Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
74.8 kB
/-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
import analysis.calculus.local_extr
import analysis.convex.slope
import analysis.convex.topology
import data.complex.is_R_or_C
/-!
# The mean value inequality and equalities
In this file we prove the following facts:
* `convex.norm_image_sub_le_of_norm_deriv_le` : if `f` is differentiable on a convex set `s`
and the norm of its derivative is bounded by `C`, then `f` is Lipschitz continuous on `s` with
constant `C`; also a variant in which what is bounded by `C` is the norm of the difference of the
derivative from a fixed linear map. This lemma and its versions are formulated using `is_R_or_C`,
so they work both for real and complex derivatives.
* `image_le_of*`, `image_norm_le_of_*` : several similar lemmas deducing `f x ≀ B x` or
`βˆ₯f xβˆ₯ ≀ B x` from upper estimates on `f'` or `βˆ₯f'βˆ₯`, respectively. These lemmas differ by
their assumptions:
* `of_liminf_*` lemmas assume that limit inferior of some ratio is less than `B' x`;
* `of_deriv_right_*`, `of_norm_deriv_right_*` lemmas assume that the right derivative
or its norm is less than `B' x`;
* `of_*_lt_*` lemmas assume a strict inequality whenever `f x = B x` or `βˆ₯f xβˆ₯ = B x`;
* `of_*_le_*` lemmas assume a non-strict inequality everywhere on `[a, b)`;
* name of a lemma ends with `'` if (1) it assumes that `B` is continuous on `[a, b]`
and has a right derivative at every point of `[a, b)`, and (2) the lemma has
a counterpart assuming that `B` is differentiable everywhere on `ℝ`
* `norm_image_sub_le_*_segment` : if derivative of `f` on `[a, b]` is bounded above
by a constant `C`, then `βˆ₯f x - f aβˆ₯ ≀ C * βˆ₯x - aβˆ₯`; several versions deal with
right derivative and derivative within `[a, b]` (`has_deriv_within_at` or `deriv_within`).
* `convex.is_const_of_fderiv_within_eq_zero` : if a function has derivative `0` on a convex set `s`,
then it is a constant on `s`.
* `exists_ratio_has_deriv_at_eq_ratio_slope` and `exists_ratio_deriv_eq_ratio_slope` :
Cauchy's Mean Value Theorem.
* `exists_has_deriv_at_eq_slope` and `exists_deriv_eq_slope` : Lagrange's Mean Value Theorem.
* `domain_mvt` : Lagrange's Mean Value Theorem, applied to a segment in a convex domain.
* `convex.image_sub_lt_mul_sub_of_deriv_lt`, `convex.mul_sub_lt_image_sub_of_lt_deriv`,
`convex.image_sub_le_mul_sub_of_deriv_le`, `convex.mul_sub_le_image_sub_of_le_deriv`,
if `βˆ€ x, C (</≀/>/β‰₯) (f' x)`, then `C * (y - x) (</≀/>/β‰₯) (f y - f x)` whenever `x < y`.
* `convex.monotone_on_of_deriv_nonneg`, `convex.antitone_on_of_deriv_nonpos`,
`convex.strict_mono_of_deriv_pos`, `convex.strict_anti_of_deriv_neg` :
if the derivative of a function is non-negative/non-positive/positive/negative, then
the function is monotone/antitone/strictly monotone/strictly monotonically
decreasing.
* `convex_on_of_deriv_monotone_on`, `convex_on_of_deriv2_nonneg` : if the derivative of a function
is increasing or its second derivative is nonnegative, then the original function is convex.
* `strict_fderiv_of_cont_diff` : a C^1 function over the reals is strictly differentiable. (This
is a corollary of the mean value inequality.)
-/
variables {E : Type*} [normed_add_comm_group E] [normed_space ℝ E]
{F : Type*} [normed_add_comm_group F] [normed_space ℝ F]
open metric set asymptotics continuous_linear_map filter
open_locale classical topological_space nnreal
/-! ### One-dimensional fencing inequalities -/
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a ≀ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x ∈ [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x ≀ B x` everywhere on `[a, b]`. -/
lemma image_le_of_liminf_slope_right_lt_deriv_boundary' {f f' : ℝ β†’ ℝ} {a b : ℝ}
(hf : continuous_on f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) ≀ f' x`
(hf' : βˆ€ x ∈ Ico a b, βˆ€ r, f' x < r β†’ βˆƒαΆ  z in 𝓝[>] x, slope f x z < r)
{B B' : ℝ β†’ ℝ} (ha : f a ≀ B a) (hB : continuous_on B (Icc a b))
(hB' : βˆ€ x ∈ Ico a b, has_deriv_within_at B (B' x) (Ici x) x)
(bound : βˆ€ x ∈ Ico a b, f x = B x β†’ f' x < B' x) :
βˆ€ ⦃x⦄, x ∈ Icc a b β†’ f x ≀ B x :=
begin
change Icc a b βŠ† {x | f x ≀ B x},
set s := {x | f x ≀ B x} ∩ Icc a b,
have A : continuous_on (Ξ» x, (f x, B x)) (Icc a b), from hf.prod hB,
have : is_closed s,
{ simp only [s, inter_comm],
exact A.preimage_closed_of_closed is_closed_Icc order_closed_topology.is_closed_le' },
apply this.Icc_subset_of_forall_exists_gt ha,
rintros x ⟨hxB : f x ≀ B x, xab⟩ y hy,
cases hxB.lt_or_eq with hxB hxB,
{ -- If `f x < B x`, then all we need is continuity of both sides
refine nonempty_of_mem (inter_mem _ (Ioc_mem_nhds_within_Ioi ⟨le_rfl, hy⟩)),
have : βˆ€αΆ  x in 𝓝[Icc a b] x, f x < B x,
from A x (Ico_subset_Icc_self xab)
(is_open.mem_nhds (is_open_lt continuous_fst continuous_snd) hxB),
have : βˆ€αΆ  x in 𝓝[>] x, f x < B x,
from nhds_within_le_of_mem (Icc_mem_nhds_within_Ioi xab) this,
exact this.mono (Ξ» y, le_of_lt) },
{ rcases exists_between (bound x xab hxB) with ⟨r, hfr, hrB⟩,
specialize hf' x xab r hfr,
have HB : βˆ€αΆ  z in 𝓝[>] x, r < slope B x z,
from (has_deriv_within_at_iff_tendsto_slope' $ lt_irrefl x).1
(hB' x xab).Ioi_of_Ici (Ioi_mem_nhds hrB),
obtain ⟨z, hfz, hzB, hz⟩ :
βˆƒ z, slope f x z < r ∧ r < slope B x z ∧ z ∈ Ioc x y,
from (hf'.and_eventually (HB.and (Ioc_mem_nhds_within_Ioi ⟨le_rfl, hy⟩))).exists,
refine ⟨z, _, hz⟩,
have := (hfz.trans hzB).le,
rwa [slope_def_field, slope_def_field, div_le_div_right (sub_pos.2 hz.1), hxB,
sub_le_sub_iff_right] at this }
end
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a ≀ B a`;
* `B` has derivative `B'` everywhere on `ℝ`;
* for each `x ∈ [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x ≀ B x` everywhere on `[a, b]`. -/
lemma image_le_of_liminf_slope_right_lt_deriv_boundary {f f' : ℝ β†’ ℝ} {a b : ℝ}
(hf : continuous_on f (Icc a b))
-- `hf'` actually says `liminf (f z - f x) / (z - x) ≀ f' x`
(hf' : βˆ€ x ∈ Ico a b, βˆ€ r, f' x < r β†’ βˆƒαΆ  z in 𝓝[>] x, slope f x z < r)
{B B' : ℝ β†’ ℝ} (ha : f a ≀ B a) (hB : βˆ€ x, has_deriv_at B (B' x) x)
(bound : βˆ€ x ∈ Ico a b, f x = B x β†’ f' x < B' x) :
βˆ€ ⦃x⦄, x ∈ Icc a b β†’ f x ≀ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf hf' ha
(Ξ» x hx, (hB x).continuous_at.continuous_within_at)
(Ξ» x hx, (hB x).has_deriv_within_at) bound
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a ≀ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* for each `x ∈ [a, b)` the right-side limit inferior of `(f z - f x) / (z - x)`
is bounded above by `B'`.
Then `f x ≀ B x` everywhere on `[a, b]`. -/
lemma image_le_of_liminf_slope_right_le_deriv_boundary {f : ℝ β†’ ℝ} {a b : ℝ}
(hf : continuous_on f (Icc a b))
{B B' : ℝ β†’ ℝ} (ha : f a ≀ B a) (hB : continuous_on B (Icc a b))
(hB' : βˆ€ x ∈ Ico a b, has_deriv_within_at B (B' x) (Ici x) x)
-- `bound` actually says `liminf (f z - f x) / (z - x) ≀ B' x`
(bound : βˆ€ x ∈ Ico a b, βˆ€ r, B' x < r β†’ βˆƒαΆ  z in 𝓝[>] x, slope f x z < r) :
βˆ€ ⦃x⦄, x ∈ Icc a b β†’ f x ≀ B x :=
begin
have Hr : βˆ€ x ∈ Icc a b, βˆ€ r > 0, f x ≀ B x + r * (x - a),
{ intros x hx r hr,
apply image_le_of_liminf_slope_right_lt_deriv_boundary' hf bound,
{ rwa [sub_self, mul_zero, add_zero] },
{ exact hB.add (continuous_on_const.mul
(continuous_id.continuous_on.sub continuous_on_const)) },
{ assume x hx,
exact (hB' x hx).add (((has_deriv_within_at_id x (Ici x)).sub_const a).const_mul r) },
{ assume x hx _,
rw [mul_one],
exact (lt_add_iff_pos_right _).2 hr },
exact hx },
assume x hx,
have : continuous_within_at (Ξ» r, B x + r * (x - a)) (Ioi 0) 0,
from continuous_within_at_const.add (continuous_within_at_id.mul continuous_within_at_const),
convert continuous_within_at_const.closure_le _ this (Hr x hx); simp
end
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a ≀ B a`;
* `B` has right derivative `B'` at every point of `[a, b)`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x ≀ B x` everywhere on `[a, b]`. -/
lemma image_le_of_deriv_right_lt_deriv_boundary' {f f' : ℝ β†’ ℝ} {a b : ℝ}
(hf : continuous_on f (Icc a b))
(hf' : βˆ€ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ici x) x)
{B B' : ℝ β†’ ℝ} (ha : f a ≀ B a) (hB : continuous_on B (Icc a b))
(hB' : βˆ€ x ∈ Ico a b, has_deriv_within_at B (B' x) (Ici x) x)
(bound : βˆ€ x ∈ Ico a b, f x = B x β†’ f' x < B' x) :
βˆ€ ⦃x⦄, x ∈ Icc a b β†’ f x ≀ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' hf
(Ξ» x hx r hr, (hf' x hx).liminf_right_slope_le hr) ha hB hB' bound
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a ≀ B a`;
* `B` has derivative `B'` everywhere on `ℝ`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x < B' x` whenever `f x = B x`.
Then `f x ≀ B x` everywhere on `[a, b]`. -/
lemma image_le_of_deriv_right_lt_deriv_boundary {f f' : ℝ β†’ ℝ} {a b : ℝ}
(hf : continuous_on f (Icc a b))
(hf' : βˆ€ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ici x) x)
{B B' : ℝ β†’ ℝ} (ha : f a ≀ B a) (hB : βˆ€ x, has_deriv_at B (B' x) x)
(bound : βˆ€ x ∈ Ico a b, f x = B x β†’ f' x < B' x) :
βˆ€ ⦃x⦄, x ∈ Icc a b β†’ f x ≀ B x :=
image_le_of_deriv_right_lt_deriv_boundary' hf hf' ha
(Ξ» x hx, (hB x).continuous_at.continuous_within_at)
(Ξ» x hx, (hB x).has_deriv_within_at) bound
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `f a ≀ B a`;
* `B` has derivative `B'` everywhere on `ℝ`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* we have `f' x ≀ B' x` on `[a, b)`.
Then `f x ≀ B x` everywhere on `[a, b]`. -/
lemma image_le_of_deriv_right_le_deriv_boundary {f f' : ℝ β†’ ℝ} {a b : ℝ}
(hf : continuous_on f (Icc a b))
(hf' : βˆ€ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ici x) x)
{B B' : ℝ β†’ ℝ} (ha : f a ≀ B a) (hB : continuous_on B (Icc a b))
(hB' : βˆ€ x ∈ Ico a b, has_deriv_within_at B (B' x) (Ici x) x)
(bound : βˆ€ x ∈ Ico a b, f' x ≀ B' x) :
βˆ€ ⦃x⦄, x ∈ Icc a b β†’ f x ≀ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary hf ha hB hB' $
assume x hx r hr, (hf' x hx).liminf_right_slope_le (lt_of_le_of_lt (bound x hx) hr)
/-! ### Vector-valued functions `f : ℝ β†’ E` -/
section
variables {f : ℝ β†’ E} {a b : ℝ}
/-- General fencing theorem for continuous functions with an estimate on the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βˆ₯f aβˆ₯ ≀ B a`;
* `B` has right derivative at every point of `[a, b)`;
* for each `x ∈ [a, b)` the right-side limit inferior of `(βˆ₯f zβˆ₯ - βˆ₯f xβˆ₯) / (z - x)`
is bounded above by a function `f'`;
* we have `f' x < B' x` whenever `βˆ₯f xβˆ₯ = B x`.
Then `βˆ₯f xβˆ₯ ≀ B x` everywhere on `[a, b]`. -/
lemma image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary {E : Type*}
[normed_add_comm_group E] {f : ℝ β†’ E} {f' : ℝ β†’ ℝ} (hf : continuous_on f (Icc a b))
-- `hf'` actually says `liminf (βˆ₯f zβˆ₯ - βˆ₯f xβˆ₯) / (z - x) ≀ f' x`
(hf' : βˆ€ x ∈ Ico a b, βˆ€ r, f' x < r β†’
βˆƒαΆ  z in 𝓝[>] x, slope (norm ∘ f) x z < r)
{B B' : ℝ β†’ ℝ} (ha : βˆ₯f aβˆ₯ ≀ B a) (hB : continuous_on B (Icc a b))
(hB' : βˆ€ x ∈ Ico a b, has_deriv_within_at B (B' x) (Ici x) x)
(bound : βˆ€ x ∈ Ico a b, βˆ₯f xβˆ₯ = B x β†’ f' x < B' x) :
βˆ€ ⦃x⦄, x ∈ Icc a b β†’ βˆ₯f xβˆ₯ ≀ B x :=
image_le_of_liminf_slope_right_lt_deriv_boundary' (continuous_norm.comp_continuous_on hf) hf'
ha hB hB' bound
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βˆ₯f aβˆ₯ ≀ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* the norm of `f'` is strictly less than `B'` whenever `βˆ₯f xβˆ₯ = B x`.
Then `βˆ₯f xβˆ₯ ≀ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
lemma image_norm_le_of_norm_deriv_right_lt_deriv_boundary' {f' : ℝ β†’ E}
(hf : continuous_on f (Icc a b))
(hf' : βˆ€ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ici x) x)
{B B' : ℝ β†’ ℝ} (ha : βˆ₯f aβˆ₯ ≀ B a) (hB : continuous_on B (Icc a b))
(hB' : βˆ€ x ∈ Ico a b, has_deriv_within_at B (B' x) (Ici x) x)
(bound : βˆ€ x ∈ Ico a b, βˆ₯f xβˆ₯ = B x β†’ βˆ₯f' xβˆ₯ < B' x) :
βˆ€ ⦃x⦄, x ∈ Icc a b β†’ βˆ₯f xβˆ₯ ≀ B x :=
image_norm_le_of_liminf_right_slope_norm_lt_deriv_boundary hf
(Ξ» x hx r hr, (hf' x hx).liminf_right_slope_norm_le hr) ha hB hB' bound
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βˆ₯f aβˆ₯ ≀ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `ℝ`;
* the norm of `f'` is strictly less than `B'` whenever `βˆ₯f xβˆ₯ = B x`.
Then `βˆ₯f xβˆ₯ ≀ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
lemma image_norm_le_of_norm_deriv_right_lt_deriv_boundary {f' : ℝ β†’ E}
(hf : continuous_on f (Icc a b))
(hf' : βˆ€ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ici x) x)
{B B' : ℝ β†’ ℝ} (ha : βˆ₯f aβˆ₯ ≀ B a) (hB : βˆ€ x, has_deriv_at B (B' x) x)
(bound : βˆ€ x ∈ Ico a b, βˆ₯f xβˆ₯ = B x β†’ βˆ₯f' xβˆ₯ < B' x) :
βˆ€ ⦃x⦄, x ∈ Icc a b β†’ βˆ₯f xβˆ₯ ≀ B x :=
image_norm_le_of_norm_deriv_right_lt_deriv_boundary' hf hf' ha
(Ξ» x hx, (hB x).continuous_at.continuous_within_at)
(Ξ» x hx, (hB x).has_deriv_within_at) bound
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βˆ₯f aβˆ₯ ≀ B a`;
* `f` and `B` have right derivatives `f'` and `B'` respectively at every point of `[a, b)`;
* we have `βˆ₯f' xβˆ₯ ≀ B x` everywhere on `[a, b)`.
Then `βˆ₯f xβˆ₯ ≀ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
lemma image_norm_le_of_norm_deriv_right_le_deriv_boundary' {f' : ℝ β†’ E}
(hf : continuous_on f (Icc a b))
(hf' : βˆ€ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ici x) x)
{B B' : ℝ β†’ ℝ} (ha : βˆ₯f aβˆ₯ ≀ B a) (hB : continuous_on B (Icc a b))
(hB' : βˆ€ x ∈ Ico a b, has_deriv_within_at B (B' x) (Ici x) x)
(bound : βˆ€ x ∈ Ico a b, βˆ₯f' xβˆ₯ ≀ B' x) :
βˆ€ ⦃x⦄, x ∈ Icc a b β†’ βˆ₯f xβˆ₯ ≀ B x :=
image_le_of_liminf_slope_right_le_deriv_boundary (continuous_norm.comp_continuous_on hf) ha hB hB' $
(Ξ» x hx r hr, (hf' x hx).liminf_right_slope_norm_le (lt_of_le_of_lt (bound x hx) hr))
/-- General fencing theorem for continuous functions with an estimate on the norm of the derivative.
Let `f` and `B` be continuous functions on `[a, b]` such that
* `βˆ₯f aβˆ₯ ≀ B a`;
* `f` has right derivative `f'` at every point of `[a, b)`;
* `B` has derivative `B'` everywhere on `ℝ`;
* we have `βˆ₯f' xβˆ₯ ≀ B x` everywhere on `[a, b)`.
Then `βˆ₯f xβˆ₯ ≀ B x` everywhere on `[a, b]`. We use one-sided derivatives in the assumptions
to make this theorem work for piecewise differentiable functions.
-/
lemma image_norm_le_of_norm_deriv_right_le_deriv_boundary {f' : ℝ β†’ E}
(hf : continuous_on f (Icc a b))
(hf' : βˆ€ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ici x) x)
{B B' : ℝ β†’ ℝ} (ha : βˆ₯f aβˆ₯ ≀ B a) (hB : βˆ€ x, has_deriv_at B (B' x) x)
(bound : βˆ€ x ∈ Ico a b, βˆ₯f' xβˆ₯ ≀ B' x) :
βˆ€ ⦃x⦄, x ∈ Icc a b β†’ βˆ₯f xβˆ₯ ≀ B x :=
image_norm_le_of_norm_deriv_right_le_deriv_boundary' hf hf' ha
(Ξ» x hx, (hB x).continuous_at.continuous_within_at)
(Ξ» x hx, (hB x).has_deriv_within_at) bound
/-- A function on `[a, b]` with the norm of the right derivative bounded by `C`
satisfies `βˆ₯f x - f aβˆ₯ ≀ C * (x - a)`. -/
theorem norm_image_sub_le_of_norm_deriv_right_le_segment {f' : ℝ β†’ E} {C : ℝ}
(hf : continuous_on f (Icc a b))
(hf' : βˆ€ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ici x) x)
(bound : βˆ€x ∈ Ico a b, βˆ₯f' xβˆ₯ ≀ C) :
βˆ€ x ∈ Icc a b, βˆ₯f x - f aβˆ₯ ≀ C * (x - a) :=
begin
let g := Ξ» x, f x - f a,
have hg : continuous_on g (Icc a b), from hf.sub continuous_on_const,
have hg' : βˆ€ x ∈ Ico a b, has_deriv_within_at g (f' x) (Ici x) x,
{ assume x hx,
simpa using (hf' x hx).sub (has_deriv_within_at_const _ _ _) },
let B := Ξ» x, C * (x - a),
have hB : βˆ€ x, has_deriv_at B C x,
{ assume x,
simpa using (has_deriv_at_const x C).mul ((has_deriv_at_id x).sub (has_deriv_at_const x a)) },
convert image_norm_le_of_norm_deriv_right_le_deriv_boundary hg hg' _ hB bound,
simp only [g, B], rw [sub_self, norm_zero, sub_self, mul_zero]
end
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βˆ₯f x - f aβˆ₯ ≀ C * (x - a)`, `has_deriv_within_at`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment' {f' : ℝ β†’ E} {C : ℝ}
(hf : βˆ€ x ∈ Icc a b, has_deriv_within_at f (f' x) (Icc a b) x)
(bound : βˆ€x ∈ Ico a b, βˆ₯f' xβˆ₯ ≀ C) :
βˆ€ x ∈ Icc a b, βˆ₯f x - f aβˆ₯ ≀ C * (x - a) :=
begin
refine norm_image_sub_le_of_norm_deriv_right_le_segment
(Ξ» x hx, (hf x hx).continuous_within_at) (Ξ» x hx, _) bound,
exact (hf x $ Ico_subset_Icc_self hx).nhds_within (Icc_mem_nhds_within_Ici hx)
end
/-- A function on `[a, b]` with the norm of the derivative within `[a, b]`
bounded by `C` satisfies `βˆ₯f x - f aβˆ₯ ≀ C * (x - a)`, `deriv_within`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment {C : ℝ} (hf : differentiable_on ℝ f (Icc a b))
(bound : βˆ€x ∈ Ico a b, βˆ₯deriv_within f (Icc a b) xβˆ₯ ≀ C) :
βˆ€ x ∈ Icc a b, βˆ₯f x - f aβˆ₯ ≀ C * (x - a) :=
begin
refine norm_image_sub_le_of_norm_deriv_le_segment' _ bound,
exact Ξ» x hx, (hf x hx).has_deriv_within_at
end
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βˆ₯f 1 - f 0βˆ₯ ≀ C`, `has_deriv_within_at`
version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01' {f' : ℝ β†’ E} {C : ℝ}
(hf : βˆ€ x ∈ Icc (0:ℝ) 1, has_deriv_within_at f (f' x) (Icc (0:ℝ) 1) x)
(bound : βˆ€x ∈ Ico (0:ℝ) 1, βˆ₯f' xβˆ₯ ≀ C) :
βˆ₯f 1 - f 0βˆ₯ ≀ C :=
by simpa only [sub_zero, mul_one]
using norm_image_sub_le_of_norm_deriv_le_segment' hf bound 1 (right_mem_Icc.2 zero_le_one)
/-- A function on `[0, 1]` with the norm of the derivative within `[0, 1]`
bounded by `C` satisfies `βˆ₯f 1 - f 0βˆ₯ ≀ C`, `deriv_within` version. -/
theorem norm_image_sub_le_of_norm_deriv_le_segment_01 {C : ℝ}
(hf : differentiable_on ℝ f (Icc (0:ℝ) 1))
(bound : βˆ€x ∈ Ico (0:ℝ) 1, βˆ₯deriv_within f (Icc (0:ℝ) 1) xβˆ₯ ≀ C) :
βˆ₯f 1 - f 0βˆ₯ ≀ C :=
by simpa only [sub_zero, mul_one]
using norm_image_sub_le_of_norm_deriv_le_segment hf bound 1 (right_mem_Icc.2 zero_le_one)
theorem constant_of_has_deriv_right_zero (hcont : continuous_on f (Icc a b))
(hderiv : βˆ€ x ∈ Ico a b, has_deriv_within_at f 0 (Ici x) x) :
βˆ€ x ∈ Icc a b, f x = f a :=
by simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using
Ξ» x hx, norm_image_sub_le_of_norm_deriv_right_le_segment
hcont hderiv (Ξ» y hy, by rw norm_le_zero_iff) x hx
theorem constant_of_deriv_within_zero (hdiff : differentiable_on ℝ f (Icc a b))
(hderiv : βˆ€ x ∈ Ico a b, deriv_within f (Icc a b) x = 0) :
βˆ€ x ∈ Icc a b, f x = f a :=
begin
have H : βˆ€ x ∈ Ico a b, βˆ₯deriv_within f (Icc a b) xβˆ₯ ≀ 0 :=
by simpa only [norm_le_zero_iff] using Ξ» x hx, hderiv x hx,
simpa only [zero_mul, norm_le_zero_iff, sub_eq_zero] using
Ξ» x hx, norm_image_sub_le_of_norm_deriv_le_segment hdiff H x hx,
end
variables {f' g : ℝ β†’ E}
/-- If two continuous functions on `[a, b]` have the same right derivative and are equal at `a`,
then they are equal everywhere on `[a, b]`. -/
theorem eq_of_has_deriv_right_eq
(derivf : βˆ€ x ∈ Ico a b, has_deriv_within_at f (f' x) (Ici x) x)
(derivg : βˆ€ x ∈ Ico a b, has_deriv_within_at g (f' x) (Ici x) x)
(fcont : continuous_on f (Icc a b)) (gcont : continuous_on g (Icc a b))
(hi : f a = g a) :
βˆ€ y ∈ Icc a b, f y = g y :=
begin
simp only [← @sub_eq_zero _ _ (f _)] at hi ⊒,
exact hi β–Έ constant_of_has_deriv_right_zero (fcont.sub gcont)
(Ξ» y hy, by simpa only [sub_self] using (derivf y hy).sub (derivg y hy)),
end
/-- If two differentiable functions on `[a, b]` have the same derivative within `[a, b]` everywhere
on `[a, b)` and are equal at `a`, then they are equal everywhere on `[a, b]`. -/
theorem eq_of_deriv_within_eq (fdiff : differentiable_on ℝ f (Icc a b))
(gdiff : differentiable_on ℝ g (Icc a b))
(hderiv : eq_on (deriv_within f (Icc a b)) (deriv_within g (Icc a b)) (Ico a b))
(hi : f a = g a) :
βˆ€ y ∈ Icc a b, f y = g y :=
begin
have A : βˆ€ y ∈ Ico a b, has_deriv_within_at f (deriv_within f (Icc a b) y) (Ici y) y :=
Ξ» y hy, (fdiff y (mem_Icc_of_Ico hy)).has_deriv_within_at.nhds_within
(Icc_mem_nhds_within_Ici hy),
have B : βˆ€ y ∈ Ico a b, has_deriv_within_at g (deriv_within g (Icc a b) y) (Ici y) y :=
Ξ» y hy, (gdiff y (mem_Icc_of_Ico hy)).has_deriv_within_at.nhds_within
(Icc_mem_nhds_within_Ici hy),
exact eq_of_has_deriv_right_eq A (Ξ» y hy, (hderiv hy).symm β–Έ B y hy) fdiff.continuous_on
gdiff.continuous_on hi
end
end
/-!
### Vector-valued functions `f : E β†’ G`
Theorems in this section work both for real and complex differentiable functions. We use assumptions
`[is_R_or_C π•œ] [normed_space π•œ E] [normed_space π•œ G]` to achieve this result. For the domain `E` we
also assume `[normed_space ℝ E]` to have a notion of a `convex` set. -/
section
variables {π•œ G : Type*} [is_R_or_C π•œ] [normed_space π•œ E] [normed_add_comm_group G]
[normed_space π•œ G]
namespace convex
variables {f : E β†’ G} {C : ℝ} {s : set E} {x y : E} {f' : E β†’ E β†’L[π•œ] G} {Ο† : E β†’L[π•œ] G}
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`, then
the function is `C`-Lipschitz. Version with `has_fderiv_within`. -/
theorem norm_image_sub_le_of_norm_has_fderiv_within_le
(hf : βˆ€ x ∈ s, has_fderiv_within_at f (f' x) s x) (bound : βˆ€x∈s, βˆ₯f' xβˆ₯ ≀ C)
(hs : convex ℝ s) (xs : x ∈ s) (ys : y ∈ s) : βˆ₯f y - f xβˆ₯ ≀ C * βˆ₯y - xβˆ₯ :=
begin
letI : normed_space ℝ G := restrict_scalars.normed_space ℝ π•œ G,
/- By composition with `t ↦ x + t β€’ (y-x)`, we reduce to a statement for functions defined
on `[0,1]`, for which it is proved in `norm_image_sub_le_of_norm_deriv_le_segment`.
We just have to check the differentiability of the composition and bounds on its derivative,
which is straightforward but tedious for lack of automation. -/
have C0 : 0 ≀ C := le_trans (norm_nonneg _) (bound x xs),
set g : ℝ β†’ E := Ξ» t, x + t β€’ (y - x),
have Dg : βˆ€ t, has_deriv_at g (y-x) t,
{ assume t,
simpa only [one_smul] using ((has_deriv_at_id t).smul_const (y - x)).const_add x },
have segm : Icc 0 1 βŠ† g ⁻¹' s,
{ rw [← image_subset_iff, ← segment_eq_image'],
apply hs.segment_subset xs ys },
have : f x = f (g 0), by { simp only [g], rw [zero_smul, add_zero] },
rw this,
have : f y = f (g 1), by { simp only [g], rw [one_smul, add_sub_cancel'_right] },
rw this,
have D2: βˆ€ t ∈ Icc (0:ℝ) 1, has_deriv_within_at (f ∘ g) (f' (g t) (y - x)) (Icc 0 1) t,
{ intros t ht,
have : has_fderiv_within_at f ((f' (g t)).restrict_scalars ℝ) s (g t),
from hf (g t) (segm ht),
exact this.comp_has_deriv_within_at _ (Dg t).has_deriv_within_at segm },
apply norm_image_sub_le_of_norm_deriv_le_segment_01' D2,
refine Ξ» t ht, le_of_op_norm_le _ _ _,
exact bound (g t) (segm $ Ico_subset_Icc_self ht)
end
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `has_fderiv_within` and
`lipschitz_on_with`. -/
theorem lipschitz_on_with_of_nnnorm_has_fderiv_within_le {C : ℝβ‰₯0}
(hf : βˆ€ x ∈ s, has_fderiv_within_at f (f' x) s x) (bound : βˆ€x∈s, βˆ₯f' xβˆ₯β‚Š ≀ C)
(hs : convex ℝ s) : lipschitz_on_with C f s :=
begin
rw lipschitz_on_with_iff_norm_sub_le,
intros x x_in y y_in,
exact hs.norm_image_sub_le_of_norm_has_fderiv_within_le hf bound y_in x_in
end
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β†’ G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ℝβ‰₯0` larger than `βˆ₯f' xβˆ₯β‚Š`, `f` is
`K`-Lipschitz on some neighborhood of `x` within `s`. See also
`convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at` for a version that claims
existence of `K` instead of an explicit estimate. -/
lemma exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt
(hs : convex ℝ s) {f : E β†’ G} (hder : βˆ€αΆ  y in 𝓝[s] x, has_fderiv_within_at f (f' y) s y)
(hcont : continuous_within_at f' s x) (K : ℝβ‰₯0) (hK : βˆ₯f' xβˆ₯β‚Š < K) :
βˆƒ t ∈ 𝓝[s] x, lipschitz_on_with K f t :=
begin
obtain ⟨Ρ, Ρ0, hΡ⟩ :
βˆƒ Ξ΅ > 0, ball x Ξ΅ ∩ s βŠ† {y | has_fderiv_within_at f (f' y) s y ∧ βˆ₯f' yβˆ₯β‚Š < K},
from mem_nhds_within_iff.1 (hder.and $ hcont.nnnorm.eventually (gt_mem_nhds hK)),
rw inter_comm at hΞ΅,
refine ⟨s ∩ ball x Ρ, inter_mem_nhds_within _ (ball_mem_nhds _ Ρ0), _⟩,
exact (hs.inter (convex_ball _ _)).lipschitz_on_with_of_nnnorm_has_fderiv_within_le
(Ξ» y hy, (hΞ΅ hy).1.mono (inter_subset_left _ _)) (Ξ» y hy, (hΞ΅ hy).2.le)
end
/-- Let `s` be a convex set in a real normed vector space `E`, let `f : E β†’ G` be a function
differentiable within `s` in a neighborhood of `x : E` with derivative `f'`. Suppose that `f'` is
continuous within `s` at `x`. Then for any number `K : ℝβ‰₯0` larger than `βˆ₯f' xβˆ₯β‚Š`, `f` is Lipschitz
on some neighborhood of `x` within `s`. See also
`convex.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt` for a version
with an explicit estimate on the Lipschitz constant. -/
lemma exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at
(hs : convex ℝ s) {f : E β†’ G} (hder : βˆ€αΆ  y in 𝓝[s] x, has_fderiv_within_at f (f' y) s y)
(hcont : continuous_within_at f' s x) :
βˆƒ K (t ∈ 𝓝[s] x), lipschitz_on_with K f t :=
(exists_gt _).imp $
hs.exists_nhds_within_lipschitz_on_with_of_has_fderiv_within_at_of_nnnorm_lt hder hcont
/-- The mean value theorem on a convex set: if the derivative of a function within this set is
bounded by `C`, then the function is `C`-Lipschitz. Version with `fderiv_within`. -/
theorem norm_image_sub_le_of_norm_fderiv_within_le
(hf : differentiable_on π•œ f s) (bound : βˆ€x∈s, βˆ₯fderiv_within π•œ f s xβˆ₯ ≀ C)
(hs : convex ℝ s) (xs : x ∈ s) (ys : y ∈ s) : βˆ₯f y - f xβˆ₯ ≀ C * βˆ₯y - xβˆ₯ :=
hs.norm_image_sub_le_of_norm_has_fderiv_within_le (Ξ» x hx, (hf x hx).has_fderiv_within_at)
bound xs ys
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv_within` and
`lipschitz_on_with`. -/
theorem lipschitz_on_with_of_nnnorm_fderiv_within_le {C : ℝβ‰₯0}
(hf : differentiable_on π•œ f s) (bound : βˆ€ x ∈ s, βˆ₯fderiv_within π•œ f s xβˆ₯β‚Š ≀ C)
(hs : convex ℝ s) : lipschitz_on_with C f s:=
hs.lipschitz_on_with_of_nnnorm_has_fderiv_within_le (Ξ» x hx, (hf x hx).has_fderiv_within_at) bound
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le
(hf : βˆ€ x ∈ s, differentiable_at π•œ f x) (bound : βˆ€x∈s, βˆ₯fderiv π•œ f xβˆ₯ ≀ C)
(hs : convex ℝ s) (xs : x ∈ s) (ys : y ∈ s) : βˆ₯f y - f xβˆ₯ ≀ C * βˆ₯y - xβˆ₯ :=
hs.norm_image_sub_le_of_norm_has_fderiv_within_le
(Ξ» x hx, (hf x hx).has_fderiv_at.has_fderiv_within_at) bound xs ys
/-- The mean value theorem on a convex set: if the derivative of a function is bounded by `C` on
`s`, then the function is `C`-Lipschitz on `s`. Version with `fderiv` and `lipschitz_on_with`. -/
theorem lipschitz_on_with_of_nnnorm_fderiv_le {C : ℝβ‰₯0}
(hf : βˆ€ x ∈ s, differentiable_at π•œ f x) (bound : βˆ€x∈s, βˆ₯fderiv π•œ f xβˆ₯β‚Š ≀ C)
(hs : convex ℝ s) : lipschitz_on_with C f s :=
hs.lipschitz_on_with_of_nnnorm_has_fderiv_within_le
(Ξ» x hx, (hf x hx).has_fderiv_at.has_fderiv_within_at) bound
/-- Variant of the mean value inequality on a convex set, using a bound on the difference between
the derivative and a fixed linear map, rather than a bound on the derivative itself. Version with
`has_fderiv_within`. -/
theorem norm_image_sub_le_of_norm_has_fderiv_within_le'
(hf : βˆ€ x ∈ s, has_fderiv_within_at f (f' x) s x) (bound : βˆ€x∈s, βˆ₯f' x - Ο†βˆ₯ ≀ C)
(hs : convex ℝ s) (xs : x ∈ s) (ys : y ∈ s) : βˆ₯f y - f x - Ο† (y - x)βˆ₯ ≀ C * βˆ₯y - xβˆ₯ :=
begin
/- We subtract `Ο†` to define a new function `g` for which `g' = 0`, for which the previous theorem
applies, `convex.norm_image_sub_le_of_norm_has_fderiv_within_le`. Then, we just need to glue
together the pieces, expressing back `f` in terms of `g`. -/
let g := Ξ»y, f y - Ο† y,
have hg : βˆ€ x ∈ s, has_fderiv_within_at g (f' x - Ο†) s x :=
Ξ» x xs, (hf x xs).sub Ο†.has_fderiv_within_at,
calc βˆ₯f y - f x - Ο† (y - x)βˆ₯ = βˆ₯f y - f x - (Ο† y - Ο† x)βˆ₯ : by simp
... = βˆ₯(f y - Ο† y) - (f x - Ο† x)βˆ₯ : by abel
... = βˆ₯g y - g xβˆ₯ : by simp
... ≀ C * βˆ₯y - xβˆ₯ : convex.norm_image_sub_le_of_norm_has_fderiv_within_le hg bound hs xs ys,
end
/-- Variant of the mean value inequality on a convex set. Version with `fderiv_within`. -/
theorem norm_image_sub_le_of_norm_fderiv_within_le'
(hf : differentiable_on π•œ f s) (bound : βˆ€x∈s, βˆ₯fderiv_within π•œ f s x - Ο†βˆ₯ ≀ C)
(hs : convex ℝ s) (xs : x ∈ s) (ys : y ∈ s) : βˆ₯f y - f x - Ο† (y - x)βˆ₯ ≀ C * βˆ₯y - xβˆ₯ :=
hs.norm_image_sub_le_of_norm_has_fderiv_within_le' (Ξ» x hx, (hf x hx).has_fderiv_within_at)
bound xs ys
/-- Variant of the mean value inequality on a convex set. Version with `fderiv`. -/
theorem norm_image_sub_le_of_norm_fderiv_le'
(hf : βˆ€ x ∈ s, differentiable_at π•œ f x) (bound : βˆ€x∈s, βˆ₯fderiv π•œ f x - Ο†βˆ₯ ≀ C)
(hs : convex ℝ s) (xs : x ∈ s) (ys : y ∈ s) : βˆ₯f y - f x - Ο† (y - x)βˆ₯ ≀ C * βˆ₯y - xβˆ₯ :=
hs.norm_image_sub_le_of_norm_has_fderiv_within_le'
(Ξ» x hx, (hf x hx).has_fderiv_at.has_fderiv_within_at) bound xs ys
/-- If a function has zero FrΓ©chet derivative at every point of a convex set,
then it is a constant on this set. -/
theorem is_const_of_fderiv_within_eq_zero (hs : convex ℝ s) (hf : differentiable_on π•œ f s)
(hf' : βˆ€ x ∈ s, fderiv_within π•œ f s x = 0) (hx : x ∈ s) (hy : y ∈ s) :
f x = f y :=
have bound : βˆ€ x ∈ s, βˆ₯fderiv_within π•œ f s xβˆ₯ ≀ 0,
from Ξ» x hx, by simp only [hf' x hx, norm_zero],
by simpa only [(dist_eq_norm _ _).symm, zero_mul, dist_le_zero, eq_comm]
using hs.norm_image_sub_le_of_norm_fderiv_within_le hf bound hx hy
theorem _root_.is_const_of_fderiv_eq_zero (hf : differentiable π•œ f) (hf' : βˆ€ x, fderiv π•œ f x = 0)
(x y : E) :
f x = f y :=
convex_univ.is_const_of_fderiv_within_eq_zero hf.differentiable_on
(Ξ» x _, by rw fderiv_within_univ; exact hf' x) trivial trivial
end convex
namespace convex
variables {f f' : π•œ β†’ G} {s : set π•œ} {x y : π•œ}
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `has_deriv_within`. -/
theorem norm_image_sub_le_of_norm_has_deriv_within_le {C : ℝ}
(hf : βˆ€ x ∈ s, has_deriv_within_at f (f' x) s x) (bound : βˆ€x∈s, βˆ₯f' xβˆ₯ ≀ C)
(hs : convex ℝ s) (xs : x ∈ s) (ys : y ∈ s) : βˆ₯f y - f xβˆ₯ ≀ C * βˆ₯y - xβˆ₯ :=
convex.norm_image_sub_le_of_norm_has_fderiv_within_le (Ξ» x hx, (hf x hx).has_fderiv_within_at)
(Ξ» x hx, le_trans (by simp) (bound x hx)) hs xs ys
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `has_deriv_within` and `lipschitz_on_with`. -/
theorem lipschitz_on_with_of_nnnorm_has_deriv_within_le {C : ℝβ‰₯0} (hs : convex ℝ s)
(hf : βˆ€ x ∈ s, has_deriv_within_at f (f' x) s x) (bound : βˆ€x∈s, βˆ₯f' xβˆ₯β‚Š ≀ C) :
lipschitz_on_with C f s :=
convex.lipschitz_on_with_of_nnnorm_has_fderiv_within_le (Ξ» x hx, (hf x hx).has_fderiv_within_at)
(Ξ» x hx, le_trans (by simp) (bound x hx)) hs
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function within
this set is bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv_within` -/
theorem norm_image_sub_le_of_norm_deriv_within_le {C : ℝ}
(hf : differentiable_on π•œ f s) (bound : βˆ€x∈s, βˆ₯deriv_within f s xβˆ₯ ≀ C)
(hs : convex ℝ s) (xs : x ∈ s) (ys : y ∈ s) : βˆ₯f y - f xβˆ₯ ≀ C * βˆ₯y - xβˆ₯ :=
hs.norm_image_sub_le_of_norm_has_deriv_within_le (Ξ» x hx, (hf x hx).has_deriv_within_at)
bound xs ys
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv_within` and `lipschitz_on_with`. -/
theorem lipschitz_on_with_of_nnnorm_deriv_within_le {C : ℝβ‰₯0} (hs : convex ℝ s)
(hf : differentiable_on π•œ f s) (bound : βˆ€x∈s, βˆ₯deriv_within f s xβˆ₯β‚Š ≀ C) :
lipschitz_on_with C f s :=
hs.lipschitz_on_with_of_nnnorm_has_deriv_within_le (Ξ» x hx, (hf x hx).has_deriv_within_at) bound
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C`, then the function is `C`-Lipschitz. Version with `deriv`. -/
theorem norm_image_sub_le_of_norm_deriv_le {C : ℝ}
(hf : βˆ€ x ∈ s, differentiable_at π•œ f x) (bound : βˆ€x∈s, βˆ₯deriv f xβˆ₯ ≀ C)
(hs : convex ℝ s) (xs : x ∈ s) (ys : y ∈ s) : βˆ₯f y - f xβˆ₯ ≀ C * βˆ₯y - xβˆ₯ :=
hs.norm_image_sub_le_of_norm_has_deriv_within_le
(Ξ» x hx, (hf x hx).has_deriv_at.has_deriv_within_at) bound xs ys
/-- The mean value theorem on a convex set in dimension 1: if the derivative of a function is
bounded by `C` on `s`, then the function is `C`-Lipschitz on `s`.
Version with `deriv` and `lipschitz_on_with`. -/
theorem lipschitz_on_with_of_nnnorm_deriv_le {C : ℝβ‰₯0}
(hf : βˆ€ x ∈ s, differentiable_at π•œ f x) (bound : βˆ€x∈s, βˆ₯deriv f xβˆ₯β‚Š ≀ C)
(hs : convex ℝ s) : lipschitz_on_with C f s :=
hs.lipschitz_on_with_of_nnnorm_has_deriv_within_le
(Ξ» x hx, (hf x hx).has_deriv_at.has_deriv_within_at) bound
/-- The mean value theorem set in dimension 1: if the derivative of a function is bounded by `C`,
then the function is `C`-Lipschitz. Version with `deriv` and `lipschitz_with`. -/
theorem _root_.lipschitz_with_of_nnnorm_deriv_le {C : ℝβ‰₯0} (hf : differentiable π•œ f)
(bound : βˆ€ x, βˆ₯deriv f xβˆ₯β‚Š ≀ C) : lipschitz_with C f :=
lipschitz_on_univ.1 $ convex_univ.lipschitz_on_with_of_nnnorm_deriv_le (Ξ» x hx, hf x)
(Ξ» x hx, bound x)
/-- If `f : π•œ β†’ G`, `π•œ = R` or `π•œ = β„‚`, is differentiable everywhere and its derivative equal zero,
then it is a constant function. -/
theorem _root_.is_const_of_deriv_eq_zero (hf : differentiable π•œ f) (hf' : βˆ€ x, deriv f x = 0)
(x y : π•œ) :
f x = f y :=
is_const_of_fderiv_eq_zero hf (Ξ» z, by { ext, simp [← deriv_fderiv, hf'] }) _ _
end convex
end
/-! ### Functions `[a, b] β†’ ℝ`. -/
section interval
-- Declare all variables here to make sure they come in a correct order
variables (f f' : ℝ β†’ ℝ) {a b : ℝ} (hab : a < b) (hfc : continuous_on f (Icc a b))
(hff' : βˆ€ x ∈ Ioo a b, has_deriv_at f (f' x) x) (hfd : differentiable_on ℝ f (Ioo a b))
(g g' : ℝ β†’ ℝ) (hgc : continuous_on g (Icc a b)) (hgg' : βˆ€ x ∈ Ioo a b, has_deriv_at g (g' x) x)
(hgd : differentiable_on ℝ g (Ioo a b))
include hab hfc hff' hgc hgg'
/-- Cauchy's **Mean Value Theorem**, `has_deriv_at` version. -/
lemma exists_ratio_has_deriv_at_eq_ratio_slope :
βˆƒ c ∈ Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c :=
begin
let h := Ξ» x, (g b - g a) * f x - (f b - f a) * g x,
have hI : h a = h b,
{ simp only [h], ring },
let h' := Ξ» x, (g b - g a) * f' x - (f b - f a) * g' x,
have hhh' : βˆ€ x ∈ Ioo a b, has_deriv_at h (h' x) x,
from Ξ» x hx, ((hff' x hx).const_mul (g b - g a)).sub ((hgg' x hx).const_mul (f b - f a)),
have hhc : continuous_on h (Icc a b),
from (continuous_on_const.mul hfc).sub (continuous_on_const.mul hgc),
rcases exists_has_deriv_at_eq_zero h h' hab hhc hI hhh' with ⟨c, cmem, hc⟩,
exact ⟨c, cmem, sub_eq_zero.1 hc⟩
end
omit hfc hgc
/-- Cauchy's **Mean Value Theorem**, extended `has_deriv_at` version. -/
lemma exists_ratio_has_deriv_at_eq_ratio_slope' {lfa lga lfb lgb : ℝ}
(hff' : βˆ€ x ∈ Ioo a b, has_deriv_at f (f' x) x) (hgg' : βˆ€ x ∈ Ioo a b, has_deriv_at g (g' x) x)
(hfa : tendsto f (𝓝[>] a) (𝓝 lfa)) (hga : tendsto g (𝓝[>] a) (𝓝 lga))
(hfb : tendsto f (𝓝[<] b) (𝓝 lfb)) (hgb : tendsto g (𝓝[<] b) (𝓝 lgb)) :
βˆƒ c ∈ Ioo a b, (lgb - lga) * (f' c) = (lfb - lfa) * (g' c) :=
begin
let h := Ξ» x, (lgb - lga) * f x - (lfb - lfa) * g x,
have hha : tendsto h (𝓝[>] a) (𝓝 $ lgb * lfa - lfb * lga),
{ have : tendsto h (𝓝[>] a)(𝓝 $ (lgb - lga) * lfa - (lfb - lfa) * lga) :=
(tendsto_const_nhds.mul hfa).sub (tendsto_const_nhds.mul hga),
convert this using 2,
ring },
have hhb : tendsto h (𝓝[<] b) (𝓝 $ lgb * lfa - lfb * lga),
{ have : tendsto h (𝓝[<] b)(𝓝 $ (lgb - lga) * lfb - (lfb - lfa) * lgb) :=
(tendsto_const_nhds.mul hfb).sub (tendsto_const_nhds.mul hgb),
convert this using 2,
ring },
let h' := Ξ» x, (lgb - lga) * f' x - (lfb - lfa) * g' x,
have hhh' : βˆ€ x ∈ Ioo a b, has_deriv_at h (h' x) x,
{ intros x hx,
exact ((hff' x hx).const_mul _ ).sub (((hgg' x hx)).const_mul _) },
rcases exists_has_deriv_at_eq_zero' hab hha hhb hhh' with ⟨c, cmem, hc⟩,
exact ⟨c, cmem, sub_eq_zero.1 hc⟩
end
include hfc
omit hgg'
/-- Lagrange's Mean Value Theorem, `has_deriv_at` version -/
lemma exists_has_deriv_at_eq_slope : βˆƒ c ∈ Ioo a b, f' c = (f b - f a) / (b - a) :=
begin
rcases exists_ratio_has_deriv_at_eq_ratio_slope f f' hab hfc hff'
id 1 continuous_id.continuous_on (λ x hx, has_deriv_at_id x) with ⟨c, cmem, hc⟩,
use [c, cmem],
simp only [_root_.id, pi.one_apply, mul_one] at hc,
rw [← hc, mul_div_cancel_left],
exact ne_of_gt (sub_pos.2 hab)
end
omit hff'
/-- Cauchy's Mean Value Theorem, `deriv` version. -/
lemma exists_ratio_deriv_eq_ratio_slope :
βˆƒ c ∈ Ioo a b, (g b - g a) * (deriv f c) = (f b - f a) * (deriv g c) :=
exists_ratio_has_deriv_at_eq_ratio_slope f (deriv f) hab hfc
(Ξ» x hx, ((hfd x hx).differentiable_at $ is_open.mem_nhds is_open_Ioo hx).has_deriv_at)
g (deriv g) hgc $
Ξ» x hx, ((hgd x hx).differentiable_at $ is_open.mem_nhds is_open_Ioo hx).has_deriv_at
omit hfc
/-- Cauchy's Mean Value Theorem, extended `deriv` version. -/
lemma exists_ratio_deriv_eq_ratio_slope' {lfa lga lfb lgb : ℝ}
(hdf : differentiable_on ℝ f $ Ioo a b) (hdg : differentiable_on ℝ g $ Ioo a b)
(hfa : tendsto f (𝓝[>] a) (𝓝 lfa)) (hga : tendsto g (𝓝[>] a) (𝓝 lga))
(hfb : tendsto f (𝓝[<] b) (𝓝 lfb)) (hgb : tendsto g (𝓝[<] b) (𝓝 lgb)) :
βˆƒ c ∈ Ioo a b, (lgb - lga) * (deriv f c) = (lfb - lfa) * (deriv g c) :=
exists_ratio_has_deriv_at_eq_ratio_slope' _ _ hab _ _
(Ξ» x hx, ((hdf x hx).differentiable_at $ Ioo_mem_nhds hx.1 hx.2).has_deriv_at)
(Ξ» x hx, ((hdg x hx).differentiable_at $ Ioo_mem_nhds hx.1 hx.2).has_deriv_at)
hfa hga hfb hgb
/-- Lagrange's **Mean Value Theorem**, `deriv` version. -/
lemma exists_deriv_eq_slope : βˆƒ c ∈ Ioo a b, deriv f c = (f b - f a) / (b - a) :=
exists_has_deriv_at_eq_slope f (deriv f) hab hfc
(Ξ» x hx, ((hfd x hx).differentiable_at $ is_open.mem_nhds is_open_Ioo hx).has_deriv_at)
end interval
/-- Let `f` be a function continuous on a convex (or, equivalently, connected) subset `D`
of the real line. If `f` is differentiable on the interior of `D` and `C < f'`, then
`f` grows faster than `C * x` on `D`, i.e., `C * (y - x) < f y - f x` whenever `x, y ∈ D`,
`x < y`. -/
theorem convex.mul_sub_lt_image_sub_of_lt_deriv {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
{C} (hf'_gt : βˆ€ x ∈ interior D, C < deriv f x) :
βˆ€ x y ∈ D, x < y β†’ C * (y - x) < f y - f x :=
begin
assume x hx y hy hxy,
have hxyD : Icc x y βŠ† D, from hD.ord_connected.out hx hy,
have hxyD' : Ioo x y βŠ† interior D,
from subset_sUnion_of_mem ⟨is_open_Ioo, subset.trans Ioo_subset_Icc_self hxyD⟩,
obtain ⟨a, a_mem, ha⟩ : βˆƒ a ∈ Ioo x y, deriv f a = (f y - f x) / (y - x),
from exists_deriv_eq_slope f hxy (hf.mono hxyD) (hf'.mono hxyD'),
have : C < (f y - f x) / (y - x), by { rw [← ha], exact hf'_gt _ (hxyD' a_mem) },
exact (lt_div_iff (sub_pos.2 hxy)).1 this
end
/-- Let `f : ℝ β†’ ℝ` be a differentiable function. If `C < f'`, then `f` grows faster than
`C * x`, i.e., `C * (y - x) < f y - f x` whenever `x < y`. -/
theorem mul_sub_lt_image_sub_of_lt_deriv {f : ℝ β†’ ℝ} (hf : differentiable ℝ f)
{C} (hf'_gt : βˆ€ x, C < deriv f x) ⦃x y⦄ (hxy : x < y) :
C * (y - x) < f y - f x :=
convex_univ.mul_sub_lt_image_sub_of_lt_deriv hf.continuous.continuous_on hf.differentiable_on
(Ξ» x _, hf'_gt x) x trivial y trivial hxy
/-- Let `f` be a function continuous on a convex (or, equivalently, connected) subset `D`
of the real line. If `f` is differentiable on the interior of `D` and `C ≀ f'`, then
`f` grows at least as fast as `C * x` on `D`, i.e., `C * (y - x) ≀ f y - f x` whenever `x, y ∈ D`,
`x ≀ y`. -/
theorem convex.mul_sub_le_image_sub_of_le_deriv {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
{C} (hf'_ge : βˆ€ x ∈ interior D, C ≀ deriv f x) :
βˆ€ x y ∈ D, x ≀ y β†’ C * (y - x) ≀ f y - f x :=
begin
assume x hx y hy hxy,
cases eq_or_lt_of_le hxy with hxy' hxy', by rw [hxy', sub_self, sub_self, mul_zero],
have hxyD : Icc x y βŠ† D, from hD.ord_connected.out hx hy,
have hxyD' : Ioo x y βŠ† interior D,
from subset_sUnion_of_mem ⟨is_open_Ioo, subset.trans Ioo_subset_Icc_self hxyD⟩,
obtain ⟨a, a_mem, ha⟩ : βˆƒ a ∈ Ioo x y, deriv f a = (f y - f x) / (y - x),
from exists_deriv_eq_slope f hxy' (hf.mono hxyD) (hf'.mono hxyD'),
have : C ≀ (f y - f x) / (y - x), by { rw [← ha], exact hf'_ge _ (hxyD' a_mem) },
exact (le_div_iff (sub_pos.2 hxy')).1 this
end
/-- Let `f : ℝ β†’ ℝ` be a differentiable function. If `C ≀ f'`, then `f` grows at least as fast
as `C * x`, i.e., `C * (y - x) ≀ f y - f x` whenever `x ≀ y`. -/
theorem mul_sub_le_image_sub_of_le_deriv {f : ℝ β†’ ℝ} (hf : differentiable ℝ f)
{C} (hf'_ge : βˆ€ x, C ≀ deriv f x) ⦃x y⦄ (hxy : x ≀ y) :
C * (y - x) ≀ f y - f x :=
convex_univ.mul_sub_le_image_sub_of_le_deriv hf.continuous.continuous_on hf.differentiable_on
(Ξ» x _, hf'_ge x) x trivial y trivial hxy
/-- Let `f` be a function continuous on a convex (or, equivalently, connected) subset `D`
of the real line. If `f` is differentiable on the interior of `D` and `f' < C`, then
`f` grows slower than `C * x` on `D`, i.e., `f y - f x < C * (y - x)` whenever `x, y ∈ D`,
`x < y`. -/
theorem convex.image_sub_lt_mul_sub_of_deriv_lt {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
{C} (lt_hf' : βˆ€ x ∈ interior D, deriv f x < C) :
βˆ€ x y ∈ D, x < y β†’ f y - f x < C * (y - x) :=
begin
assume x hx y hy hxy,
have hf'_gt : βˆ€ x ∈ interior D, -C < deriv (Ξ» y, -f y) x,
{ assume x hx,
rw [deriv.neg, neg_lt_neg_iff],
exact lt_hf' x hx },
simpa [-neg_lt_neg_iff]
using neg_lt_neg (hD.mul_sub_lt_image_sub_of_lt_deriv hf.neg hf'.neg hf'_gt x hx y hy hxy)
end
/-- Let `f : ℝ β†’ ℝ` be a differentiable function. If `f' < C`, then `f` grows slower than
`C * x` on `D`, i.e., `f y - f x < C * (y - x)` whenever `x < y`. -/
theorem image_sub_lt_mul_sub_of_deriv_lt {f : ℝ β†’ ℝ} (hf : differentiable ℝ f)
{C} (lt_hf' : βˆ€ x, deriv f x < C) ⦃x y⦄ (hxy : x < y) :
f y - f x < C * (y - x) :=
convex_univ.image_sub_lt_mul_sub_of_deriv_lt hf.continuous.continuous_on hf.differentiable_on
(Ξ» x _, lt_hf' x) x trivial y trivial hxy
/-- Let `f` be a function continuous on a convex (or, equivalently, connected) subset `D`
of the real line. If `f` is differentiable on the interior of `D` and `f' ≀ C`, then
`f` grows at most as fast as `C * x` on `D`, i.e., `f y - f x ≀ C * (y - x)` whenever `x, y ∈ D`,
`x ≀ y`. -/
theorem convex.image_sub_le_mul_sub_of_deriv_le {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
{C} (le_hf' : βˆ€ x ∈ interior D, deriv f x ≀ C) :
βˆ€ x y ∈ D, x ≀ y β†’ f y - f x ≀ C * (y - x) :=
begin
assume x hx y hy hxy,
have hf'_ge : βˆ€ x ∈ interior D, -C ≀ deriv (Ξ» y, -f y) x,
{ assume x hx,
rw [deriv.neg, neg_le_neg_iff],
exact le_hf' x hx },
simpa [-neg_le_neg_iff]
using neg_le_neg (hD.mul_sub_le_image_sub_of_le_deriv hf.neg hf'.neg hf'_ge x hx y hy hxy)
end
/-- Let `f : ℝ β†’ ℝ` be a differentiable function. If `f' ≀ C`, then `f` grows at most as fast
as `C * x`, i.e., `f y - f x ≀ C * (y - x)` whenever `x ≀ y`. -/
theorem image_sub_le_mul_sub_of_deriv_le {f : ℝ β†’ ℝ} (hf : differentiable ℝ f)
{C} (le_hf' : βˆ€ x, deriv f x ≀ C) ⦃x y⦄ (hxy : x ≀ y) :
f y - f x ≀ C * (y - x) :=
convex_univ.image_sub_le_mul_sub_of_deriv_le hf.continuous.continuous_on hf.differentiable_on
(Ξ» x _, le_hf' x) x trivial y trivial hxy
/-- Let `f` be a function continuous on a convex (or, equivalently, connected) subset `D`
of the real line. If `f` is differentiable on the interior of `D` and `f'` is positive, then
`f` is a strictly monotone function on `D`.
Note that we don't require differentiability explicitly as it already implied by the derivative
being strictly positive. -/
theorem convex.strict_mono_on_of_deriv_pos {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf : continuous_on f D) (hf' : βˆ€ x ∈ interior D, 0 < deriv f x) :
strict_mono_on f D :=
begin
rintro x hx y hy,
simpa only [zero_mul, sub_pos] using hD.mul_sub_lt_image_sub_of_lt_deriv hf _ hf' x hx y hy,
exact Ξ» z hz, (differentiable_at_of_deriv_ne_zero (hf' z hz).ne').differentiable_within_at,
end
/-- Let `f : ℝ β†’ ℝ` be a differentiable function. If `f'` is positive, then
`f` is a strictly monotone function.
Note that we don't require differentiability explicitly as it already implied by the derivative
being strictly positive. -/
theorem strict_mono_of_deriv_pos {f : ℝ β†’ ℝ} (hf' : βˆ€ x, 0 < deriv f x) : strict_mono f :=
strict_mono_on_univ.1 $ convex_univ.strict_mono_on_of_deriv_pos
(Ξ» z _, (differentiable_at_of_deriv_ne_zero (hf' z).ne').differentiable_within_at
.continuous_within_at)
(Ξ» x _, hf' x)
/-- Let `f` be a function continuous on a convex (or, equivalently, connected) subset `D`
of the real line. If `f` is differentiable on the interior of `D` and `f'` is nonnegative, then
`f` is a monotone function on `D`. -/
theorem convex.monotone_on_of_deriv_nonneg {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
(hf'_nonneg : βˆ€ x ∈ interior D, 0 ≀ deriv f x) :
monotone_on f D :=
Ξ» x hx y hy hxy, by simpa only [zero_mul, sub_nonneg]
using hD.mul_sub_le_image_sub_of_le_deriv hf hf' hf'_nonneg x hx y hy hxy
/-- Let `f : ℝ β†’ ℝ` be a differentiable function. If `f'` is nonnegative, then
`f` is a monotone function. -/
theorem monotone_of_deriv_nonneg {f : ℝ β†’ ℝ} (hf : differentiable ℝ f) (hf' : βˆ€ x, 0 ≀ deriv f x) :
monotone f :=
monotone_on_univ.1 $ convex_univ.monotone_on_of_deriv_nonneg hf.continuous.continuous_on
hf.differentiable_on (Ξ» x _, hf' x)
/-- Let `f` be a function continuous on a convex (or, equivalently, connected) subset `D`
of the real line. If `f` is differentiable on the interior of `D` and `f'` is negative, then
`f` is a strictly antitone function on `D`. -/
theorem convex.strict_anti_on_of_deriv_neg {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf : continuous_on f D) (hf' : βˆ€ x ∈ interior D, deriv f x < 0) :
strict_anti_on f D :=
Ξ» x hx y, by simpa only [zero_mul, sub_lt_zero]
using hD.image_sub_lt_mul_sub_of_deriv_lt hf
(Ξ» z hz, (differentiable_at_of_deriv_ne_zero (hf' z hz).ne).differentiable_within_at) hf' x hx y
/-- Let `f : ℝ β†’ ℝ` be a differentiable function. If `f'` is negative, then
`f` is a strictly antitone function.
Note that we don't require differentiability explicitly as it already implied by the derivative
being strictly negative. -/
theorem strict_anti_of_deriv_neg {f : ℝ β†’ ℝ} (hf' : βˆ€ x, deriv f x < 0) :
strict_anti f :=
strict_anti_on_univ.1 $ convex_univ.strict_anti_on_of_deriv_neg
(Ξ» z _, (differentiable_at_of_deriv_ne_zero (hf' z).ne).differentiable_within_at
.continuous_within_at)
(Ξ» x _, hf' x)
/-- Let `f` be a function continuous on a convex (or, equivalently, connected) subset `D`
of the real line. If `f` is differentiable on the interior of `D` and `f'` is nonpositive, then
`f` is an antitone function on `D`. -/
theorem convex.antitone_on_of_deriv_nonpos {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
(hf'_nonpos : βˆ€ x ∈ interior D, deriv f x ≀ 0) :
antitone_on f D :=
Ξ» x hx y hy hxy, by simpa only [zero_mul, sub_nonpos]
using hD.image_sub_le_mul_sub_of_deriv_le hf hf' hf'_nonpos x hx y hy hxy
/-- Let `f : ℝ β†’ ℝ` be a differentiable function. If `f'` is nonpositive, then
`f` is an antitone function. -/
theorem antitone_of_deriv_nonpos {f : ℝ β†’ ℝ} (hf : differentiable ℝ f) (hf' : βˆ€ x, deriv f x ≀ 0) :
antitone f :=
antitone_on_univ.1 $ convex_univ.antitone_on_of_deriv_nonpos hf.continuous.continuous_on
hf.differentiable_on (Ξ» x _, hf' x)
/-- If a function `f` is continuous on a convex set `D βŠ† ℝ`, is differentiable on its interior,
and `f'` is monotone on the interior, then `f` is convex on `D`. -/
theorem monotone_on.convex_on_of_deriv {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
(hf'_mono : monotone_on (deriv f) (interior D)) :
convex_on ℝ D f :=
convex_on_of_slope_mono_adjacent hD
begin
intros x y z hx hz hxy hyz,
-- First we prove some trivial inclusions
have hxzD : Icc x z βŠ† D, from hD.ord_connected.out hx hz,
have hxyD : Icc x y βŠ† D, from subset.trans (Icc_subset_Icc_right $ le_of_lt hyz) hxzD,
have hxyD' : Ioo x y βŠ† interior D,
from subset_sUnion_of_mem ⟨is_open_Ioo, subset.trans Ioo_subset_Icc_self hxyD⟩,
have hyzD : Icc y z βŠ† D, from subset.trans (Icc_subset_Icc_left $ le_of_lt hxy) hxzD,
have hyzD' : Ioo y z βŠ† interior D,
from subset_sUnion_of_mem ⟨is_open_Ioo, subset.trans Ioo_subset_Icc_self hyzD⟩,
-- Then we apply MVT to both `[x, y]` and `[y, z]`
obtain ⟨a, ⟨hxa, hay⟩, ha⟩ : βˆƒ a ∈ Ioo x y, deriv f a = (f y - f x) / (y - x),
from exists_deriv_eq_slope f hxy (hf.mono hxyD) (hf'.mono hxyD'),
obtain ⟨b, ⟨hyb, hbz⟩, hb⟩ : βˆƒ b ∈ Ioo y z, deriv f b = (f z - f y) / (z - y),
from exists_deriv_eq_slope f hyz (hf.mono hyzD) (hf'.mono hyzD'),
rw [← ha, ← hb],
exact hf'_mono (hxyD' ⟨hxa, hay⟩) (hyzD' ⟨hyb, hbz⟩) (hay.trans hyb).le
end
/-- If a function `f` is continuous on a convex set `D βŠ† ℝ`, is differentiable on its interior,
and `f'` is antitone on the interior, then `f` is concave on `D`. -/
theorem antitone_on.concave_on_of_deriv {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
(h_anti : antitone_on (deriv f) (interior D)) :
concave_on ℝ D f :=
begin
have : monotone_on (deriv (-f)) (interior D),
{ intros x hx y hy hxy,
convert neg_le_neg (h_anti hx hy hxy);
convert deriv.neg },
exact neg_convex_on_iff.mp (this.convex_on_of_deriv hD hf.neg hf'.neg),
end
lemma strict_mono_on.exists_slope_lt_deriv_aux {x y : ℝ} {f : ℝ β†’ ℝ}
(hf : continuous_on f (Icc x y)) (hxy : x < y)
(hf'_mono : strict_mono_on (deriv f) (Ioo x y)) (h : βˆ€ w ∈ Ioo x y, deriv f w β‰  0) :
βˆƒ a ∈ Ioo x y, (f y - f x) / (y - x) < deriv f a :=
begin
have A : differentiable_on ℝ f (Ioo x y),
from Ξ» w wmem, (differentiable_at_of_deriv_ne_zero (h w wmem)).differentiable_within_at,
obtain ⟨a, ⟨hxa, hay⟩, ha⟩ : βˆƒ a ∈ Ioo x y, deriv f a = (f y - f x) / (y - x),
from exists_deriv_eq_slope f hxy hf A,
rcases nonempty_Ioo.2 hay with ⟨b, ⟨hab, hby⟩⟩,
refine ⟨b, ⟨hxa.trans hab, hby⟩, _⟩,
rw ← ha,
exact hf'_mono ⟨hxa, hay⟩ ⟨hxa.trans hab, hby⟩ hab
end
lemma strict_mono_on.exists_slope_lt_deriv {x y : ℝ} {f : ℝ β†’ ℝ}
(hf : continuous_on f (Icc x y)) (hxy : x < y)
(hf'_mono : strict_mono_on (deriv f) (Ioo x y)) :
βˆƒ a ∈ Ioo x y, (f y - f x) / (y - x) < deriv f a :=
begin
by_cases h : βˆ€ w ∈ Ioo x y, deriv f w β‰  0,
{ apply strict_mono_on.exists_slope_lt_deriv_aux hf hxy hf'_mono h },
{ push_neg at h,
rcases h with ⟨w, ⟨hxw, hwy⟩, hw⟩,
obtain ⟨a, ⟨hxa, haw⟩, ha⟩ : βˆƒ (a : ℝ) (H : a ∈ Ioo x w), (f w - f x) / (w - x) < deriv f a,
{ apply strict_mono_on.exists_slope_lt_deriv_aux _ hxw _ _,
{ exact hf.mono (Icc_subset_Icc le_rfl hwy.le) },
{ exact hf'_mono.mono (Ioo_subset_Ioo le_rfl hwy.le) },
{ assume z hz,
rw ← hw,
apply ne_of_lt,
exact hf'_mono ⟨hz.1, hz.2.trans hwy⟩ ⟨hxw, hwy⟩ hz.2 } },
obtain ⟨b, ⟨hwb, hby⟩, hb⟩ : βˆƒ (b : ℝ) (H : b ∈ Ioo w y), (f y - f w) / (y - w) < deriv f b,
{ apply strict_mono_on.exists_slope_lt_deriv_aux _ hwy _ _,
{ refine hf.mono (Icc_subset_Icc hxw.le le_rfl), },
{ exact hf'_mono.mono (Ioo_subset_Ioo hxw.le le_rfl) },
{ assume z hz,
rw ← hw,
apply ne_of_gt,
exact hf'_mono ⟨hxw, hwy⟩ ⟨hxw.trans hz.1, hz.2⟩ hz.1, } },
refine ⟨b, ⟨hxw.trans hwb, hby⟩, _⟩,
simp only [div_lt_iff, hxy, hxw, hwy, sub_pos] at ⊒ ha hb,
have : deriv f a * (w - x) < deriv f b * (w - x),
{ apply mul_lt_mul _ le_rfl (sub_pos.2 hxw) _,
{ exact hf'_mono ⟨hxa, haw.trans hwy⟩ ⟨hxw.trans hwb, hby⟩ (haw.trans hwb) },
{ rw ← hw,
exact (hf'_mono ⟨hxw, hwy⟩ ⟨hxw.trans hwb, hby⟩ hwb).le } },
linarith }
end
lemma strict_mono_on.exists_deriv_lt_slope_aux {x y : ℝ} {f : ℝ β†’ ℝ}
(hf : continuous_on f (Icc x y)) (hxy : x < y)
(hf'_mono : strict_mono_on (deriv f) (Ioo x y)) (h : βˆ€ w ∈ Ioo x y, deriv f w β‰  0) :
βˆƒ a ∈ Ioo x y, deriv f a < (f y - f x) / (y - x) :=
begin
have A : differentiable_on ℝ f (Ioo x y),
from Ξ» w wmem, (differentiable_at_of_deriv_ne_zero (h w wmem)).differentiable_within_at,
obtain ⟨a, ⟨hxa, hay⟩, ha⟩ : βˆƒ a ∈ Ioo x y, deriv f a = (f y - f x) / (y - x),
from exists_deriv_eq_slope f hxy hf A,
rcases nonempty_Ioo.2 hxa with ⟨b, ⟨hxb, hba⟩⟩,
refine ⟨b, ⟨hxb, hba.trans hay⟩, _⟩,
rw ← ha,
exact hf'_mono ⟨hxb, hba.trans hay⟩ ⟨hxa, hay⟩ hba
end
lemma strict_mono_on.exists_deriv_lt_slope {x y : ℝ} {f : ℝ β†’ ℝ}
(hf : continuous_on f (Icc x y)) (hxy : x < y)
(hf'_mono : strict_mono_on (deriv f) (Ioo x y)) :
βˆƒ a ∈ Ioo x y, deriv f a < (f y - f x) / (y - x) :=
begin
by_cases h : βˆ€ w ∈ Ioo x y, deriv f w β‰  0,
{ apply strict_mono_on.exists_deriv_lt_slope_aux hf hxy hf'_mono h },
{ push_neg at h,
rcases h with ⟨w, ⟨hxw, hwy⟩, hw⟩,
obtain ⟨a, ⟨hxa, haw⟩, ha⟩ : βˆƒ (a : ℝ) (H : a ∈ Ioo x w), deriv f a < (f w - f x) / (w - x),
{ apply strict_mono_on.exists_deriv_lt_slope_aux _ hxw _ _,
{ exact hf.mono (Icc_subset_Icc le_rfl hwy.le) },
{ exact hf'_mono.mono (Ioo_subset_Ioo le_rfl hwy.le) },
{ assume z hz,
rw ← hw,
apply ne_of_lt,
exact hf'_mono ⟨hz.1, hz.2.trans hwy⟩ ⟨hxw, hwy⟩ hz.2 } },
obtain ⟨b, ⟨hwb, hby⟩, hb⟩ : βˆƒ (b : ℝ) (H : b ∈ Ioo w y), deriv f b < (f y - f w) / (y - w),
{ apply strict_mono_on.exists_deriv_lt_slope_aux _ hwy _ _,
{ refine hf.mono (Icc_subset_Icc hxw.le le_rfl), },
{ exact hf'_mono.mono (Ioo_subset_Ioo hxw.le le_rfl) },
{ assume z hz,
rw ← hw,
apply ne_of_gt,
exact hf'_mono ⟨hxw, hwy⟩ ⟨hxw.trans hz.1, hz.2⟩ hz.1, } },
refine ⟨a, ⟨hxa, haw.trans hwy⟩, _⟩,
simp only [lt_div_iff, hxy, hxw, hwy, sub_pos] at ⊒ ha hb,
have : deriv f a * (y - w) < deriv f b * (y - w),
{ apply mul_lt_mul _ le_rfl (sub_pos.2 hwy) _,
{ exact hf'_mono ⟨hxa, haw.trans hwy⟩ ⟨hxw.trans hwb, hby⟩ (haw.trans hwb) },
{ rw ← hw,
exact (hf'_mono ⟨hxw, hwy⟩ ⟨hxw.trans hwb, hby⟩ hwb).le } },
linarith }
end
/-- If a function `f` is continuous on a convex set `D βŠ† ℝ`, and `f'` is strictly monotone on the
interior, then `f` is strictly convex on `D`.
Note that we don't require differentiability, since it is guaranteed at all but at most
one point by the strict monotonicity of `f'`. -/
lemma strict_mono_on.strict_convex_on_of_deriv {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf : continuous_on f D) (hf' : strict_mono_on (deriv f) (interior D)) :
strict_convex_on ℝ D f :=
strict_convex_on_of_slope_strict_mono_adjacent hD
begin
intros x y z hx hz hxy hyz,
-- First we prove some trivial inclusions
have hxzD : Icc x z βŠ† D, from hD.ord_connected.out hx hz,
have hxyD : Icc x y βŠ† D, from subset.trans (Icc_subset_Icc_right $ le_of_lt hyz) hxzD,
have hxyD' : Ioo x y βŠ† interior D,
from subset_sUnion_of_mem ⟨is_open_Ioo, subset.trans Ioo_subset_Icc_self hxyD⟩,
have hyzD : Icc y z βŠ† D, from subset.trans (Icc_subset_Icc_left $ le_of_lt hxy) hxzD,
have hyzD' : Ioo y z βŠ† interior D,
from subset_sUnion_of_mem ⟨is_open_Ioo, subset.trans Ioo_subset_Icc_self hyzD⟩,
-- Then we get points `a` and `b` in each interval `[x, y]` and `[y, z]` where the derivatives
-- can be compared to the slopes between `x, y` and `y, z` respectively.
obtain ⟨a, ⟨hxa, hay⟩, ha⟩ : βˆƒ a ∈ Ioo x y, (f y - f x) / (y - x) < deriv f a,
from strict_mono_on.exists_slope_lt_deriv (hf.mono hxyD) hxy (hf'.mono hxyD'),
obtain ⟨b, ⟨hyb, hbz⟩, hb⟩ : βˆƒ b ∈ Ioo y z, deriv f b < (f z - f y) / (z - y),
from strict_mono_on.exists_deriv_lt_slope (hf.mono hyzD) hyz (hf'.mono hyzD'),
apply ha.trans (lt_trans _ hb),
exact hf' (hxyD' ⟨hxa, hay⟩) (hyzD' ⟨hyb, hbz⟩) (hay.trans hyb),
end
/-- If a function `f` is continuous on a convex set `D βŠ† ℝ` and `f'` is strictly antitone on the
interior, then `f` is strictly concave on `D`.
Note that we don't require differentiability, since it is guaranteed at all but at most
one point by the strict antitonicity of `f'`. -/
lemma strict_anti_on.strict_concave_on_of_deriv {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf : continuous_on f D) (h_anti : strict_anti_on (deriv f) (interior D)) :
strict_concave_on ℝ D f :=
begin
have : strict_mono_on (deriv (-f)) (interior D),
{ intros x hx y hy hxy,
convert neg_lt_neg (h_anti hx hy hxy);
convert deriv.neg },
exact neg_strict_convex_on_iff.mp (this.strict_convex_on_of_deriv hD hf.neg),
end
/-- If a function `f` is differentiable and `f'` is monotone on `ℝ` then `f` is convex. -/
theorem monotone.convex_on_univ_of_deriv {f : ℝ β†’ ℝ} (hf : differentiable ℝ f)
(hf'_mono : monotone (deriv f)) : convex_on ℝ univ f :=
(hf'_mono.monotone_on _).convex_on_of_deriv convex_univ hf.continuous.continuous_on
hf.differentiable_on
/-- If a function `f` is differentiable and `f'` is antitone on `ℝ` then `f` is concave. -/
theorem antitone.concave_on_univ_of_deriv {f : ℝ β†’ ℝ} (hf : differentiable ℝ f)
(hf'_anti : antitone (deriv f)) : concave_on ℝ univ f :=
(hf'_anti.antitone_on _).concave_on_of_deriv convex_univ hf.continuous.continuous_on
hf.differentiable_on
/-- If a function `f` is continuous and `f'` is strictly monotone on `ℝ` then `f` is strictly
convex. Note that we don't require differentiability, since it is guaranteed at all but at most
one point by the strict monotonicity of `f'`. -/
lemma strict_mono.strict_convex_on_univ_of_deriv {f : ℝ β†’ ℝ} (hf : continuous f)
(hf'_mono : strict_mono (deriv f)) : strict_convex_on ℝ univ f :=
(hf'_mono.strict_mono_on _).strict_convex_on_of_deriv convex_univ hf.continuous_on
/-- If a function `f` is continuous and `f'` is strictly antitone on `ℝ` then `f` is strictly
concave. Note that we don't require differentiability, since it is guaranteed at all but at most
one point by the strict antitonicity of `f'`. -/
lemma strict_anti.strict_concave_on_univ_of_deriv {f : ℝ β†’ ℝ} (hf : continuous f)
(hf'_anti : strict_anti (deriv f)) : strict_concave_on ℝ univ f :=
(hf'_anti.strict_anti_on _).strict_concave_on_of_deriv convex_univ hf.continuous_on
/-- If a function `f` is continuous on a convex set `D βŠ† ℝ`, is twice differentiable on its
interior, and `f''` is nonnegative on the interior, then `f` is convex on `D`. -/
theorem convex_on_of_deriv2_nonneg {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
(hf'' : differentiable_on ℝ (deriv f) (interior D))
(hf''_nonneg : βˆ€ x ∈ interior D, 0 ≀ (deriv^[2] f x)) :
convex_on ℝ D f :=
(hD.interior.monotone_on_of_deriv_nonneg hf''.continuous_on (by rwa interior_interior)
$ by rwa interior_interior).convex_on_of_deriv hD hf hf'
/-- If a function `f` is continuous on a convex set `D βŠ† ℝ`, is twice differentiable on its
interior, and `f''` is nonpositive on the interior, then `f` is concave on `D`. -/
theorem concave_on_of_deriv2_nonpos {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf : continuous_on f D) (hf' : differentiable_on ℝ f (interior D))
(hf'' : differentiable_on ℝ (deriv f) (interior D))
(hf''_nonpos : βˆ€ x ∈ interior D, deriv^[2] f x ≀ 0) :
concave_on ℝ D f :=
(hD.interior.antitone_on_of_deriv_nonpos hf''.continuous_on (by rwa interior_interior)
$ by rwa interior_interior).concave_on_of_deriv hD hf hf'
/-- If a function `f` is continuous on a convex set `D βŠ† ℝ` and `f''` is strictly positive on the
interior, then `f` is strictly convex on `D`.
Note that we don't require twice differentiability explicitly as it is already implied by the second
derivative being strictly positive, except at at most one point. -/
lemma strict_convex_on_of_deriv2_pos {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf : continuous_on f D) (hf'' : βˆ€ x ∈ interior D, 0 < (deriv^[2] f) x) :
strict_convex_on ℝ D f :=
(hD.interior.strict_mono_on_of_deriv_pos (Ξ» z hz,
(differentiable_at_of_deriv_ne_zero (hf'' z hz).ne').differentiable_within_at
.continuous_within_at) $ by rwa interior_interior).strict_convex_on_of_deriv hD hf
/-- If a function `f` is continuous on a convex set `D βŠ† ℝ` and `f''` is strictly negative on the
interior, then `f` is strictly concave on `D`.
Note that we don't require twice differentiability explicitly as it already implied by the second
derivative being strictly negative, except at at most one point. -/
lemma strict_concave_on_of_deriv2_neg {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf : continuous_on f D) (hf'' : βˆ€ x ∈ interior D, deriv^[2] f x < 0) :
strict_concave_on ℝ D f :=
(hD.interior.strict_anti_on_of_deriv_neg (Ξ» z hz,
(differentiable_at_of_deriv_ne_zero (hf'' z hz).ne).differentiable_within_at
.continuous_within_at) $ by rwa interior_interior).strict_concave_on_of_deriv hD hf
/-- If a function `f` is twice differentiable on a open convex set `D βŠ† ℝ` and
`f''` is nonnegative on `D`, then `f` is convex on `D`. -/
theorem convex_on_of_deriv2_nonneg' {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf' : differentiable_on ℝ f D) (hf'' : differentiable_on ℝ (deriv f) D)
(hf''_nonneg : βˆ€ x ∈ D, 0 ≀ (deriv^[2] f) x) : convex_on ℝ D f :=
convex_on_of_deriv2_nonneg hD hf'.continuous_on (hf'.mono interior_subset)
(hf''.mono interior_subset) (Ξ» x hx, hf''_nonneg x (interior_subset hx))
/-- If a function `f` is twice differentiable on an open convex set `D βŠ† ℝ` and
`f''` is nonpositive on `D`, then `f` is concave on `D`. -/
theorem concave_on_of_deriv2_nonpos' {D : set ℝ} (hD : convex ℝ D) {f : ℝ β†’ ℝ}
(hf' : differentiable_on ℝ f D) (hf'' : differentiable_on ℝ (deriv f) D)
(hf''_nonpos : βˆ€ x ∈ D, deriv^[2] f x ≀ 0) : concave_on ℝ D f :=
concave_on_of_deriv2_nonpos hD hf'.continuous_on (hf'.mono interior_subset)
(hf''.mono interior_subset) (Ξ» x hx, hf''_nonpos x (interior_subset hx))
/-- If a function `f` is continuous on a convex set `D βŠ† ℝ` and `f''` is strictly positive on `D`,
then `f` is strictly convex on `D`.
Note that we don't require twice differentiability explicitly as it is already implied by the second
derivative being strictly positive, except at at most one point. -/
lemma strict_convex_on_of_deriv2_pos' {D : set ℝ} (hD : convex ℝ D)
{f : ℝ β†’ ℝ} (hf : continuous_on f D) (hf'' : βˆ€ x ∈ D, 0 < (deriv^[2] f) x) :
strict_convex_on ℝ D f :=
strict_convex_on_of_deriv2_pos hD hf $ Ξ» x hx, hf'' x (interior_subset hx)
/-- If a function `f` is continuous on a convex set `D βŠ† ℝ` and `f''` is strictly negative on `D`,
then `f` is strictly concave on `D`.
Note that we don't require twice differentiability explicitly as it is already implied by the second
derivative being strictly negative, except at at most one point. -/
lemma strict_concave_on_of_deriv2_neg' {D : set ℝ} (hD : convex ℝ D)
{f : ℝ β†’ ℝ} (hf : continuous_on f D) (hf'' : βˆ€ x ∈ D, deriv^[2] f x < 0) :
strict_concave_on ℝ D f :=
strict_concave_on_of_deriv2_neg hD hf $ Ξ» x hx, hf'' x (interior_subset hx)
/-- If a function `f` is twice differentiable on `ℝ`, and `f''` is nonnegative on `ℝ`,
then `f` is convex on `ℝ`. -/
theorem convex_on_univ_of_deriv2_nonneg {f : ℝ β†’ ℝ} (hf' : differentiable ℝ f)
(hf'' : differentiable ℝ (deriv f)) (hf''_nonneg : βˆ€ x, 0 ≀ (deriv^[2] f) x) :
convex_on ℝ univ f :=
convex_on_of_deriv2_nonneg' convex_univ hf'.differentiable_on
hf''.differentiable_on (Ξ» x _, hf''_nonneg x)
/-- If a function `f` is twice differentiable on `ℝ`, and `f''` is nonpositive on `ℝ`,
then `f` is concave on `ℝ`. -/
theorem concave_on_univ_of_deriv2_nonpos {f : ℝ β†’ ℝ} (hf' : differentiable ℝ f)
(hf'' : differentiable ℝ (deriv f)) (hf''_nonpos : βˆ€ x, deriv^[2] f x ≀ 0) :
concave_on ℝ univ f :=
concave_on_of_deriv2_nonpos' convex_univ hf'.differentiable_on
hf''.differentiable_on (Ξ» x _, hf''_nonpos x)
/-- If a function `f` is continuous on `ℝ`, and `f''` is strictly positive on `ℝ`,
then `f` is strictly convex on `ℝ`.
Note that we don't require twice differentiability explicitly as it is already implied by the second
derivative being strictly positive, except at at most one point. -/
lemma strict_convex_on_univ_of_deriv2_pos {f : ℝ β†’ ℝ} (hf : continuous f)
(hf'' : βˆ€ x, 0 < (deriv^[2] f) x) :
strict_convex_on ℝ univ f :=
strict_convex_on_of_deriv2_pos' convex_univ hf.continuous_on $ Ξ» x _, hf'' x
/-- If a function `f` is continuous on `ℝ`, and `f''` is strictly negative on `ℝ`,
then `f` is strictly concave on `ℝ`.
Note that we don't require twice differentiability explicitly as it is already implied by the second
derivative being strictly negative, except at at most one point. -/
lemma strict_concave_on_univ_of_deriv2_neg {f : ℝ β†’ ℝ} (hf : continuous f)
(hf'' : βˆ€ x, deriv^[2] f x < 0) :
strict_concave_on ℝ univ f :=
strict_concave_on_of_deriv2_neg' convex_univ hf.continuous_on $ Ξ» x _, hf'' x
/-! ### Functions `f : E β†’ ℝ` -/
/-- Lagrange's Mean Value Theorem, applied to convex domains. -/
theorem domain_mvt
{f : E β†’ ℝ} {s : set E} {x y : E} {f' : E β†’ (E β†’L[ℝ] ℝ)}
(hf : βˆ€ x ∈ s, has_fderiv_within_at f (f' x) s x) (hs : convex ℝ s) (xs : x ∈ s) (ys : y ∈ s) :
βˆƒ z ∈ segment ℝ x y, f y - f x = f' z (y - x) :=
begin
have hIccIoo := @Ioo_subset_Icc_self ℝ _ 0 1,
-- parametrize segment
set g : ℝ β†’ E := Ξ» t, x + t β€’ (y - x),
have hseg : βˆ€ t ∈ Icc (0:ℝ) 1, g t ∈ segment ℝ x y,
{ rw segment_eq_image',
simp only [mem_image, and_imp, add_right_inj],
intros t ht, exact ⟨t, ht, rfl⟩ },
have hseg' : Icc 0 1 βŠ† g ⁻¹' s,
{ rw ← image_subset_iff, unfold image, change βˆ€ _, _,
intros z Hz, rw mem_set_of_eq at Hz, rcases Hz with ⟨t, Ht, hgt⟩,
rw ← hgt, exact hs.segment_subset xs ys (hseg t Ht) },
-- derivative of pullback of f under parametrization
have hfg: βˆ€ t ∈ Icc (0:ℝ) 1, has_deriv_within_at (f ∘ g)
((f' (g t) : E β†’ ℝ) (y-x)) (Icc (0:ℝ) 1) t,
{ intros t Ht,
have hg : has_deriv_at g (y-x) t,
{ have := ((has_deriv_at_id t).smul_const (y - x)).const_add x,
rwa one_smul at this },
exact (hf (g t) $ hseg' Ht).comp_has_deriv_within_at _ hg.has_deriv_within_at hseg' },
-- apply 1-variable mean value theorem to pullback
have hMVT : βˆƒ (t ∈ Ioo (0:ℝ) 1), ((f' (g t) : E β†’ ℝ) (y-x)) = (f (g 1) - f (g 0)) / (1 - 0),
{ refine exists_has_deriv_at_eq_slope (f ∘ g) _ (by norm_num) _ _,
{ exact Ξ» t Ht, (hfg t Ht).continuous_within_at },
{ exact Ξ» t Ht, (hfg t $ hIccIoo Ht).has_deriv_at (Icc_mem_nhds Ht.1 Ht.2) } },
-- reinterpret on domain
rcases hMVT with ⟨t, Ht, hMVT'⟩,
use g t, refine ⟨hseg t $ hIccIoo Ht, _⟩,
simp [g, hMVT'],
end
section is_R_or_C
/-!
### Vector-valued functions `f : E β†’ F`. Strict differentiability.
A `C^1` function is strictly differentiable, when the field is `ℝ` or `β„‚`. This follows from the
mean value inequality on balls, which is a particular case of the above results after restricting
the scalars to `ℝ`. Note that it does not make sense to talk of a convex set over `β„‚`, but balls
make sense and are enough. Many formulations of the mean value inequality could be generalized to
balls over `ℝ` or `β„‚`. For now, we only include the ones that we need.
-/
variables {π•œ : Type*} [is_R_or_C π•œ] {G : Type*} [normed_add_comm_group G] [normed_space π•œ G]
{H : Type*} [normed_add_comm_group H] [normed_space π•œ H] {f : G β†’ H} {f' : G β†’ G β†’L[π•œ] H} {x : G}
/-- Over the reals or the complexes, a continuously differentiable function is strictly
differentiable. -/
lemma has_strict_fderiv_at_of_has_fderiv_at_of_continuous_at
(hder : βˆ€αΆ  y in 𝓝 x, has_fderiv_at f (f' y) y) (hcont : continuous_at f' x) :
has_strict_fderiv_at f (f' x) x :=
begin
-- turn little-o definition of strict_fderiv into an epsilon-delta statement
refine is_o_iff.mpr (Ξ» c hc, metric.eventually_nhds_iff_ball.mpr _),
-- the correct Ξ΅ is the modulus of continuity of f'
rcases metric.mem_nhds_iff.mp (inter_mem hder (hcont $ ball_mem_nhds _ hc)) with ⟨Ρ, Ρ0, hΡ⟩,
refine ⟨Ρ, Ρ0, _⟩,
-- simplify formulas involving the product E Γ— E
rintros ⟨a, b⟩ h,
rw [← ball_prod_same, prod_mk_mem_set_prod_eq] at h,
-- exploit the choice of Ξ΅ as the modulus of continuity of f'
have hf' : βˆ€ x' ∈ ball x Ξ΅, βˆ₯f' x' - f' xβˆ₯ ≀ c,
{ intros x' H', rw ← dist_eq_norm, exact le_of_lt (hΞ΅ H').2 },
-- apply mean value theorem
letI : normed_space ℝ G := restrict_scalars.normed_space ℝ π•œ G,
refine (convex_ball _ _).norm_image_sub_le_of_norm_has_fderiv_within_le' _ hf' h.2 h.1,
exact Ξ» y hy, (hΞ΅ hy).1.has_fderiv_within_at
end
/-- Over the reals or the complexes, a continuously differentiable function is strictly
differentiable. -/
lemma has_strict_deriv_at_of_has_deriv_at_of_continuous_at {f f' : π•œ β†’ G} {x : π•œ}
(hder : βˆ€αΆ  y in 𝓝 x, has_deriv_at f (f' y) y) (hcont : continuous_at f' x) :
has_strict_deriv_at f (f' x) x :=
has_strict_fderiv_at_of_has_fderiv_at_of_continuous_at (hder.mono (Ξ» y hy, hy.has_fderiv_at)) $
(smul_rightL π•œ π•œ G 1).continuous.continuous_at.comp hcont
end is_R_or_C