Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Joël Riou. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Joël Riou | |
-/ | |
import algebraic_topology.dold_kan.faces | |
/-! | |
# Construction of projections for the Dold-Kan correspondence | |
TODO (@joelriou) continue adding the various files referenced below | |
In this file, we construct endomorphisms `P q : K[X] ⟶ K[X]` for all | |
`q : ℕ`. We study how they behave with respect to face maps with the lemmas | |
`higher_faces_vanish.of_P`, `higher_faces_vanish.comp_P_eq_self` and | |
`comp_P_eq_self_iff`. | |
Then, we show that they are projections (see `P_f_idem` | |
and `P_idem`). They are natural transformations (see `nat_trans_P` | |
and `P_f_naturality`) and are compatible with the application | |
of additive functors (see `map_P`). | |
By passing to the limit, these endomorphisms `P q` shall be used in `p_infty.lean` | |
in order to define `P_infty : K[X] ⟶ K[X]`, see `equivalence.lean` for the general | |
strategy of proof of the Dold-Kan equivalence. | |
-/ | |
open category_theory | |
open category_theory.category | |
open category_theory.limits | |
open category_theory.preadditive | |
open category_theory.simplicial_object | |
open opposite | |
open_locale simplicial dold_kan | |
noncomputable theory | |
namespace algebraic_topology | |
namespace dold_kan | |
variables {C : Type*} [category C] [preadditive C] {X : simplicial_object C} | |
/-- This is the inductive definition of the projections `P q : K[X] ⟶ K[X]`, | |
with `P 0 := 𝟙 _` and `P (q+1) := P q ≫ (𝟙 _ + Hσ q)`. -/ | |
noncomputable def P : ℕ → (K[X] ⟶ K[X]) | |
| 0 := 𝟙 _ | |
| (q+1) := P q ≫ (𝟙 _ + Hσ q) | |
/-- All the `P q` coincide with `𝟙 _` in degree 0. -/ | |
@[simp] | |
lemma P_f_0_eq (q : ℕ) : ((P q).f 0 : X _[0] ⟶ X _[0]) = 𝟙 _ := | |
begin | |
induction q with q hq, | |
{ refl, }, | |
{ unfold P, | |
simp only [homological_complex.add_f_apply, homological_complex.comp_f, | |
homological_complex.id_f, id_comp, hq, Hσ_eq_zero, add_zero], }, | |
end | |
/-- `Q q` is the complement projection associated to `P q` -/ | |
def Q (q : ℕ) : K[X] ⟶ K[X] := 𝟙 _ - P q | |
lemma P_add_Q (q : ℕ) : P q + Q q = 𝟙 K[X] := by { rw Q, abel, } | |
lemma P_add_Q_f (q n : ℕ) : (P q).f n + (Q q).f n = 𝟙 (X _[n]) := | |
homological_complex.congr_hom (P_add_Q q) n | |
@[simp] | |
lemma Q_eq_zero : (Q 0 : K[X] ⟶ _) = 0 := sub_self _ | |
lemma Q_eq (q : ℕ) : (Q (q+1) : K[X] ⟶ _) = Q q - P q ≫ Hσ q := | |
by { unfold Q P, simp only [comp_add, comp_id], abel, } | |
/-- All the `Q q` coincide with `0` in degree 0. -/ | |
@[simp] | |
lemma Q_f_0_eq (q : ℕ) : ((Q q).f 0 : X _[0] ⟶ X _[0]) = 0 := | |
by simp only [homological_complex.sub_f_apply, homological_complex.id_f, Q, P_f_0_eq, sub_self] | |
namespace higher_faces_vanish | |
/-- This lemma expresses the vanishing of | |
`(P q).f (n+1) ≫ X.δ k : X _[n+1] ⟶ X _[n]` when `k≠0` and `k≥n-q+2` -/ | |
lemma of_P : Π (q n : ℕ), higher_faces_vanish q (((P q).f (n+1) : X _[n+1] ⟶ X _[n+1])) | |
| 0 := λ n j hj₁, by { exfalso, have hj₂ := fin.is_lt j, linarith, } | |
| (q+1) := λ n, by { unfold P, exact (of_P q n).induction, } | |
@[reassoc] | |
lemma comp_P_eq_self {Y : C} {n q : ℕ} {φ : Y ⟶ X _[n+1]} | |
(v : higher_faces_vanish q φ) : φ ≫ (P q).f (n+1) = φ := | |
begin | |
induction q with q hq, | |
{ unfold P, | |
apply comp_id, }, | |
{ unfold P, | |
simp only [comp_add, homological_complex.comp_f, homological_complex.add_f_apply, | |
comp_id, ← assoc, hq v.of_succ, add_right_eq_self], | |
by_cases hqn : n<q, | |
{ exact v.of_succ.comp_Hσ_eq_zero hqn, }, | |
{ cases nat.le.dest (not_lt.mp hqn) with a ha, | |
have hnaq : n=a+q := by linarith, | |
simp only [v.of_succ.comp_Hσ_eq hnaq, neg_eq_zero, ← assoc], | |
have eq := v ⟨a, by linarith⟩ | |
(by simp only [hnaq, fin.coe_mk, nat.succ_eq_add_one, add_assoc]), | |
simp only [fin.succ_mk] at eq, | |
simp only [eq, zero_comp], }, }, | |
end | |
end higher_faces_vanish | |
lemma comp_P_eq_self_iff {Y : C} {n q : ℕ} {φ : Y ⟶ X _[n+1]} : | |
φ ≫ (P q).f (n+1) = φ ↔ higher_faces_vanish q φ := | |
begin | |
split, | |
{ intro hφ, | |
rw ← hφ, | |
apply higher_faces_vanish.of_comp, | |
apply higher_faces_vanish.of_P, }, | |
{ exact higher_faces_vanish.comp_P_eq_self, }, | |
end | |
@[simp, reassoc] | |
lemma P_f_idem (q n : ℕ) : | |
((P q).f n : X _[n] ⟶ _) ≫ ((P q).f n) = (P q).f n := | |
begin | |
cases n, | |
{ rw [P_f_0_eq q, comp_id], }, | |
{ exact (higher_faces_vanish.of_P q n).comp_P_eq_self, } | |
end | |
@[simp, reassoc] | |
lemma P_idem (q : ℕ) : (P q : K[X] ⟶ K[X]) ≫ P q = P q := | |
by { ext n, exact P_f_idem q n, } | |
/-- For each `q`, `P q` is a natural transformation. -/ | |
def nat_trans_P (q : ℕ) : | |
alternating_face_map_complex C ⟶ alternating_face_map_complex C := | |
{ app := λ X, P q, | |
naturality' := λ X Y f, begin | |
induction q with q hq, | |
{ unfold P, | |
dsimp only [alternating_face_map_complex], | |
rw [id_comp, comp_id], }, | |
{ unfold P, | |
simp only [add_comp, comp_add, assoc, comp_id, hq], | |
congr' 1, | |
rw [← assoc, hq, assoc], | |
congr' 1, | |
exact (nat_trans_Hσ q).naturality' f, } | |
end } | |
@[simp, reassoc] | |
lemma P_f_naturality (q n : ℕ) {X Y : simplicial_object C} (f : X ⟶ Y) : | |
f.app (op [n]) ≫ (P q).f n = (P q).f n ≫ f.app (op [n]) := | |
homological_complex.congr_hom ((nat_trans_P q).naturality f) n | |
lemma map_P {D : Type*} [category D] [preadditive D] | |
(G : C ⥤ D) [G.additive] (X : simplicial_object C) (q n : ℕ) : | |
G.map ((P q : K[X] ⟶ _).f n) = (P q : K[((whiskering C D).obj G).obj X] ⟶ _).f n := | |
begin | |
induction q with q hq, | |
{ unfold P, | |
apply G.map_id, }, | |
{ unfold P, | |
simp only [comp_add, homological_complex.comp_f, homological_complex.add_f_apply, | |
comp_id, functor.map_add, functor.map_comp, hq, map_Hσ], } | |
end | |
end dold_kan | |
end algebraic_topology | |