Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /lean /mathlib /analysis /calculus /parametric_interval_integral.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
6.55 kB
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import analysis.calculus.parametric_integral
import measure_theory.integral.interval_integral
/-!
# Derivatives of interval integrals depending on parameters
In this file we restate theorems about derivatives of integrals depending on parameters for interval
integrals. -/
open topological_space measure_theory filter metric
open_locale topological_space filter interval
variables {π•œ : Type*} [is_R_or_C π•œ] {ΞΌ : measure ℝ}
{E : Type*} [normed_add_comm_group E] [normed_space ℝ E] [normed_space π•œ E]
[complete_space E]
{H : Type*} [normed_add_comm_group H] [normed_space π•œ H]
{a b Ξ΅ : ℝ} {bound : ℝ β†’ ℝ}
namespace interval_integral
/-- Differentiation under integral of `x ↦ ∫ t in a..b, F x t` at a given point `xβ‚€`, assuming
`F xβ‚€` is integrable, `x ↦ F x a` is locally Lipschitz on a ball around `xβ‚€` for ae `a`
(with a ball radius independent of `a`) with integrable Lipschitz bound, and `F x` is ae-measurable
for `x` in a possibly smaller neighborhood of `xβ‚€`. -/
lemma has_fderiv_at_integral_of_dominated_loc_of_lip {F : H β†’ ℝ β†’ E} {F' : ℝ β†’ (H β†’L[π•œ] E)} {xβ‚€ : H}
(Ξ΅_pos : 0 < Ξ΅)
(hF_meas : βˆ€αΆ  x in 𝓝 xβ‚€, ae_strongly_measurable (F x) (ΞΌ.restrict (Ξ™ a b)))
(hF_int : interval_integrable (F xβ‚€) ΞΌ a b)
(hF'_meas : ae_strongly_measurable F' (ΞΌ.restrict (Ξ™ a b)))
(h_lip : βˆ€α΅ t βˆ‚ΞΌ, t ∈ Ξ™ a b β†’ lipschitz_on_with (real.nnabs $ bound t) (Ξ» x, F x t) (ball xβ‚€ Ξ΅))
(bound_integrable : interval_integrable bound ΞΌ a b)
(h_diff : βˆ€α΅ t βˆ‚ΞΌ, t ∈ Ξ™ a b β†’ has_fderiv_at (Ξ» x, F x t) (F' t) xβ‚€) :
interval_integrable F' μ a b ∧
has_fderiv_at (Ξ» x, ∫ t in a..b, F x t βˆ‚ΞΌ) (∫ t in a..b, F' t βˆ‚ΞΌ) xβ‚€ :=
begin
simp only [interval_integrable_iff, interval_integral_eq_integral_interval_oc,
← ae_restrict_iff' measurable_set_interval_oc] at *,
have := has_fderiv_at_integral_of_dominated_loc_of_lip Ξ΅_pos hF_meas hF_int hF'_meas h_lip
bound_integrable h_diff,
exact ⟨this.1, this.2.const_smul _⟩
end
/-- Differentiation under integral of `x ↦ ∫ F x a` at a given point `xβ‚€`, assuming
`F xβ‚€` is integrable, `x ↦ F x a` is differentiable on a ball around `xβ‚€` for ae `a` with
derivative norm uniformly bounded by an integrable function (the ball radius is independent of `a`),
and `F x` is ae-measurable for `x` in a possibly smaller neighborhood of `xβ‚€`. -/
lemma has_fderiv_at_integral_of_dominated_of_fderiv_le {F : H β†’ ℝ β†’ E} {F' : H β†’ ℝ β†’ (H β†’L[π•œ] E)}
{xβ‚€ : H} (Ξ΅_pos : 0 < Ξ΅)
(hF_meas : βˆ€αΆ  x in 𝓝 xβ‚€, ae_strongly_measurable (F x) (ΞΌ.restrict (Ξ™ a b)))
(hF_int : interval_integrable (F xβ‚€) ΞΌ a b)
(hF'_meas : ae_strongly_measurable (F' xβ‚€) (ΞΌ.restrict (Ξ™ a b)))
(h_bound : βˆ€α΅ t βˆ‚ΞΌ, t ∈ Ξ™ a b β†’ βˆ€ x ∈ ball xβ‚€ Ξ΅, βˆ₯F' x tβˆ₯ ≀ bound t)
(bound_integrable : interval_integrable bound ΞΌ a b)
(h_diff : βˆ€α΅ t βˆ‚ΞΌ, t ∈ Ξ™ a b β†’ βˆ€ x ∈ ball xβ‚€ Ξ΅, has_fderiv_at (Ξ» x, F x t) (F' x t) x) :
has_fderiv_at (Ξ» x, ∫ t in a..b, F x t βˆ‚ΞΌ) (∫ t in a..b, F' xβ‚€ t βˆ‚ΞΌ) xβ‚€ :=
begin
simp only [interval_integrable_iff, interval_integral_eq_integral_interval_oc,
← ae_restrict_iff' measurable_set_interval_oc] at *,
exact (has_fderiv_at_integral_of_dominated_of_fderiv_le Ξ΅_pos hF_meas hF_int hF'_meas h_bound
bound_integrable h_diff).const_smul _
end
/-- Derivative under integral of `x ↦ ∫ F x a` at a given point `xβ‚€ : π•œ`, `π•œ = ℝ` or `π•œ = β„‚`,
assuming `F xβ‚€` is integrable, `x ↦ F x a` is locally Lipschitz on a ball around `xβ‚€` for ae `a`
(with ball radius independent of `a`) with integrable Lipschitz bound, and `F x` is
ae-measurable for `x` in a possibly smaller neighborhood of `xβ‚€`. -/
lemma has_deriv_at_integral_of_dominated_loc_of_lip {F : π•œ β†’ ℝ β†’ E} {F' : ℝ β†’ E} {xβ‚€ : π•œ}
(Ξ΅_pos : 0 < Ξ΅)
(hF_meas : βˆ€αΆ  x in 𝓝 xβ‚€, ae_strongly_measurable (F x) (ΞΌ.restrict (Ξ™ a b)))
(hF_int : interval_integrable (F xβ‚€) ΞΌ a b)
(hF'_meas : ae_strongly_measurable F' (ΞΌ.restrict (Ξ™ a b)))
(h_lipsch : βˆ€α΅ t βˆ‚ΞΌ, t ∈ Ξ™ a b β†’
lipschitz_on_with (real.nnabs $ bound t) (Ξ» x, F x t) (ball xβ‚€ Ξ΅))
(bound_integrable : interval_integrable (bound : ℝ β†’ ℝ) ΞΌ a b)
(h_diff : βˆ€α΅ t βˆ‚ΞΌ, t ∈ Ξ™ a b β†’ has_deriv_at (Ξ» x, F x t) (F' t) xβ‚€) :
(interval_integrable F' μ a b) ∧
has_deriv_at (Ξ» x, ∫ t in a..b, F x t βˆ‚ΞΌ) (∫ t in a..b, F' t βˆ‚ΞΌ) xβ‚€ :=
begin
simp only [interval_integrable_iff, interval_integral_eq_integral_interval_oc,
← ae_restrict_iff' measurable_set_interval_oc] at *,
have := has_deriv_at_integral_of_dominated_loc_of_lip Ξ΅_pos hF_meas hF_int hF'_meas h_lipsch
bound_integrable h_diff,
exact ⟨this.1, this.2.const_smul _⟩
end
/-- Derivative under integral of `x ↦ ∫ F x a` at a given point `xβ‚€ : π•œ`, `π•œ = ℝ` or `π•œ = β„‚`,
assuming `F xβ‚€` is integrable, `x ↦ F x a` is differentiable on an interval around `xβ‚€` for ae `a`
(with interval radius independent of `a`) with derivative uniformly bounded by an integrable
function, and `F x` is ae-measurable for `x` in a possibly smaller neighborhood of `xβ‚€`. -/
lemma has_deriv_at_integral_of_dominated_loc_of_deriv_le {F : π•œ β†’ ℝ β†’ E} {F' : π•œ β†’ ℝ β†’ E} {xβ‚€ : π•œ}
(Ξ΅_pos : 0 < Ξ΅)
(hF_meas : βˆ€αΆ  x in 𝓝 xβ‚€, ae_strongly_measurable (F x) (ΞΌ.restrict (Ξ™ a b)))
(hF_int : interval_integrable (F xβ‚€) ΞΌ a b)
(hF'_meas : ae_strongly_measurable (F' xβ‚€) (ΞΌ.restrict (Ξ™ a b)))
(h_bound : βˆ€α΅ t βˆ‚ΞΌ, t ∈ Ξ™ a b β†’ βˆ€ x ∈ ball xβ‚€ Ξ΅, βˆ₯F' x tβˆ₯ ≀ bound t)
(bound_integrable : interval_integrable bound ΞΌ a b)
(h_diff : βˆ€α΅ t βˆ‚ΞΌ, t ∈ Ξ™ a b β†’ βˆ€ x ∈ ball xβ‚€ Ξ΅, has_deriv_at (Ξ» x, F x t) (F' x t) x) :
(interval_integrable (F' xβ‚€) ΞΌ a b) ∧
has_deriv_at (Ξ» x, ∫ t in a..b, F x t βˆ‚ΞΌ) (∫ t in a..b, F' xβ‚€ t βˆ‚ΞΌ) xβ‚€ :=
begin
simp only [interval_integrable_iff, interval_integral_eq_integral_interval_oc,
← ae_restrict_iff' measurable_set_interval_oc] at *,
have := has_deriv_at_integral_of_dominated_loc_of_deriv_le Ξ΅_pos hF_meas hF_int hF'_meas h_bound
bound_integrable h_diff,
exact ⟨this.1, this.2.const_smul _⟩
end
end interval_integral