Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
needs "Library/transc.ml";; | |
let maximas e = | |
let filename = Filename.temp_file "maxima" ".out" in | |
let s = | |
"echo 'linel:10000; display2d:false;" ^ e ^ | |
";' | maxima | grep '^(%o3)' | sed -e 's/^(%o3) //' >" ^ | |
filename in | |
if Sys.command s <> 0 then failwith "maxima" else | |
let fd = Pervasives.open_in filename in | |
let data = input_line fd in | |
close_in fd; Sys.remove filename; data;; | |
prioritize_real();; | |
let maxima_ops = ["+",`(+)`; "-",`(-)`; "*",`( * )`; "/",`(/)`; "^",`(pow)`];; | |
let maxima_funs = ["sin",`sin`; "cos",`cos`];; | |
let mk_uneg = curry mk_comb `(--)`;; | |
let dest_uneg = | |
let ntm = `(--)` in | |
fun tm -> let op,t = dest_comb tm in | |
if op = ntm then t else failwith "dest_uneg";; | |
let mk_pow = let f = mk_binop `(pow)` in fun x y -> f x (rand y);; | |
let mk_realvar = let real_ty = `:real` in fun x -> mk_var(x,real_ty);; | |
let rec string_of_hol tm = | |
if is_ratconst tm then "("^string_of_num(rat_of_term tm)^")" | |
else if is_numeral tm then string_of_num(dest_numeral tm) | |
else if is_var tm then fst(dest_var tm) | |
else if can dest_uneg tm then "-(" ^ string_of_hol(rand tm) ^ ")" else | |
let lop,r = dest_comb tm in | |
try let op,l = dest_comb lop in | |
"("^string_of_hol l^" "^ rev_assoc op maxima_ops^" "^string_of_hol r^")" | |
with Failure _ -> rev_assoc lop maxima_funs ^ "(" ^ string_of_hol r ^ ")";; | |
string_of_hol `(x + sin(-- &2 * x)) pow 2 - cos(x - &22 / &7)`;; | |
let lexe s = map (function Resword s -> s | Ident s -> s) (lex(explode s));; | |
let parse_bracketed prs inp = | |
match prs inp with | |
ast,")"::rst -> ast,rst | |
| _ -> failwith "Closing bracket expected";; | |
let rec parse_ginfix op opup sof prs inp = | |
match prs inp with | |
e1,hop::rst when hop = op -> parse_ginfix op opup (opup sof e1) prs rst | |
| e1,rest -> sof e1,rest;; | |
let parse_general_infix op = | |
let opcon = if op = "^" then mk_pow else mk_binop (assoc op maxima_ops) in | |
let constr = if op <> "^" && snd(get_infix_status op) = "right" | |
then fun f e1 e2 -> f(opcon e1 e2) | |
else fun f e1 e2 -> opcon(f e1) e2 in | |
parse_ginfix op constr (fun x -> x);; | |
let rec parse_atomic_expression inp = | |
match inp with | |
[] -> failwith "expression expected" | |
| "(" :: rest -> parse_bracketed parse_expression rest | |
| s :: rest when forall isnum (explode s) -> | |
term_of_rat(num_of_string s),rest | |
| s :: "(" :: rest when forall isalnum (explode s) -> | |
let e,rst = parse_bracketed parse_expression rest in | |
mk_comb(assoc s maxima_funs,e),rst | |
| s :: rest when forall isalnum (explode s) -> mk_realvar s,rest | |
and parse_exp inp = parse_general_infix "^" parse_atomic_expression inp | |
and parse_neg inp = | |
match inp with | |
| "-" :: rest -> let e,rst = parse_neg rest in mk_uneg e,rst | |
| _ -> parse_exp inp | |
and parse_expression inp = | |
itlist parse_general_infix (map fst maxima_ops) parse_neg inp;; | |
let hol_of_string = fst o parse_expression o lexe;; | |
hol_of_string "sin(x) - cos(-(- - 1 + x))";; | |
let FACTOR_CONV tm = | |
let s = "factor("^string_of_hol tm^")" in | |
let tm' = hol_of_string(maximas s) in | |
REAL_RING(mk_eq(tm,tm'));; | |
FACTOR_CONV `&1234567890`;; | |
FACTOR_CONV `x pow 6 - &1`;; | |
FACTOR_CONV `r * (r * x * (&1 - x)) * (&1 - r * x * (&1 - x)) - x`;; | |
let ANTIDERIV_CONV tm = | |
let x,bod = dest_abs tm in | |
let s = "integrate("^string_of_hol bod^","^fst(dest_var x)^")" in | |
let tm' = mk_abs(x,hol_of_string(maximas s)) in | |
let th1 = CONV_RULE (NUM_REDUCE_CONV THENC REAL_RAT_REDUCE_CONV) | |
(SPEC x (DIFF_CONV tm')) in | |
let th2 = REAL_RING(mk_eq(lhand(concl th1),bod)) in | |
GEN x (GEN_REWRITE_RULE LAND_CONV [th2] th1);; | |
ANTIDERIV_CONV `\x. (x + &5) pow 2 + &77 * x`;; | |
ANTIDERIV_CONV `\x. sin(x) + x pow 11`;; | |
(**** This one fails as expected so we need more simplification later | |
ANTIDERIV_CONV `\x. sin(x) pow 3`;; | |
****) | |
let SIN_N_CLAUSES = prove | |
(`(sin(&(NUMERAL(BIT0 n)) * x) = | |
&2 * sin(&(NUMERAL n) * x) * cos(&(NUMERAL n) * x)) /\ | |
(sin(&(NUMERAL(BIT1 n)) * x) = | |
sin(&(NUMERAL(BIT0 n)) * x) * cos(x) + | |
sin(x) * cos(&(NUMERAL(BIT0 n)) * x)) /\ | |
(cos(&(NUMERAL(BIT0 n)) * x) = | |
cos(&(NUMERAL n) * x) pow 2 - sin(&(NUMERAL n) * x) pow 2) /\ | |
(cos(&(NUMERAL(BIT1 n)) * x) = | |
cos(&(NUMERAL(BIT0 n)) * x) * cos(x) - | |
sin(x) * sin(&(NUMERAL(BIT0 n)) * x))`, | |
REWRITE_TAC[REAL_MUL_2; REAL_POW_2] THEN | |
REWRITE_TAC[NUMERAL; BIT0; BIT1] THEN | |
REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN | |
REWRITE_TAC[REAL_ADD_RDISTRIB; SIN_ADD; COS_ADD; REAL_MUL_LID] THEN | |
CONV_TAC REAL_RING);; | |
let TRIG_IDENT_TAC x = | |
REWRITE_TAC[SIN_N_CLAUSES; SIN_ADD; COS_ADD] THEN | |
REWRITE_TAC[REAL_MUL_LZERO; SIN_0; COS_0; REAL_MUL_RZERO] THEN | |
MP_TAC(SPEC x SIN_CIRCLE) THEN CONV_TAC REAL_RING;; | |
let ANTIDERIV_CONV tm = | |
let x,bod = dest_abs tm in | |
let s = "expand(integrate("^string_of_hol bod^","^fst(dest_var x)^"))" in | |
let tm' = mk_abs(x,hol_of_string(maximas s)) in | |
let th1 = CONV_RULE (NUM_REDUCE_CONV THENC REAL_RAT_REDUCE_CONV) | |
(SPEC x (DIFF_CONV tm')) in | |
let th2 = prove(mk_eq(lhand(concl th1),bod),TRIG_IDENT_TAC x) in | |
GEN x (GEN_REWRITE_RULE LAND_CONV [th2] th1);; | |
time ANTIDERIV_CONV `\x. sin(x) pow 3`;; | |
time ANTIDERIV_CONV `\x. sin(x) * sin(x) pow 5 * cos(x) pow 4 + cos(x)`;; | |
let FCT1_WEAK = prove | |
(`(!x. (f diffl f'(x)) x) ==> !x. &0 <= x ==> defint(&0,x) f' (f x - f(&0))`, | |
MESON_TAC[FTC1]);; | |
let INTEGRAL_CONV tm = | |
let th1 = MATCH_MP FCT1_WEAK (ANTIDERIV_CONV tm) in | |
(CONV_RULE REAL_RAT_REDUCE_CONV o | |
REWRITE_RULE[SIN_0; COS_0; REAL_MUL_LZERO; REAL_MUL_RZERO] o | |
CONV_RULE REAL_RAT_REDUCE_CONV o BETA_RULE) th1;; | |
INTEGRAL_CONV `\x. sin(x) pow 13`;; | |