Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 SΓ©bastien GouΓ«zel. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: SΓ©bastien GouΓ«zel | |
-/ | |
import analysis.calculus.deriv | |
import analysis.calculus.mean_value | |
import analysis.convex.topology | |
/-! | |
# Symmetry of the second derivative | |
We show that, over the reals, the second derivative is symmetric. | |
The most precise result is `convex.second_derivative_within_at_symmetric`. It asserts that, | |
if a function is differentiable inside a convex set `s` with nonempty interior, and has a second | |
derivative within `s` at a point `x`, then this second derivative at `x` is symmetric. Note that | |
this result does not require continuity of the first derivative. | |
The following particular cases of this statement are especially relevant: | |
`second_derivative_symmetric_of_eventually` asserts that, if a function is differentiable on a | |
neighborhood of `x`, and has a second derivative at `x`, then this second derivative is symmetric. | |
`second_derivative_symmetric` asserts that, if a function is differentiable, and has a second | |
derivative at `x`, then this second derivative is symmetric. | |
## Implementation note | |
For the proof, we obtain an asymptotic expansion to order two of `f (x + v + w) - f (x + v)`, by | |
using the mean value inequality applied to a suitable function along the | |
segment `[x + v, x + v + w]`. This expansion involves `f'' β¬ w` as we move along a segment directed | |
by `w` (see `convex.taylor_approx_two_segment`). | |
Consider the alternate sum `f (x + v + w) + f x - f (x + v) - f (x + w)`, corresponding to the | |
values of `f` along a rectangle based at `x` with sides `v` and `w`. One can write it using the two | |
sides directed by `w`, as `(f (x + v + w) - f (x + v)) - (f (x + w) - f x)`. Together with the | |
previous asymptotic expansion, one deduces that it equals `f'' v w + o(1)` when `v, w` tends to `0`. | |
Exchanging the roles of `v` and `w`, one instead gets an asymptotic expansion `f'' w v`, from which | |
the equality `f'' v w = f'' w v` follows. | |
In our most general statement, we only assume that `f` is differentiable inside a convex set `s`, so | |
a few modifications have to be made. Since we don't assume continuity of `f` at `x`, we consider | |
instead the rectangle based at `x + v + w` with sides `v` and `w`, | |
in `convex.is_o_alternate_sum_square`, but the argument is essentially the same. It only works | |
when `v` and `w` both point towards the interior of `s`, to make sure that all the sides of the | |
rectangle are contained in `s` by convexity. The general case follows by linearity, though. | |
-/ | |
open asymptotics set | |
open_locale topological_space | |
variables {E F : Type*} [normed_add_comm_group E] [normed_space β E] | |
[normed_add_comm_group F] [normed_space β F] | |
{s : set E} (s_conv : convex β s) | |
{f : E β F} {f' : E β (E βL[β] F)} {f'' : E βL[β] (E βL[β] F)} | |
(hf : β x β interior s, has_fderiv_at f (f' x) x) | |
{x : E} (xs : x β s) (hx : has_fderiv_within_at f' f'' (interior s) x) | |
include s_conv xs hx hf | |
/-- Assume that `f` is differentiable inside a convex set `s`, and that its derivative `f'` is | |
differentiable at a point `x`. Then, given two vectors `v` and `w` pointing inside `s`, one can | |
Taylor-expand to order two the function `f` on the segment `[x + h v, x + h (v + w)]`, giving a | |
bilinear estimate for `f (x + hv + hw) - f (x + hv)` in terms of `f' w` and of `f'' β¬ w`, up to | |
`o(h^2)`. | |
This is a technical statement used to show that the second derivative is symmetric. | |
-/ | |
lemma convex.taylor_approx_two_segment | |
{v w : E} (hv : x + v β interior s) (hw : x + v + w β interior s) : | |
(Ξ» h : β, f (x + h β’ v + h β’ w) - f (x + h β’ v) - h β’ f' x w | |
- h^2 β’ f'' v w - (h^2/2) β’ f'' w w) =o[π[>] 0] (Ξ» h, h^2) := | |
begin | |
-- it suffices to check that the expression is bounded by `Ξ΅ * ((β₯vβ₯ + β₯wβ₯) * β₯wβ₯) * h^2` for | |
-- small enough `h`, for any positive `Ξ΅`. | |
apply is_o.trans_is_O (is_o_iff.2 (Ξ» Ξ΅ Ξ΅pos, _)) (is_O_const_mul_self ((β₯vβ₯ + β₯wβ₯) * β₯wβ₯) _ _), | |
-- consider a ball of radius `Ξ΄` around `x` in which the Taylor approximation for `f''` is | |
-- good up to `Ξ΄`. | |
rw [has_fderiv_within_at, has_fderiv_at_filter, is_o_iff] at hx, | |
rcases metric.mem_nhds_within_iff.1 (hx Ξ΅pos) with β¨Ξ΄, Ξ΄pos, sΞ΄β©, | |
have E1 : βαΆ h in π[>] (0:β), h * (β₯vβ₯ + β₯wβ₯) < Ξ΄, | |
{ have : filter.tendsto (Ξ» h, h * (β₯vβ₯ + β₯wβ₯)) (π[>] (0:β)) (π (0 * (β₯vβ₯ + β₯wβ₯))) := | |
(continuous_id.mul continuous_const).continuous_within_at, | |
apply (tendsto_order.1 this).2 Ξ΄, | |
simpa only [zero_mul] using Ξ΄pos }, | |
have E2 : βαΆ h in π[>] (0:β), (h : β) < 1 := | |
mem_nhds_within_Ioi_iff_exists_Ioo_subset.2 | |
β¨(1 : β), by simp only [mem_Ioi, zero_lt_one], Ξ» x hx, hx.2β©, | |
filter_upwards [E1, E2, self_mem_nhds_within] with h hΞ΄ h_lt_1 hpos, | |
-- we consider `h` small enough that all points under consideration belong to this ball, | |
-- and also with `0 < h < 1`. | |
replace hpos : 0 < h := hpos, | |
have xt_mem : β t β Icc (0 : β) 1, x + h β’ v + (t * h) β’ w β interior s, | |
{ assume t ht, | |
have : x + h β’ v β interior s := | |
s_conv.add_smul_mem_interior xs hv β¨hpos, h_lt_1.leβ©, | |
rw [β smul_smul], | |
apply s_conv.interior.add_smul_mem this _ ht, | |
rw add_assoc at hw, | |
rw [add_assoc, β smul_add], | |
exact s_conv.add_smul_mem_interior xs hw β¨hpos, h_lt_1.leβ© }, | |
-- define a function `g` on `[0,1]` (identified with `[v, v + w]`) such that `g 1 - g 0` is the | |
-- quantity to be estimated. We will check that its derivative is given by an explicit | |
-- expression `g'`, that we can bound. Then the desired bound for `g 1 - g 0` follows from the | |
-- mean value inequality. | |
let g := Ξ» t, f (x + h β’ v + (t * h) β’ w) - (t * h) β’ f' x w - (t * h^2) β’ f'' v w | |
- ((t * h)^2/2) β’ f'' w w, | |
set g' := Ξ» t, f' (x + h β’ v + (t * h) β’ w) (h β’ w) - h β’ f' x w | |
- h^2 β’ f'' v w - (t * h^2) β’ f'' w w with hg', | |
-- check that `g'` is the derivative of `g`, by a straightforward computation | |
have g_deriv : β t β Icc (0 : β) 1, has_deriv_within_at g (g' t) (Icc 0 1) t, | |
{ assume t ht, | |
apply_rules [has_deriv_within_at.sub, has_deriv_within_at.add], | |
{ refine (hf _ _).comp_has_deriv_within_at _ _, | |
{ exact xt_mem t ht }, | |
apply_rules [has_deriv_at.has_deriv_within_at, has_deriv_at.const_add, | |
has_deriv_at.smul_const, has_deriv_at_mul_const] }, | |
{ apply_rules [has_deriv_at.has_deriv_within_at, has_deriv_at.smul_const, | |
has_deriv_at_mul_const] }, | |
{ apply_rules [has_deriv_at.has_deriv_within_at, has_deriv_at.smul_const, | |
has_deriv_at_mul_const] }, | |
{ suffices H : has_deriv_within_at (Ξ» u, ((u * h) ^ 2 / 2) β’ f'' w w) | |
(((((2 : β) : β) * (t * h) ^ (2 - 1) * (1 * h))/2) β’ f'' w w) (Icc 0 1) t, | |
{ convert H using 2, | |
simp only [one_mul, nat.cast_bit0, pow_one, nat.cast_one], | |
ring }, | |
apply_rules [has_deriv_at.has_deriv_within_at, has_deriv_at.smul_const, has_deriv_at_id', | |
has_deriv_at.pow, has_deriv_at.mul_const] } }, | |
-- check that `g'` is uniformly bounded, with a suitable bound `Ξ΅ * ((β₯vβ₯ + β₯wβ₯) * β₯wβ₯) * h^2`. | |
have g'_bound : β t β Ico (0 : β) 1, β₯g' tβ₯ β€ Ξ΅ * ((β₯vβ₯ + β₯wβ₯) * β₯wβ₯) * h^2, | |
{ assume t ht, | |
have I : β₯h β’ v + (t * h) β’ wβ₯ β€ h * (β₯vβ₯ + β₯wβ₯) := calc | |
β₯h β’ v + (t * h) β’ wβ₯ β€ β₯h β’ vβ₯ + β₯(t * h) β’ wβ₯ : norm_add_le _ _ | |
... = h * β₯vβ₯ + t * (h * β₯wβ₯) : | |
by simp only [norm_smul, real.norm_eq_abs, hpos.le, abs_of_nonneg, abs_mul, ht.left, | |
mul_assoc] | |
... β€ h * β₯vβ₯ + 1 * (h * β₯wβ₯) : | |
add_le_add le_rfl (mul_le_mul_of_nonneg_right ht.2.le | |
(mul_nonneg hpos.le (norm_nonneg _))) | |
... = h * (β₯vβ₯ + β₯wβ₯) : by ring, | |
calc β₯g' tβ₯ = β₯(f' (x + h β’ v + (t * h) β’ w) - f' x - f'' (h β’ v + (t * h) β’ w)) (h β’ w)β₯ : | |
begin | |
rw hg', | |
have : h * (t * h) = t * (h * h), by ring, | |
simp only [continuous_linear_map.coe_sub', continuous_linear_map.map_add, pow_two, | |
continuous_linear_map.add_apply, pi.smul_apply, smul_sub, smul_add, smul_smul, β sub_sub, | |
continuous_linear_map.coe_smul', pi.sub_apply, continuous_linear_map.map_smul, this] | |
end | |
... β€ β₯f' (x + h β’ v + (t * h) β’ w) - f' x - f'' (h β’ v + (t * h) β’ w)β₯ * β₯h β’ wβ₯ : | |
continuous_linear_map.le_op_norm _ _ | |
... β€ (Ξ΅ * β₯h β’ v + (t * h) β’ wβ₯) * (β₯h β’ wβ₯) : | |
begin | |
apply mul_le_mul_of_nonneg_right _ (norm_nonneg _), | |
have H : x + h β’ v + (t * h) β’ w β metric.ball x Ξ΄ β© interior s, | |
{ refine β¨_, xt_mem t β¨ht.1, ht.2.leβ©β©, | |
rw [add_assoc, add_mem_ball_iff_norm], | |
exact I.trans_lt hΞ΄ }, | |
simpa only [mem_set_of_eq, add_assoc x, add_sub_cancel'] using sΞ΄ H, | |
end | |
... β€ (Ξ΅ * (β₯h β’ vβ₯ + β₯h β’ wβ₯)) * (β₯h β’ wβ₯) : | |
begin | |
apply mul_le_mul_of_nonneg_right _ (norm_nonneg _), | |
apply mul_le_mul_of_nonneg_left _ (Ξ΅pos.le), | |
apply (norm_add_le _ _).trans, | |
refine add_le_add le_rfl _, | |
simp only [norm_smul, real.norm_eq_abs, abs_mul, abs_of_nonneg, ht.1, hpos.le, mul_assoc], | |
exact mul_le_of_le_one_left (mul_nonneg hpos.le (norm_nonneg _)) ht.2.le, | |
end | |
... = Ξ΅ * ((β₯vβ₯ + β₯wβ₯) * β₯wβ₯) * h^2 : | |
by { simp only [norm_smul, real.norm_eq_abs, abs_mul, abs_of_nonneg, hpos.le], ring } }, | |
-- conclude using the mean value inequality | |
have I : β₯g 1 - g 0β₯ β€ Ξ΅ * ((β₯vβ₯ + β₯wβ₯) * β₯wβ₯) * h^2, by simpa only [mul_one, sub_zero] using | |
norm_image_sub_le_of_norm_deriv_le_segment' g_deriv g'_bound 1 (right_mem_Icc.2 zero_le_one), | |
convert I using 1, | |
{ congr' 1, | |
dsimp only [g], | |
simp only [nat.one_ne_zero, add_zero, one_mul, zero_div, zero_mul, sub_zero, zero_smul, | |
ne.def, not_false_iff, bit0_eq_zero, zero_pow'], | |
abel }, | |
{ simp only [real.norm_eq_abs, abs_mul, add_nonneg (norm_nonneg v) (norm_nonneg w), | |
abs_of_nonneg, mul_assoc, pow_bit0_abs, norm_nonneg, abs_pow] } | |
end | |
/-- One can get `f'' v w` as the limit of `h ^ (-2)` times the alternate sum of the values of `f` | |
along the vertices of a quadrilateral with sides `h v` and `h w` based at `x`. | |
In a setting where `f` is not guaranteed to be continuous at `f`, we can still | |
get this if we use a quadrilateral based at `h v + h w`. -/ | |
lemma convex.is_o_alternate_sum_square | |
{v w : E} (h4v : x + (4 : β) β’ v β interior s) (h4w : x + (4 : β) β’ w β interior s) : | |
(Ξ» h : β, f (x + h β’ (2 β’ v + 2 β’ w)) + f (x + h β’ (v + w)) | |
- f (x + h β’ (2 β’ v + w)) - f (x + h β’ (v + 2 β’ w)) - h^2 β’ f'' v w) =o[π[>] 0] (Ξ» h, h^2) := | |
begin | |
have A : (1 : β)/2 β Ioc (0 : β) 1 := β¨by norm_num, by norm_numβ©, | |
have B : (1 : β)/2 β Icc (0 : β) 1 := β¨by norm_num, by norm_numβ©, | |
have C : β (w : E), (2 : β) β’ w = 2 β’ w := Ξ» w, by simp only [two_smul], | |
have h2v2w : x + (2 : β) β’ v + (2 : β) β’ w β interior s, | |
{ convert s_conv.interior.add_smul_sub_mem h4v h4w B using 1, | |
simp only [smul_sub, smul_smul, one_div, add_sub_add_left_eq_sub, mul_add, add_smul], | |
norm_num, | |
simp only [show (4 : β) = (2 : β) + (2 : β), by norm_num, add_smul], | |
abel }, | |
have h2vww : x + (2 β’ v + w) + w β interior s, | |
{ convert h2v2w using 1, | |
simp only [two_smul], | |
abel }, | |
have h2v : x + (2 : β) β’ v β interior s, | |
{ convert s_conv.add_smul_sub_mem_interior xs h4v A using 1, | |
simp only [smul_smul, one_div, add_sub_cancel', add_right_inj], | |
norm_num }, | |
have h2w : x + (2 : β) β’ w β interior s, | |
{ convert s_conv.add_smul_sub_mem_interior xs h4w A using 1, | |
simp only [smul_smul, one_div, add_sub_cancel', add_right_inj], | |
norm_num }, | |
have hvw : x + (v + w) β interior s, | |
{ convert s_conv.add_smul_sub_mem_interior xs h2v2w A using 1, | |
simp only [smul_smul, one_div, add_sub_cancel', add_right_inj, smul_add, smul_sub], | |
norm_num, | |
abel }, | |
have h2vw : x + (2 β’ v + w) β interior s, | |
{ convert s_conv.interior.add_smul_sub_mem h2v h2v2w B using 1, | |
simp only [smul_add, smul_sub, smul_smul, β C], | |
norm_num, | |
abel }, | |
have hvww : x + (v + w) + w β interior s, | |
{ convert s_conv.interior.add_smul_sub_mem h2w h2v2w B using 1, | |
simp only [one_div, add_sub_cancel', inv_smul_smulβ, add_sub_add_right_eq_sub, ne.def, | |
not_false_iff, bit0_eq_zero, one_ne_zero], | |
rw two_smul, | |
abel }, | |
have TA1 := s_conv.taylor_approx_two_segment hf xs hx h2vw h2vww, | |
have TA2 := s_conv.taylor_approx_two_segment hf xs hx hvw hvww, | |
convert TA1.sub TA2, | |
ext h, | |
simp only [two_smul, smul_add, β add_assoc, continuous_linear_map.map_add, | |
continuous_linear_map.add_apply, pi.smul_apply, | |
continuous_linear_map.coe_smul', continuous_linear_map.map_smul], | |
abel, | |
end | |
/-- Assume that `f` is differentiable inside a convex set `s`, and that its derivative `f'` is | |
differentiable at a point `x`. Then, given two vectors `v` and `w` pointing inside `s`, one | |
has `f'' v w = f'' w v`. Superseded by `convex.second_derivative_within_at_symmetric`, which | |
removes the assumption that `v` and `w` point inside `s`. | |
-/ | |
lemma convex.second_derivative_within_at_symmetric_of_mem_interior | |
{v w : E} (h4v : x + (4 : β) β’ v β interior s) (h4w : x + (4 : β) β’ w β interior s) : | |
f'' w v = f'' v w := | |
begin | |
have A : (Ξ» h : β, h^2 β’ (f'' w v- f'' v w)) =o[π[>] 0] (Ξ» h, h^2), | |
{ convert (s_conv.is_o_alternate_sum_square hf xs hx h4v h4w).sub | |
(s_conv.is_o_alternate_sum_square hf xs hx h4w h4v), | |
ext h, | |
simp only [add_comm, smul_add, smul_sub], | |
abel }, | |
have B : (Ξ» h : β, f'' w v - f'' v w) =o[π[>] 0] (Ξ» h, (1 : β)), | |
{ have : (Ξ» h : β, 1/h^2) =O[π[>] 0] (Ξ» h, 1/h^2) := is_O_refl _ _, | |
have C := this.smul_is_o A, | |
apply C.congr' _ _, | |
{ filter_upwards [self_mem_nhds_within], | |
assume h hpos, | |
rw [β one_smul β (f'' w v - f'' v w), smul_smul, smul_smul], | |
congr' 1, | |
field_simp [has_lt.lt.ne' hpos] }, | |
{ filter_upwards [self_mem_nhds_within] with _ hpos, | |
field_simp [has_lt.lt.ne' hpos, has_smul.smul], }, }, | |
simpa only [sub_eq_zero] using is_o_const_const_iff.1 B, | |
end | |
omit s_conv xs hx hf | |
/-- If a function is differentiable inside a convex set with nonempty interior, and has a second | |
derivative at a point of this convex set, then this second derivative is symmetric. -/ | |
theorem convex.second_derivative_within_at_symmetric | |
{s : set E} (s_conv : convex β s) (hne : (interior s).nonempty) | |
{f : E β F} {f' : E β (E βL[β] F)} {f'' : E βL[β] (E βL[β] F)} | |
(hf : β x β interior s, has_fderiv_at f (f' x) x) | |
{x : E} (xs : x β s) (hx : has_fderiv_within_at f' f'' (interior s) x) (v w : E) : | |
f'' v w = f'' w v := | |
begin | |
/- we work around a point `x + 4 z` in the interior of `s`. For any vector `m`, | |
then `x + 4 (z + t m)` also belongs to the interior of `s` for small enough `t`. This means that | |
we will be able to apply `second_derivative_within_at_symmetric_of_mem_interior` to show | |
that `f''` is symmetric, after cancelling all the contributions due to `z`. -/ | |
rcases hne with β¨y, hyβ©, | |
obtain β¨z, hzβ© : β z, z = ((1:β) / 4) β’ (y - x) := β¨((1:β) / 4) β’ (y - x), rflβ©, | |
have A : β (m : E), filter.tendsto (Ξ» (t : β), x + (4 : β) β’ (z + t β’ m)) (π 0) (π y), | |
{ assume m, | |
have : x + (4 : β) β’ (z + (0 : β) β’ m) = y, by simp [hz], | |
rw β this, | |
refine tendsto_const_nhds.add _, | |
refine tendsto_const_nhds.smul _, | |
refine tendsto_const_nhds.add _, | |
exact continuous_at_id.smul continuous_at_const }, | |
have B : β (m : E), βαΆ t in π[>] (0 : β), x + (4 : β) β’ (z + t β’ m) β interior s, | |
{ assume m, | |
apply nhds_within_le_nhds, | |
apply A m, | |
rw [mem_interior_iff_mem_nhds] at hy, | |
exact interior_mem_nhds.2 hy }, | |
-- we choose `t m > 0` such that `x + 4 (z + (t m) m)` belongs to the interior of `s`, for any | |
-- vector `m`. | |
choose t ts tpos using Ξ» m, ((B m).and self_mem_nhds_within).exists, | |
-- applying `second_derivative_within_at_symmetric_of_mem_interior` to the vectors `z` | |
-- and `z + (t m) m`, we deduce that `f'' m z = f'' z m` for all `m`. | |
have C : β (m : E), f'' m z = f'' z m, | |
{ assume m, | |
have : f'' (z + t m β’ m) (z + t 0 β’ 0) = f'' (z + t 0 β’ 0) (z + t m β’ m) := | |
s_conv.second_derivative_within_at_symmetric_of_mem_interior hf xs hx (ts 0) (ts m), | |
simp only [continuous_linear_map.map_add, continuous_linear_map.map_smul, add_right_inj, | |
continuous_linear_map.add_apply, pi.smul_apply, continuous_linear_map.coe_smul', add_zero, | |
continuous_linear_map.zero_apply, smul_zero, continuous_linear_map.map_zero] at this, | |
exact smul_right_injective F (tpos m).ne' this }, | |
-- applying `second_derivative_within_at_symmetric_of_mem_interior` to the vectors `z + (t v) v` | |
-- and `z + (t w) w`, we deduce that `f'' v w = f'' w v`. Cross terms involving `z` can be | |
-- eliminated thanks to the fact proved above that `f'' m z = f'' z m`. | |
have : f'' (z + t v β’ v) (z + t w β’ w) = f'' (z + t w β’ w) (z + t v β’ v) := | |
s_conv.second_derivative_within_at_symmetric_of_mem_interior hf xs hx (ts w) (ts v), | |
simp only [continuous_linear_map.map_add, continuous_linear_map.map_smul, smul_add, smul_smul, | |
continuous_linear_map.add_apply, pi.smul_apply, continuous_linear_map.coe_smul', C] at this, | |
rw β sub_eq_zero at this, | |
abel at this, | |
simp only [one_zsmul, neg_smul, sub_eq_zero, mul_comm, β sub_eq_add_neg] at this, | |
apply smul_right_injective F _ this, | |
simp [(tpos v).ne', (tpos w).ne'] | |
end | |
/-- If a function is differentiable around `x`, and has two derivatives at `x`, then the second | |
derivative is symmetric. -/ | |
theorem second_derivative_symmetric_of_eventually | |
{f : E β F} {f' : E β (E βL[β] F)} {f'' : E βL[β] (E βL[β] F)} | |
(hf : βαΆ y in π x, has_fderiv_at f (f' y) y) | |
(hx : has_fderiv_at f' f'' x) (v w : E) : | |
f'' v w = f'' w v := | |
begin | |
rcases metric.mem_nhds_iff.1 hf with β¨Ξ΅, Ξ΅pos, hΞ΅β©, | |
have A : (interior (metric.ball x Ξ΅)).nonempty, | |
by rwa [metric.is_open_ball.interior_eq, metric.nonempty_ball], | |
exact convex.second_derivative_within_at_symmetric (convex_ball x Ξ΅) A | |
(Ξ» y hy, hΞ΅ (interior_subset hy)) (metric.mem_ball_self Ξ΅pos) hx.has_fderiv_within_at v w, | |
end | |
/-- If a function is differentiable, and has two derivatives at `x`, then the second | |
derivative is symmetric. -/ | |
theorem second_derivative_symmetric | |
{f : E β F} {f' : E β (E βL[β] F)} {f'' : E βL[β] (E βL[β] F)} | |
(hf : β y, has_fderiv_at f (f' y) y) | |
(hx : has_fderiv_at f' f'' x) (v w : E) : | |
f'' v w = f'' w v := | |
second_derivative_symmetric_of_eventually (filter.eventually_of_forall hf) hx v w | |