Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Yury Kudryashov. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yury Kudryashov | |
-/ | |
import analysis.calculus.parametric_integral | |
import measure_theory.integral.interval_integral | |
/-! | |
# Derivatives of interval integrals depending on parameters | |
In this file we restate theorems about derivatives of integrals depending on parameters for interval | |
integrals. -/ | |
open topological_space measure_theory filter metric | |
open_locale topological_space filter interval | |
variables {π : Type*} [is_R_or_C π] {ΞΌ : measure β} | |
{E : Type*} [normed_add_comm_group E] [normed_space β E] [normed_space π E] | |
[complete_space E] | |
{H : Type*} [normed_add_comm_group H] [normed_space π H] | |
{a b Ξ΅ : β} {bound : β β β} | |
namespace interval_integral | |
/-- Differentiation under integral of `x β¦ β« t in a..b, F x t` at a given point `xβ`, assuming | |
`F xβ` is integrable, `x β¦ F x a` is locally Lipschitz on a ball around `xβ` for ae `a` | |
(with a ball radius independent of `a`) with integrable Lipschitz bound, and `F x` is ae-measurable | |
for `x` in a possibly smaller neighborhood of `xβ`. -/ | |
lemma has_fderiv_at_integral_of_dominated_loc_of_lip {F : H β β β E} {F' : β β (H βL[π] E)} {xβ : H} | |
(Ξ΅_pos : 0 < Ξ΅) | |
(hF_meas : βαΆ x in π xβ, ae_strongly_measurable (F x) (ΞΌ.restrict (Ξ a b))) | |
(hF_int : interval_integrable (F xβ) ΞΌ a b) | |
(hF'_meas : ae_strongly_measurable F' (ΞΌ.restrict (Ξ a b))) | |
(h_lip : βα΅ t βΞΌ, t β Ξ a b β lipschitz_on_with (real.nnabs $ bound t) (Ξ» x, F x t) (ball xβ Ξ΅)) | |
(bound_integrable : interval_integrable bound ΞΌ a b) | |
(h_diff : βα΅ t βΞΌ, t β Ξ a b β has_fderiv_at (Ξ» x, F x t) (F' t) xβ) : | |
interval_integrable F' ΞΌ a b β§ | |
has_fderiv_at (Ξ» x, β« t in a..b, F x t βΞΌ) (β« t in a..b, F' t βΞΌ) xβ := | |
begin | |
simp only [interval_integrable_iff, interval_integral_eq_integral_interval_oc, | |
β ae_restrict_iff' measurable_set_interval_oc] at *, | |
have := has_fderiv_at_integral_of_dominated_loc_of_lip Ξ΅_pos hF_meas hF_int hF'_meas h_lip | |
bound_integrable h_diff, | |
exact β¨this.1, this.2.const_smul _β© | |
end | |
/-- Differentiation under integral of `x β¦ β« F x a` at a given point `xβ`, assuming | |
`F xβ` is integrable, `x β¦ F x a` is differentiable on a ball around `xβ` for ae `a` with | |
derivative norm uniformly bounded by an integrable function (the ball radius is independent of `a`), | |
and `F x` is ae-measurable for `x` in a possibly smaller neighborhood of `xβ`. -/ | |
lemma has_fderiv_at_integral_of_dominated_of_fderiv_le {F : H β β β E} {F' : H β β β (H βL[π] E)} | |
{xβ : H} (Ξ΅_pos : 0 < Ξ΅) | |
(hF_meas : βαΆ x in π xβ, ae_strongly_measurable (F x) (ΞΌ.restrict (Ξ a b))) | |
(hF_int : interval_integrable (F xβ) ΞΌ a b) | |
(hF'_meas : ae_strongly_measurable (F' xβ) (ΞΌ.restrict (Ξ a b))) | |
(h_bound : βα΅ t βΞΌ, t β Ξ a b β β x β ball xβ Ξ΅, β₯F' x tβ₯ β€ bound t) | |
(bound_integrable : interval_integrable bound ΞΌ a b) | |
(h_diff : βα΅ t βΞΌ, t β Ξ a b β β x β ball xβ Ξ΅, has_fderiv_at (Ξ» x, F x t) (F' x t) x) : | |
has_fderiv_at (Ξ» x, β« t in a..b, F x t βΞΌ) (β« t in a..b, F' xβ t βΞΌ) xβ := | |
begin | |
simp only [interval_integrable_iff, interval_integral_eq_integral_interval_oc, | |
β ae_restrict_iff' measurable_set_interval_oc] at *, | |
exact (has_fderiv_at_integral_of_dominated_of_fderiv_le Ξ΅_pos hF_meas hF_int hF'_meas h_bound | |
bound_integrable h_diff).const_smul _ | |
end | |
/-- Derivative under integral of `x β¦ β« F x a` at a given point `xβ : π`, `π = β` or `π = β`, | |
assuming `F xβ` is integrable, `x β¦ F x a` is locally Lipschitz on a ball around `xβ` for ae `a` | |
(with ball radius independent of `a`) with integrable Lipschitz bound, and `F x` is | |
ae-measurable for `x` in a possibly smaller neighborhood of `xβ`. -/ | |
lemma has_deriv_at_integral_of_dominated_loc_of_lip {F : π β β β E} {F' : β β E} {xβ : π} | |
(Ξ΅_pos : 0 < Ξ΅) | |
(hF_meas : βαΆ x in π xβ, ae_strongly_measurable (F x) (ΞΌ.restrict (Ξ a b))) | |
(hF_int : interval_integrable (F xβ) ΞΌ a b) | |
(hF'_meas : ae_strongly_measurable F' (ΞΌ.restrict (Ξ a b))) | |
(h_lipsch : βα΅ t βΞΌ, t β Ξ a b β | |
lipschitz_on_with (real.nnabs $ bound t) (Ξ» x, F x t) (ball xβ Ξ΅)) | |
(bound_integrable : interval_integrable (bound : β β β) ΞΌ a b) | |
(h_diff : βα΅ t βΞΌ, t β Ξ a b β has_deriv_at (Ξ» x, F x t) (F' t) xβ) : | |
(interval_integrable F' ΞΌ a b) β§ | |
has_deriv_at (Ξ» x, β« t in a..b, F x t βΞΌ) (β« t in a..b, F' t βΞΌ) xβ := | |
begin | |
simp only [interval_integrable_iff, interval_integral_eq_integral_interval_oc, | |
β ae_restrict_iff' measurable_set_interval_oc] at *, | |
have := has_deriv_at_integral_of_dominated_loc_of_lip Ξ΅_pos hF_meas hF_int hF'_meas h_lipsch | |
bound_integrable h_diff, | |
exact β¨this.1, this.2.const_smul _β© | |
end | |
/-- Derivative under integral of `x β¦ β« F x a` at a given point `xβ : π`, `π = β` or `π = β`, | |
assuming `F xβ` is integrable, `x β¦ F x a` is differentiable on an interval around `xβ` for ae `a` | |
(with interval radius independent of `a`) with derivative uniformly bounded by an integrable | |
function, and `F x` is ae-measurable for `x` in a possibly smaller neighborhood of `xβ`. -/ | |
lemma has_deriv_at_integral_of_dominated_loc_of_deriv_le {F : π β β β E} {F' : π β β β E} {xβ : π} | |
(Ξ΅_pos : 0 < Ξ΅) | |
(hF_meas : βαΆ x in π xβ, ae_strongly_measurable (F x) (ΞΌ.restrict (Ξ a b))) | |
(hF_int : interval_integrable (F xβ) ΞΌ a b) | |
(hF'_meas : ae_strongly_measurable (F' xβ) (ΞΌ.restrict (Ξ a b))) | |
(h_bound : βα΅ t βΞΌ, t β Ξ a b β β x β ball xβ Ξ΅, β₯F' x tβ₯ β€ bound t) | |
(bound_integrable : interval_integrable bound ΞΌ a b) | |
(h_diff : βα΅ t βΞΌ, t β Ξ a b β β x β ball xβ Ξ΅, has_deriv_at (Ξ» x, F x t) (F' x t) x) : | |
(interval_integrable (F' xβ) ΞΌ a b) β§ | |
has_deriv_at (Ξ» x, β« t in a..b, F x t βΞΌ) (β« t in a..b, F' xβ t βΞΌ) xβ := | |
begin | |
simp only [interval_integrable_iff, interval_integral_eq_integral_interval_oc, | |
β ae_restrict_iff' measurable_set_interval_oc] at *, | |
have := has_deriv_at_integral_of_dominated_loc_of_deriv_le Ξ΅_pos hF_meas hF_int hF'_meas h_bound | |
bound_integrable h_diff, | |
exact β¨this.1, this.2.const_smul _β© | |
end | |
end interval_integral | |