Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
6.31 kB
/-
Copyright (c) 2022 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import analysis.calculus.deriv
import linear_algebra.affine_space.slope
/-!
# Slope of a differentiable function
Given a function `f : π•œ β†’ E` from a nontrivially normed field to a normed space over this field,
`dslope f a b` is defined as `slope f a b = (b - a)⁻¹ β€’ (f b - f a)` for `a β‰  b` and as `deriv f a`
for `a = b`.
In this file we define `dslope` and prove some basic lemmas about its continuity and
differentiability.
-/
open_locale classical topological_space filter
open function set filter
variables {π•œ E : Type*} [nontrivially_normed_field π•œ] [normed_add_comm_group E] [normed_space π•œ E]
/-- `dslope f a b` is defined as `slope f a b = (b - a)⁻¹ β€’ (f b - f a)` for `a β‰  b` and
`deriv f a` for `a = b`. -/
noncomputable def dslope (f : π•œ β†’ E) (a : π•œ) : π•œ β†’ E := update (slope f a) a (deriv f a)
@[simp] lemma dslope_same (f : π•œ β†’ E) (a : π•œ) : dslope f a a = deriv f a := update_same _ _ _
variables {f : π•œ β†’ E} {a b : π•œ} {s : set π•œ}
lemma dslope_of_ne (f : π•œ β†’ E) (h : b β‰  a) : dslope f a b = slope f a b :=
update_noteq h _ _
lemma continuous_linear_map.dslope_comp {F : Type*} [normed_add_comm_group F] [normed_space π•œ F]
(f : E β†’L[π•œ] F) (g : π•œ β†’ E) (a b : π•œ) (H : a = b β†’ differentiable_at π•œ g a) :
dslope (f ∘ g) a b = f (dslope g a b) :=
begin
rcases eq_or_ne b a with rfl|hne,
{ simp only [dslope_same],
exact (f.has_fderiv_at.comp_has_deriv_at b (H rfl).has_deriv_at).deriv },
{ simpa only [dslope_of_ne _ hne] using f.to_linear_map.slope_comp g a b }
end
lemma eq_on_dslope_slope (f : π•œ β†’ E) (a : π•œ) : eq_on (dslope f a) (slope f a) {a}ᢜ :=
Ξ» b, dslope_of_ne f
lemma dslope_eventually_eq_slope_of_ne (f : π•œ β†’ E) (h : b β‰  a) : dslope f a =αΆ [𝓝 b] slope f a :=
(eq_on_dslope_slope f a).eventually_eq_of_mem (is_open_ne.mem_nhds h)
lemma dslope_eventually_eq_slope_punctured_nhds (f : π•œ β†’ E) : dslope f a =αΆ [𝓝[β‰ ] a] slope f a :=
(eq_on_dslope_slope f a).eventually_eq_of_mem self_mem_nhds_within
@[simp] lemma sub_smul_dslope (f : π•œ β†’ E) (a b : π•œ) : (b - a) β€’ dslope f a b = f b - f a :=
by rcases eq_or_ne b a with rfl | hne; simp [dslope_of_ne, *]
lemma dslope_sub_smul_of_ne (f : π•œ β†’ E) (h : b β‰  a) : dslope (Ξ» x, (x - a) β€’ f x) a b = f b :=
by rw [dslope_of_ne _ h, slope_sub_smul _ h.symm]
lemma eq_on_dslope_sub_smul (f : π•œ β†’ E) (a : π•œ) : eq_on (dslope (Ξ» x, (x - a) β€’ f x) a) f {a}ᢜ :=
Ξ» b, dslope_sub_smul_of_ne f
lemma dslope_sub_smul [decidable_eq π•œ] (f : π•œ β†’ E) (a : π•œ) :
dslope (Ξ» x, (x - a) β€’ f x) a = update f a (deriv (Ξ» x, (x - a) β€’ f x) a) :=
eq_update_iff.2 ⟨dslope_same _ _, eq_on_dslope_sub_smul f a⟩
@[simp] lemma continuous_at_dslope_same : continuous_at (dslope f a) a ↔ differentiable_at π•œ f a :=
by simp only [dslope, continuous_at_update_same, ← has_deriv_at_deriv_iff,
has_deriv_at_iff_tendsto_slope]
lemma continuous_within_at.of_dslope (h : continuous_within_at (dslope f a) s b) :
continuous_within_at f s b :=
have continuous_within_at (Ξ» x, (x - a) β€’ dslope f a x + f a) s b,
from ((continuous_within_at_id.sub continuous_within_at_const).smul h).add
continuous_within_at_const,
by simpa only [sub_smul_dslope, sub_add_cancel] using this
lemma continuous_at.of_dslope (h : continuous_at (dslope f a) b) : continuous_at f b :=
(continuous_within_at_univ _ _).1 h.continuous_within_at.of_dslope
lemma continuous_on.of_dslope (h : continuous_on (dslope f a) s) : continuous_on f s :=
Ξ» x hx, (h x hx).of_dslope
lemma continuous_within_at_dslope_of_ne (h : b β‰  a) :
continuous_within_at (dslope f a) s b ↔ continuous_within_at f s b :=
begin
refine ⟨continuous_within_at.of_dslope, λ hc, _⟩,
simp only [dslope, continuous_within_at_update_of_ne h],
exact ((continuous_within_at_id.sub continuous_within_at_const).invβ‚€
(sub_ne_zero.2 h)).smul (hc.sub continuous_within_at_const)
end
lemma continuous_at_dslope_of_ne (h : b β‰  a) : continuous_at (dslope f a) b ↔ continuous_at f b :=
by simp only [← continuous_within_at_univ, continuous_within_at_dslope_of_ne h]
lemma continuous_on_dslope (h : s ∈ 𝓝 a) :
continuous_on (dslope f a) s ↔ continuous_on f s ∧ differentiable_at π•œ f a :=
begin
refine ⟨λ hc, ⟨hc.of_dslope, continuous_at_dslope_same.1 $ hc.continuous_at h⟩, _⟩,
rintro ⟨hc, hd⟩ x hx,
rcases eq_or_ne x a with rfl | hne,
exacts [(continuous_at_dslope_same.2 hd).continuous_within_at,
(continuous_within_at_dslope_of_ne hne).2 (hc x hx)]
end
lemma differentiable_within_at.of_dslope (h : differentiable_within_at π•œ (dslope f a) s b) :
differentiable_within_at π•œ f s b :=
by simpa only [id, sub_smul_dslope f a, sub_add_cancel]
using ((differentiable_within_at_id.sub_const a).smul h).add_const (f a)
lemma differentiable_at.of_dslope (h : differentiable_at π•œ (dslope f a) b) :
differentiable_at π•œ f b :=
differentiable_within_at_univ.1 h.differentiable_within_at.of_dslope
lemma differentiable_on.of_dslope (h : differentiable_on π•œ (dslope f a) s) :
differentiable_on π•œ f s :=
Ξ» x hx, (h x hx).of_dslope
lemma differentiable_within_at_dslope_of_ne (h : b β‰  a) :
differentiable_within_at π•œ (dslope f a) s b ↔ differentiable_within_at π•œ f s b :=
begin
refine ⟨differentiable_within_at.of_dslope, λ hd, _⟩,
refine (((differentiable_within_at_id.sub_const a).inv
(sub_ne_zero.2 h)).smul (hd.sub_const (f a))).congr_of_eventually_eq _ (dslope_of_ne _ h),
refine (eq_on_dslope_slope _ _).eventually_eq_of_mem _,
exact mem_nhds_within_of_mem_nhds (is_open_ne.mem_nhds h)
end
lemma differentiable_on_dslope_of_nmem (h : a βˆ‰ s) :
differentiable_on π•œ (dslope f a) s ↔ differentiable_on π•œ f s :=
forall_congr $ Ξ» x, forall_congr $ Ξ» hx, differentiable_within_at_dslope_of_ne $
ne_of_mem_of_not_mem hx h
lemma differentiable_at_dslope_of_ne (h : b β‰  a) :
differentiable_at π•œ (dslope f a) b ↔ differentiable_at π•œ f b :=
by simp only [← differentiable_within_at_univ,
differentiable_within_at_dslope_of_ne h]