_TAC[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_MUL;
GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_SUB] THEN
CONV_TAC REAL_FIELD]);;
let REAL_OF_NUM_BINOM = prove
(`!n k. &(binom(n,k)):real =
if k <= n then &(FACT n) / (&(FACT(n - k)) * &(FACT k))
else &0`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[BINOM_LT; GSYM NOT_LE] THEN
SIMP_TAC[REAL_EQ_RDIV_EQ; REAL_LT_MUL; REAL_OF_NUM_LT; FACT_LT] THEN
FIRST_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN
REWRITE_TAC[ADD_SUB2] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN
REWRITE_TAC[GSYM BINOM_FACT] THEN REWRITE_TAC[REAL_OF_NUM_MUL; MULT_AC]);;
(* ------------------------------------------------------------------------- *)
(* Some additional theorems for stepping both arguments together. *)
(* ------------------------------------------------------------------------- *)
let BINOM_BOTH_STEP_REAL = prove
(`!p k. &(binom(p + 1,k + 1)):real = (&p + &1) / (&k + &1) * &(binom(p,k))`,
REWRITE_TAC[BINOM_TOP_STEP_REAL; BINOM_BOTTOM_STEP_REAL] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[EQ_ADD_RCANCEL] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[BINOM_REFL] THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_EQ] THEN
CONV_TAC REAL_FIELD);;
let BINOM_BOTH_STEP = prove
(`!p k. (k + 1) * binom(p + 1,k + 1) = (p + 1) * binom(p,k)`,
REWRITE_TAC[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_MUL] THEN
REWRITE_TAC[BINOM_BOTH_STEP_REAL; GSYM REAL_OF_NUM_ADD] THEN
CONV_TAC REAL_FIELD);;
let BINOM_BOTH_STEP_DOWN = prove
(`!p k. (k = 0 ==> p = 0) ==> k * binom(p,k) = p * binom(p - 1,k - 1)`,
REPEAT INDUCT_TAC THEN
SIMP_TAC[BINOM_LT; LT_0; LT_REFL; ARITH] THEN
REWRITE_TAC[SUC_SUB1; ADD1; BINOM_BOTH_STEP] THEN
REWRITE_TAC[MULT_CLAUSES]);;
let BINOM = prove
(`!n k. binom(n,k) =
if k <= n then FACT(n) DIV (FACT(n - k) * FACT(k))
else 0`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[BINOM_EQ_0; GSYM NOT_LE] THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN
SIMP_TAC[LT_MULT; FACT_LT; ADD_CLAUSES] THEN
FIRST_X_ASSUM(CHOOSE_THEN SUBST1_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN
ONCE_REWRITE_TAC[ADD_SYM] THEN
REWRITE_TAC[GSYM BINOM_FACT; ADD_SUB] THEN REWRITE_TAC[MULT_AC]);;
(* ------------------------------------------------------------------------- *)
(* Additional lemmas. *)
(* ------------------------------------------------------------------------- *)
let BINOM_SYM = prove
(`!n k. binom(n,n-k) = if k <= n then binom(n,k) else 1`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[binom; ARITH_RULE `~(k <= n) ==> n - k = 0`] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_EQ; REAL_OF_NUM_BINOM] THEN
ASM_REWRITE_TAC[ARITH_RULE `n - k:num <= n`] THEN
ASM_SIMP_TAC[ARITH_RULE `k:num <= n ==> n - (n - k) = k`] THEN
REWRITE_TAC[REAL_OF_NUM_MUL; MULT_SYM]);;
let BINOM_MUL_SHIFT = prove
(`!m n k. k <= m
==> binom(n,m) * binom(m,k) = binom(n,k) * binom(n - k,m - k)`,
REPEAT STRIP_TAC THEN
SIMP_TAC[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_MUL; REAL_OF_NUM_BINOM] THEN
ASM_CASES_TAC `n:num < m` THENL
[REPEAT(COND_CASES_TAC THEN
ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO]) THEN
MATCH_MP_TAC(TAUT `F ==> p`) THEN ASM_ARITH_TAC;
REPEAT(COND_CASES_TAC THENL
[ALL_TAC; MATCH_MP_TAC(TAUT `F ==> p`) THEN ASM_ARITH_TAC]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[NOT_LT]) THEN
ASM_SIMP_TAC[ARITH_RULE
`k:num <= m /\ m <= n ==> n - k - (m - k) = n - m`] THEN
MAP_EVERY (MP_TAC o C SPEC FACT_NZ)
[`n:num`; `m:num`; `n - m:num`; `n - k:num`; `m - k:num`] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_EQ] THEN CONV_TAC REAL_FIELD]);;
let APPELL_SEQUENCE = prove
(`!c n x y. sum (0..n)
(\k. &(binom(n,k)) *
sum(0..k)
(\l. &(binom(k,l)) * c l * x pow (k - l)) *
y pow (n - k)) =
sum (0..n) (\k. &(binom(n,k)) * c k * (x + y) pow (n - k))`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_BINOMIAL_THEOREM] THEN
REWRITE_TAC[GSYM SUM_LMUL; GSYM SUM_RMUL] THEN
SIMP_TAC[SUM_SUM_PRODUCT; FINITE_NUMSEG] THEN
MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN
EXISTS_TAC `(\(x,y). y,x - y):num#num->num#num` THEN
EXISTS_TAC `(\(x,y). x + y,x):num#num->num#num` THEN
REWRITE_TAC[FORALL_IN_GSPEC; IN_ELIM_PAIR_THM] THEN
REWRITE_TAC[PAIR_EQ; IN_NUMSEG] THEN
CONJ_TAC THENL [ARITH_TAC; REPEAT GEN_TAC THEN STRIP_TAC] THEN
REPEAT(CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) THEN
ASM_SIMP_TAC[ARITH_RULE
`j:num <= k /\ k <= n ==> (n - j) - (k - j) = n - k`] THEN
MATCH_MP_TAC(REAL_RING
`c * d:real = a * b ==> a * z * b * x * y = c * (d * z * x) * y`) THEN
ASM_SIMP_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_EQ; BINOM_MUL_SHIFT]);;
(* ------------------------------------------------------------------------- *)
(* Numerical computation of binom. *)
(* ------------------------------------------------------------------------- *)
let NUM_BINOM_CONV =
let pth_step = prove
(`binom(n,k) = y
==> k <= n
==> (SUC n) * y = ((n + 1) - k) * x ==> binom(SUC n,k) = x`,
DISCH_THEN(SUBST1_TAC o SYM) THEN
REWRITE_TAC[ADD1; GSYM BINOM_TOP_STEP; EQ_MULT_LCANCEL; SUB_EQ_0] THEN
ARITH_TAC)
and pth_0 = prove
(`n < k ==> binom(n,k) = 0`,
REWRITE_TAC[BINOM_LT])
and pth_1 = prove
(`binom(n,n) = 1`,
REWRITE_TAC[BINOM_REFL])
and pth_swap = prove
(`k <= n ==> binom(n,k) = binom(n,n - k)`,
MESON_TAC[BINOM_SYM])
and k_tm = `k:num` and n_tm = `n:num`
and x_tm = `x:num` and y_tm = `y:num`
and binom_tm = `binom` in
let rec BINOM_RULE(n,k) =
if n </ k then
let th = INST [mk_numeral n,n_tm; mk_numeral k,k_tm] pth_0 in
MP_CONV NUM_LT_CONV th
else if n =/ k then
INST [mk_numeral n,n_tm] pth_1
else if Int 2 */ k </ n then
let th1 = INST [mk_numeral n,n_tm; mk_numeral k,k_tm] pth_swap in
let th2 = MP th1 (EQT_ELIM(NUM_LE_CONV (lhand(concl th1)))) in
let th3 = CONV_RULE(funpow 3 RAND_CONV NUM_SUB_CONV) th2 in
TRANS th3 (BINOM_RULE(n,n -/ k))
else
let th1 = BINOM_RULE(n -/ Int 1,k) in
let y = dest_numeral(rand(concl th1)) in
let x = (n // (n -/ k)) */ y in
let th2 = INST [mk_numeral(n -/ Int 1),n_tm; mk_numeral k,k_tm;
mk_numeral x,x_tm; mk_numeral y,y_tm] pth_step in
let th3 = MP_CONV NUM_REDUCE_CONV (MP_CONV NUM_LE_CONV (MP th2 th1)) in
CONV_RULE (LAND_CONV(RAND_CONV(LAND_CONV NUM_SUC_CONV))) th3 in
fun tm ->
let bop,nkp = dest_comb tm in
if bop <> binom_tm then failwith "NUM_BINOM_CONV" else
let nt,kt = dest_pair nkp in
BINOM_RULE(dest_numeral nt,dest_numeral kt);;