Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Yury Kudryashov. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yury Kudryashov | |
-/ | |
import analysis.calculus.deriv | |
import data.polynomial.field_division | |
import topology.algebra.order.extend_from | |
import topology.algebra.polynomial | |
import topology.local_extr | |
/-! | |
# Local extrema of smooth functions | |
## Main definitions | |
In a real normed space `E` we define `pos_tangent_cone_at (s : set E) (x : E)`. | |
This would be the same as `tangent_cone_at ℝ≥0 s x` if we had a theory of normed semifields. | |
This set is used in the proof of Fermat's Theorem (see below), and can be used to formalize | |
[Lagrange multipliers](https://en.wikipedia.org/wiki/Lagrange_multiplier) and/or | |
[Karush–Kuhn–Tucker conditions](https://en.wikipedia.org/wiki/Karush–Kuhn–Tucker_conditions). | |
## Main statements | |
For each theorem name listed below, | |
we also prove similar theorems for `min`, `extr` (if applicable)`, | |
and `(f)deriv` instead of `has_fderiv`. | |
* `is_local_max_on.has_fderiv_within_at_nonpos` : `f' y ≤ 0` whenever `a` is a local maximum | |
of `f` on `s`, `f` has derivative `f'` at `a` within `s`, and `y` belongs to the positive tangent | |
cone of `s` at `a`. | |
* `is_local_max_on.has_fderiv_within_at_eq_zero` : In the settings of the previous theorem, if both | |
`y` and `-y` belong to the positive tangent cone, then `f' y = 0`. | |
* `is_local_max.has_fderiv_at_eq_zero` : | |
[Fermat's Theorem](https://en.wikipedia.org/wiki/Fermat's_theorem_(stationary_points)), | |
the derivative of a differentiable function at a local extremum point equals zero. | |
* `exists_has_deriv_at_eq_zero` : | |
[Rolle's Theorem](https://en.wikipedia.org/wiki/Rolle's_theorem): given a function `f` continuous | |
on `[a, b]` and differentiable on `(a, b)`, there exists `c ∈ (a, b)` such that `f' c = 0`. | |
## Implementation notes | |
For each mathematical fact we prove several versions of its formalization: | |
* for maxima and minima; | |
* using `has_fderiv*`/`has_deriv*` or `fderiv*`/`deriv*`. | |
For the `fderiv*`/`deriv*` versions we omit the differentiability condition whenever it is possible | |
due to the fact that `fderiv` and `deriv` are defined to be zero for non-differentiable functions. | |
## References | |
* [Fermat's Theorem](https://en.wikipedia.org/wiki/Fermat's_theorem_(stationary_points)); | |
* [Rolle's Theorem](https://en.wikipedia.org/wiki/Rolle's_theorem); | |
* [Tangent cone](https://en.wikipedia.org/wiki/Tangent_cone); | |
## Tags | |
local extremum, Fermat's Theorem, Rolle's Theorem | |
-/ | |
universes u v | |
open filter set | |
open_locale topological_space classical polynomial | |
section module | |
variables {E : Type u} [normed_add_comm_group E] [normed_space ℝ E] {f : E → ℝ} {a : E} | |
{f' : E →L[ℝ] ℝ} | |
/-- "Positive" tangent cone to `s` at `x`; the only difference from `tangent_cone_at` | |
is that we require `c n → ∞` instead of `∥c n∥ → ∞`. One can think about `pos_tangent_cone_at` | |
as `tangent_cone_at nnreal` but we have no theory of normed semifields yet. -/ | |
def pos_tangent_cone_at (s : set E) (x : E) : set E := | |
{y : E | ∃(c : ℕ → ℝ) (d : ℕ → E), (∀ᶠ n in at_top, x + d n ∈ s) ∧ | |
(tendsto c at_top at_top) ∧ (tendsto (λn, c n • d n) at_top (𝓝 y))} | |
lemma pos_tangent_cone_at_mono : monotone (λ s, pos_tangent_cone_at s a) := | |
begin | |
rintros s t hst y ⟨c, d, hd, hc, hcd⟩, | |
exact ⟨c, d, mem_of_superset hd $ λ h hn, hst hn, hc, hcd⟩ | |
end | |
lemma mem_pos_tangent_cone_at_of_segment_subset {s : set E} {x y : E} (h : segment ℝ x y ⊆ s) : | |
y - x ∈ pos_tangent_cone_at s x := | |
begin | |
let c := λn:ℕ, (2:ℝ)^n, | |
let d := λn:ℕ, (c n)⁻¹ • (y-x), | |
refine ⟨c, d, filter.univ_mem' (λn, h _), | |
tendsto_pow_at_top_at_top_of_one_lt one_lt_two, _⟩, | |
show x + d n ∈ segment ℝ x y, | |
{ rw segment_eq_image', | |
refine ⟨(c n)⁻¹, ⟨_, _⟩, rfl⟩, | |
exacts [inv_nonneg.2 (pow_nonneg zero_le_two _), | |
inv_le_one (one_le_pow_of_one_le one_le_two _)] }, | |
show tendsto (λ n, c n • d n) at_top (𝓝 (y - x)), | |
{ convert tendsto_const_nhds, ext n, | |
simp only [d, smul_smul], | |
rw [mul_inv_cancel, one_smul], | |
exact pow_ne_zero _ two_ne_zero } | |
end | |
lemma mem_pos_tangent_cone_at_of_segment_subset' {s : set E} {x y : E} | |
(h : segment ℝ x (x + y) ⊆ s) : | |
y ∈ pos_tangent_cone_at s x := | |
by simpa only [add_sub_cancel'] using mem_pos_tangent_cone_at_of_segment_subset h | |
lemma pos_tangent_cone_at_univ : pos_tangent_cone_at univ a = univ := | |
eq_univ_of_forall $ λ x, mem_pos_tangent_cone_at_of_segment_subset' (subset_univ _) | |
/-- If `f` has a local max on `s` at `a`, `f'` is the derivative of `f` at `a` within `s`, and | |
`y` belongs to the positive tangent cone of `s` at `a`, then `f' y ≤ 0`. -/ | |
lemma is_local_max_on.has_fderiv_within_at_nonpos {s : set E} (h : is_local_max_on f s a) | |
(hf : has_fderiv_within_at f f' s a) {y} (hy : y ∈ pos_tangent_cone_at s a) : | |
f' y ≤ 0 := | |
begin | |
rcases hy with ⟨c, d, hd, hc, hcd⟩, | |
have hc' : tendsto (λ n, ∥c n∥) at_top at_top, | |
from tendsto_at_top_mono (λ n, le_abs_self _) hc, | |
refine le_of_tendsto (hf.lim at_top hd hc' hcd) _, | |
replace hd : tendsto (λ n, a + d n) at_top (𝓝[s] (a + 0)), | |
from tendsto_inf.2 ⟨tendsto_const_nhds.add (tangent_cone_at.lim_zero _ hc' hcd), | |
by rwa tendsto_principal⟩, | |
rw [add_zero] at hd, | |
replace h : ∀ᶠ n in at_top, f (a + d n) ≤ f a, from mem_map.1 (hd h), | |
replace hc : ∀ᶠ n in at_top, 0 ≤ c n, from mem_map.1 (hc (mem_at_top (0:ℝ))), | |
filter_upwards [h, hc], | |
simp only [smul_eq_mul, mem_preimage, subset_def], | |
assume n hnf hn, | |
exact mul_nonpos_of_nonneg_of_nonpos hn (sub_nonpos.2 hnf) | |
end | |
/-- If `f` has a local max on `s` at `a` and `y` belongs to the positive tangent cone | |
of `s` at `a`, then `f' y ≤ 0`. -/ | |
lemma is_local_max_on.fderiv_within_nonpos {s : set E} (h : is_local_max_on f s a) | |
{y} (hy : y ∈ pos_tangent_cone_at s a) : | |
(fderiv_within ℝ f s a : E → ℝ) y ≤ 0 := | |
if hf : differentiable_within_at ℝ f s a | |
then h.has_fderiv_within_at_nonpos hf.has_fderiv_within_at hy | |
else by { rw fderiv_within_zero_of_not_differentiable_within_at hf, refl } | |
/-- If `f` has a local max on `s` at `a`, `f'` is a derivative of `f` at `a` within `s`, and | |
both `y` and `-y` belong to the positive tangent cone of `s` at `a`, then `f' y ≤ 0`. -/ | |
lemma is_local_max_on.has_fderiv_within_at_eq_zero {s : set E} (h : is_local_max_on f s a) | |
(hf : has_fderiv_within_at f f' s a) {y} (hy : y ∈ pos_tangent_cone_at s a) | |
(hy' : -y ∈ pos_tangent_cone_at s a) : | |
f' y = 0 := | |
le_antisymm (h.has_fderiv_within_at_nonpos hf hy) $ | |
by simpa using h.has_fderiv_within_at_nonpos hf hy' | |
/-- If `f` has a local max on `s` at `a` and both `y` and `-y` belong to the positive tangent cone | |
of `s` at `a`, then `f' y = 0`. -/ | |
lemma is_local_max_on.fderiv_within_eq_zero {s : set E} (h : is_local_max_on f s a) | |
{y} (hy : y ∈ pos_tangent_cone_at s a) (hy' : -y ∈ pos_tangent_cone_at s a) : | |
(fderiv_within ℝ f s a : E → ℝ) y = 0 := | |
if hf : differentiable_within_at ℝ f s a | |
then h.has_fderiv_within_at_eq_zero hf.has_fderiv_within_at hy hy' | |
else by { rw fderiv_within_zero_of_not_differentiable_within_at hf, refl } | |
/-- If `f` has a local min on `s` at `a`, `f'` is the derivative of `f` at `a` within `s`, and | |
`y` belongs to the positive tangent cone of `s` at `a`, then `0 ≤ f' y`. -/ | |
lemma is_local_min_on.has_fderiv_within_at_nonneg {s : set E} (h : is_local_min_on f s a) | |
(hf : has_fderiv_within_at f f' s a) {y} (hy : y ∈ pos_tangent_cone_at s a) : | |
0 ≤ f' y := | |
by simpa using h.neg.has_fderiv_within_at_nonpos hf.neg hy | |
/-- If `f` has a local min on `s` at `a` and `y` belongs to the positive tangent cone | |
of `s` at `a`, then `0 ≤ f' y`. -/ | |
lemma is_local_min_on.fderiv_within_nonneg {s : set E} (h : is_local_min_on f s a) | |
{y} (hy : y ∈ pos_tangent_cone_at s a) : | |
(0:ℝ) ≤ (fderiv_within ℝ f s a : E → ℝ) y := | |
if hf : differentiable_within_at ℝ f s a | |
then h.has_fderiv_within_at_nonneg hf.has_fderiv_within_at hy | |
else by { rw [fderiv_within_zero_of_not_differentiable_within_at hf], refl } | |
/-- If `f` has a local max on `s` at `a`, `f'` is a derivative of `f` at `a` within `s`, and | |
both `y` and `-y` belong to the positive tangent cone of `s` at `a`, then `f' y ≤ 0`. -/ | |
lemma is_local_min_on.has_fderiv_within_at_eq_zero {s : set E} (h : is_local_min_on f s a) | |
(hf : has_fderiv_within_at f f' s a) {y} (hy : y ∈ pos_tangent_cone_at s a) | |
(hy' : -y ∈ pos_tangent_cone_at s a) : | |
f' y = 0 := | |
by simpa using h.neg.has_fderiv_within_at_eq_zero hf.neg hy hy' | |
/-- If `f` has a local min on `s` at `a` and both `y` and `-y` belong to the positive tangent cone | |
of `s` at `a`, then `f' y = 0`. -/ | |
lemma is_local_min_on.fderiv_within_eq_zero {s : set E} (h : is_local_min_on f s a) | |
{y} (hy : y ∈ pos_tangent_cone_at s a) (hy' : -y ∈ pos_tangent_cone_at s a) : | |
(fderiv_within ℝ f s a : E → ℝ) y = 0 := | |
if hf : differentiable_within_at ℝ f s a | |
then h.has_fderiv_within_at_eq_zero hf.has_fderiv_within_at hy hy' | |
else by { rw fderiv_within_zero_of_not_differentiable_within_at hf, refl } | |
/-- **Fermat's Theorem**: the derivative of a function at a local minimum equals zero. -/ | |
lemma is_local_min.has_fderiv_at_eq_zero (h : is_local_min f a) (hf : has_fderiv_at f f' a) : | |
f' = 0 := | |
begin | |
ext y, | |
apply (h.on univ).has_fderiv_within_at_eq_zero hf.has_fderiv_within_at; | |
rw pos_tangent_cone_at_univ; apply mem_univ | |
end | |
/-- **Fermat's Theorem**: the derivative of a function at a local minimum equals zero. -/ | |
lemma is_local_min.fderiv_eq_zero (h : is_local_min f a) : fderiv ℝ f a = 0 := | |
if hf : differentiable_at ℝ f a then h.has_fderiv_at_eq_zero hf.has_fderiv_at | |
else fderiv_zero_of_not_differentiable_at hf | |
/-- **Fermat's Theorem**: the derivative of a function at a local maximum equals zero. -/ | |
lemma is_local_max.has_fderiv_at_eq_zero (h : is_local_max f a) (hf : has_fderiv_at f f' a) : | |
f' = 0 := | |
neg_eq_zero.1 $ h.neg.has_fderiv_at_eq_zero hf.neg | |
/-- **Fermat's Theorem**: the derivative of a function at a local maximum equals zero. -/ | |
lemma is_local_max.fderiv_eq_zero (h : is_local_max f a) : fderiv ℝ f a = 0 := | |
if hf : differentiable_at ℝ f a then h.has_fderiv_at_eq_zero hf.has_fderiv_at | |
else fderiv_zero_of_not_differentiable_at hf | |
/-- **Fermat's Theorem**: the derivative of a function at a local extremum equals zero. -/ | |
lemma is_local_extr.has_fderiv_at_eq_zero (h : is_local_extr f a) : | |
has_fderiv_at f f' a → f' = 0 := | |
h.elim is_local_min.has_fderiv_at_eq_zero is_local_max.has_fderiv_at_eq_zero | |
/-- **Fermat's Theorem**: the derivative of a function at a local extremum equals zero. -/ | |
lemma is_local_extr.fderiv_eq_zero (h : is_local_extr f a) : fderiv ℝ f a = 0 := | |
h.elim is_local_min.fderiv_eq_zero is_local_max.fderiv_eq_zero | |
end module | |
section real | |
variables {f : ℝ → ℝ} {f' : ℝ} {a b : ℝ} | |
/-- **Fermat's Theorem**: the derivative of a function at a local minimum equals zero. -/ | |
lemma is_local_min.has_deriv_at_eq_zero (h : is_local_min f a) (hf : has_deriv_at f f' a) : | |
f' = 0 := | |
by simpa using continuous_linear_map.ext_iff.1 | |
(h.has_fderiv_at_eq_zero (has_deriv_at_iff_has_fderiv_at.1 hf)) 1 | |
/-- **Fermat's Theorem**: the derivative of a function at a local minimum equals zero. -/ | |
lemma is_local_min.deriv_eq_zero (h : is_local_min f a) : deriv f a = 0 := | |
if hf : differentiable_at ℝ f a then h.has_deriv_at_eq_zero hf.has_deriv_at | |
else deriv_zero_of_not_differentiable_at hf | |
/-- **Fermat's Theorem**: the derivative of a function at a local maximum equals zero. -/ | |
lemma is_local_max.has_deriv_at_eq_zero (h : is_local_max f a) (hf : has_deriv_at f f' a) : | |
f' = 0 := | |
neg_eq_zero.1 $ h.neg.has_deriv_at_eq_zero hf.neg | |
/-- **Fermat's Theorem**: the derivative of a function at a local maximum equals zero. -/ | |
lemma is_local_max.deriv_eq_zero (h : is_local_max f a) : deriv f a = 0 := | |
if hf : differentiable_at ℝ f a then h.has_deriv_at_eq_zero hf.has_deriv_at | |
else deriv_zero_of_not_differentiable_at hf | |
/-- **Fermat's Theorem**: the derivative of a function at a local extremum equals zero. -/ | |
lemma is_local_extr.has_deriv_at_eq_zero (h : is_local_extr f a) : | |
has_deriv_at f f' a → f' = 0 := | |
h.elim is_local_min.has_deriv_at_eq_zero is_local_max.has_deriv_at_eq_zero | |
/-- **Fermat's Theorem**: the derivative of a function at a local extremum equals zero. -/ | |
lemma is_local_extr.deriv_eq_zero (h : is_local_extr f a) : deriv f a = 0 := | |
h.elim is_local_min.deriv_eq_zero is_local_max.deriv_eq_zero | |
end real | |
section Rolle | |
variables (f f' : ℝ → ℝ) {a b : ℝ} | |
/-- A continuous function on a closed interval with `f a = f b` takes either its maximum | |
or its minimum value at a point in the interior of the interval. -/ | |
lemma exists_Ioo_extr_on_Icc (hab : a < b) (hfc : continuous_on f (Icc a b)) (hfI : f a = f b) : | |
∃ c ∈ Ioo a b, is_extr_on f (Icc a b) c := | |
begin | |
have ne : (Icc a b).nonempty, from nonempty_Icc.2 (le_of_lt hab), | |
-- Consider absolute min and max points | |
obtain ⟨c, cmem, cle⟩ : ∃ c ∈ Icc a b, ∀ x ∈ Icc a b, f c ≤ f x, | |
from is_compact_Icc.exists_forall_le ne hfc, | |
obtain ⟨C, Cmem, Cge⟩ : ∃ C ∈ Icc a b, ∀ x ∈ Icc a b, f x ≤ f C, | |
from is_compact_Icc.exists_forall_ge ne hfc, | |
by_cases hc : f c = f a, | |
{ by_cases hC : f C = f a, | |
{ have : ∀ x ∈ Icc a b, f x = f a, | |
from λ x hx, le_antisymm (hC ▸ Cge x hx) (hc ▸ cle x hx), | |
-- `f` is a constant, so we can take any point in `Ioo a b` | |
rcases exists_between hab with ⟨c', hc'⟩, | |
refine ⟨c', hc', or.inl _⟩, | |
assume x hx, | |
rw [mem_set_of_eq, this x hx, ← hC], | |
exact Cge c' ⟨le_of_lt hc'.1, le_of_lt hc'.2⟩ }, | |
{ refine ⟨C, ⟨lt_of_le_of_ne Cmem.1 $ mt _ hC, lt_of_le_of_ne Cmem.2 $ mt _ hC⟩, or.inr Cge⟩, | |
exacts [λ h, by rw h, λ h, by rw [h, hfI]] } }, | |
{ refine ⟨c, ⟨lt_of_le_of_ne cmem.1 $ mt _ hc, lt_of_le_of_ne cmem.2 $ mt _ hc⟩, or.inl cle⟩, | |
exacts [λ h, by rw h, λ h, by rw [h, hfI]] } | |
end | |
/-- A continuous function on a closed interval with `f a = f b` has a local extremum at some | |
point of the corresponding open interval. -/ | |
lemma exists_local_extr_Ioo (hab : a < b) (hfc : continuous_on f (Icc a b)) (hfI : f a = f b) : | |
∃ c ∈ Ioo a b, is_local_extr f c := | |
let ⟨c, cmem, hc⟩ := exists_Ioo_extr_on_Icc f hab hfc hfI | |
in ⟨c, cmem, hc.is_local_extr $ Icc_mem_nhds cmem.1 cmem.2⟩ | |
/-- **Rolle's Theorem** `has_deriv_at` version -/ | |
lemma exists_has_deriv_at_eq_zero (hab : a < b) (hfc : continuous_on f (Icc a b)) (hfI : f a = f b) | |
(hff' : ∀ x ∈ Ioo a b, has_deriv_at f (f' x) x) : | |
∃ c ∈ Ioo a b, f' c = 0 := | |
let ⟨c, cmem, hc⟩ := exists_local_extr_Ioo f hab hfc hfI in | |
⟨c, cmem, hc.has_deriv_at_eq_zero $ hff' c cmem⟩ | |
/-- **Rolle's Theorem** `deriv` version -/ | |
lemma exists_deriv_eq_zero (hab : a < b) (hfc : continuous_on f (Icc a b)) (hfI : f a = f b) : | |
∃ c ∈ Ioo a b, deriv f c = 0 := | |
let ⟨c, cmem, hc⟩ := exists_local_extr_Ioo f hab hfc hfI in | |
⟨c, cmem, hc.deriv_eq_zero⟩ | |
variables {f f'} {l : ℝ} | |
/-- **Rolle's Theorem**, a version for a function on an open interval: if `f` has derivative `f'` | |
on `(a, b)` and has the same limit `l` at `𝓝[>] a` and `𝓝[<] b`, then `f' c = 0` | |
for some `c ∈ (a, b)`. -/ | |
lemma exists_has_deriv_at_eq_zero' (hab : a < b) | |
(hfa : tendsto f (𝓝[>] a) (𝓝 l)) (hfb : tendsto f (𝓝[<] b) (𝓝 l)) | |
(hff' : ∀ x ∈ Ioo a b, has_deriv_at f (f' x) x) : | |
∃ c ∈ Ioo a b, f' c = 0 := | |
begin | |
have : continuous_on f (Ioo a b) := λ x hx, (hff' x hx).continuous_at.continuous_within_at, | |
have hcont := continuous_on_Icc_extend_from_Ioo hab.ne this hfa hfb, | |
obtain ⟨c, hc, hcextr⟩ : ∃ c ∈ Ioo a b, is_local_extr (extend_from (Ioo a b) f) c, | |
{ apply exists_local_extr_Ioo _ hab hcont, | |
rw eq_lim_at_right_extend_from_Ioo hab hfb, | |
exact eq_lim_at_left_extend_from_Ioo hab hfa }, | |
use [c, hc], | |
apply (hcextr.congr _).has_deriv_at_eq_zero (hff' c hc), | |
rw eventually_eq_iff_exists_mem, | |
exact ⟨Ioo a b, Ioo_mem_nhds hc.1 hc.2, extend_from_extends this⟩ | |
end | |
/-- **Rolle's Theorem**, a version for a function on an open interval: if `f` has the same limit | |
`l` at `𝓝[>] a` and `𝓝[<] b`, then `deriv f c = 0` for some `c ∈ (a, b)`. This version | |
does not require differentiability of `f` because we define `deriv f c = 0` whenever `f` is not | |
differentiable at `c`. -/ | |
lemma exists_deriv_eq_zero' (hab : a < b) | |
(hfa : tendsto f (𝓝[>] a) (𝓝 l)) (hfb : tendsto f (𝓝[<] b) (𝓝 l)) : | |
∃ c ∈ Ioo a b, deriv f c = 0 := | |
classical.by_cases | |
(assume h : ∀ x ∈ Ioo a b, differentiable_at ℝ f x, | |
show ∃ c ∈ Ioo a b, deriv f c = 0, | |
from exists_has_deriv_at_eq_zero' hab hfa hfb (λ x hx, (h x hx).has_deriv_at)) | |
(assume h : ¬∀ x ∈ Ioo a b, differentiable_at ℝ f x, | |
have h : ∃ x, x ∈ Ioo a b ∧ ¬differentiable_at ℝ f x, by { push_neg at h, exact h }, | |
let ⟨c, hc, hcdiff⟩ := h in ⟨c, hc, deriv_zero_of_not_differentiable_at hcdiff⟩) | |
end Rolle | |
namespace polynomial | |
lemma card_root_set_le_derivative {F : Type*} [field F] [algebra F ℝ] (p : F[X]) : | |
fintype.card (p.root_set ℝ) ≤ fintype.card (p.derivative.root_set ℝ) + 1 := | |
begin | |
haveI : char_zero F := | |
(ring_hom.char_zero_iff (algebra_map F ℝ).injective).mpr (by apply_instance), | |
by_cases hp : p = 0, | |
{ simp_rw [hp, derivative_zero, root_set_zero, set.empty_card', zero_le_one] }, | |
by_cases hp' : p.derivative = 0, | |
{ rw eq_C_of_nat_degree_eq_zero (nat_degree_eq_zero_of_derivative_eq_zero hp'), | |
simp_rw [root_set_C, set.empty_card', zero_le] }, | |
simp_rw [root_set_def, finset.coe_sort_coe, fintype.card_coe], | |
refine finset.card_le_of_interleaved (λ x hx y hy hxy, _), | |
rw [←finset.mem_coe, ←root_set_def, mem_root_set hp] at hx hy, | |
obtain ⟨z, hz1, hz2⟩ := exists_deriv_eq_zero (λ x : ℝ, aeval x p) hxy | |
p.continuous_aeval.continuous_on (hx.trans hy.symm), | |
refine ⟨z, _, hz1⟩, | |
rw [←finset.mem_coe, ←root_set_def, mem_root_set hp', ←hz2], | |
simp_rw [aeval_def, ←eval_map, polynomial.deriv, derivative_map], | |
end | |
end polynomial | |