Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
5.75 kB
/-
Copyright (c) 2022 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import algebraic_topology.dold_kan.faces
/-!
# Construction of projections for the Dold-Kan correspondence
TODO (@joelriou) continue adding the various files referenced below
In this file, we construct endomorphisms `P q : K[X] ⟶ K[X]` for all
`q : ℕ`. We study how they behave with respect to face maps with the lemmas
`higher_faces_vanish.of_P`, `higher_faces_vanish.comp_P_eq_self` and
`comp_P_eq_self_iff`.
Then, we show that they are projections (see `P_f_idem`
and `P_idem`). They are natural transformations (see `nat_trans_P`
and `P_f_naturality`) and are compatible with the application
of additive functors (see `map_P`).
By passing to the limit, these endomorphisms `P q` shall be used in `p_infty.lean`
in order to define `P_infty : K[X] ⟶ K[X]`, see `equivalence.lean` for the general
strategy of proof of the Dold-Kan equivalence.
-/
open category_theory
open category_theory.category
open category_theory.limits
open category_theory.preadditive
open category_theory.simplicial_object
open opposite
open_locale simplicial dold_kan
noncomputable theory
namespace algebraic_topology
namespace dold_kan
variables {C : Type*} [category C] [preadditive C] {X : simplicial_object C}
/-- This is the inductive definition of the projections `P q : K[X] ⟶ K[X]`,
with `P 0 := 𝟙 _` and `P (q+1) := P q ≫ (𝟙 _ + Hσ q)`. -/
noncomputable def P : ℕ → (K[X] ⟶ K[X])
| 0 := 𝟙 _
| (q+1) := P q ≫ (𝟙 _ + Hσ q)
/-- All the `P q` coincide with `𝟙 _` in degree 0. -/
@[simp]
lemma P_f_0_eq (q : ℕ) : ((P q).f 0 : X _[0] ⟶ X _[0]) = 𝟙 _ :=
begin
induction q with q hq,
{ refl, },
{ unfold P,
simp only [homological_complex.add_f_apply, homological_complex.comp_f,
homological_complex.id_f, id_comp, hq, Hσ_eq_zero, add_zero], },
end
/-- `Q q` is the complement projection associated to `P q` -/
def Q (q : ℕ) : K[X] ⟶ K[X] := 𝟙 _ - P q
lemma P_add_Q (q : ℕ) : P q + Q q = 𝟙 K[X] := by { rw Q, abel, }
lemma P_add_Q_f (q n : ℕ) : (P q).f n + (Q q).f n = 𝟙 (X _[n]) :=
homological_complex.congr_hom (P_add_Q q) n
@[simp]
lemma Q_eq_zero : (Q 0 : K[X] ⟶ _) = 0 := sub_self _
lemma Q_eq (q : ℕ) : (Q (q+1) : K[X] ⟶ _) = Q q - P q ≫ Hσ q :=
by { unfold Q P, simp only [comp_add, comp_id], abel, }
/-- All the `Q q` coincide with `0` in degree 0. -/
@[simp]
lemma Q_f_0_eq (q : ℕ) : ((Q q).f 0 : X _[0] ⟶ X _[0]) = 0 :=
by simp only [homological_complex.sub_f_apply, homological_complex.id_f, Q, P_f_0_eq, sub_self]
namespace higher_faces_vanish
/-- This lemma expresses the vanishing of
`(P q).f (n+1) ≫ X.δ k : X _[n+1] ⟶ X _[n]` when `k≠0` and `k≥n-q+2` -/
lemma of_P : Π (q n : ℕ), higher_faces_vanish q (((P q).f (n+1) : X _[n+1] ⟶ X _[n+1]))
| 0 := λ n j hj₁, by { exfalso, have hj₂ := fin.is_lt j, linarith, }
| (q+1) := λ n, by { unfold P, exact (of_P q n).induction, }
@[reassoc]
lemma comp_P_eq_self {Y : C} {n q : ℕ} {φ : Y ⟶ X _[n+1]}
(v : higher_faces_vanish q φ) : φ ≫ (P q).f (n+1) = φ :=
begin
induction q with q hq,
{ unfold P,
apply comp_id, },
{ unfold P,
simp only [comp_add, homological_complex.comp_f, homological_complex.add_f_apply,
comp_id, ← assoc, hq v.of_succ, add_right_eq_self],
by_cases hqn : n<q,
{ exact v.of_succ.comp_Hσ_eq_zero hqn, },
{ cases nat.le.dest (not_lt.mp hqn) with a ha,
have hnaq : n=a+q := by linarith,
simp only [v.of_succ.comp_Hσ_eq hnaq, neg_eq_zero, ← assoc],
have eq := v ⟨a, by linarith⟩
(by simp only [hnaq, fin.coe_mk, nat.succ_eq_add_one, add_assoc]),
simp only [fin.succ_mk] at eq,
simp only [eq, zero_comp], }, },
end
end higher_faces_vanish
lemma comp_P_eq_self_iff {Y : C} {n q : ℕ} {φ : Y ⟶ X _[n+1]} :
φ ≫ (P q).f (n+1) = φ ↔ higher_faces_vanish q φ :=
begin
split,
{ intro hφ,
rw ← hφ,
apply higher_faces_vanish.of_comp,
apply higher_faces_vanish.of_P, },
{ exact higher_faces_vanish.comp_P_eq_self, },
end
@[simp, reassoc]
lemma P_f_idem (q n : ℕ) :
((P q).f n : X _[n] ⟶ _) ≫ ((P q).f n) = (P q).f n :=
begin
cases n,
{ rw [P_f_0_eq q, comp_id], },
{ exact (higher_faces_vanish.of_P q n).comp_P_eq_self, }
end
@[simp, reassoc]
lemma P_idem (q : ℕ) : (P q : K[X] ⟶ K[X]) ≫ P q = P q :=
by { ext n, exact P_f_idem q n, }
/-- For each `q`, `P q` is a natural transformation. -/
def nat_trans_P (q : ℕ) :
alternating_face_map_complex C ⟶ alternating_face_map_complex C :=
{ app := λ X, P q,
naturality' := λ X Y f, begin
induction q with q hq,
{ unfold P,
dsimp only [alternating_face_map_complex],
rw [id_comp, comp_id], },
{ unfold P,
simp only [add_comp, comp_add, assoc, comp_id, hq],
congr' 1,
rw [← assoc, hq, assoc],
congr' 1,
exact (nat_trans_Hσ q).naturality' f, }
end }
@[simp, reassoc]
lemma P_f_naturality (q n : ℕ) {X Y : simplicial_object C} (f : X ⟶ Y) :
f.app (op [n]) ≫ (P q).f n = (P q).f n ≫ f.app (op [n]) :=
homological_complex.congr_hom ((nat_trans_P q).naturality f) n
lemma map_P {D : Type*} [category D] [preadditive D]
(G : C ⥤ D) [G.additive] (X : simplicial_object C) (q n : ℕ) :
G.map ((P q : K[X] ⟶ _).f n) = (P q : K[((whiskering C D).obj G).obj X] ⟶ _).f n :=
begin
induction q with q hq,
{ unfold P,
apply G.map_id, },
{ unfold P,
simp only [comp_add, homological_complex.comp_f, homological_complex.add_f_apply,
comp_id, functor.map_add, functor.map_comp, hq, map_Hσ], }
end
end dold_kan
end algebraic_topology