Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: SΓ©bastien GouΓ«zel | |
-/ | |
import analysis.convex.topology | |
import analysis.normed_space.basic | |
import analysis.specific_limits.basic | |
/-! | |
# Tangent cone | |
In this file, we define two predicates `unique_diff_within_at π s x` and `unique_diff_on π s` | |
ensuring that, if a function has two derivatives, then they have to coincide. As a direct | |
definition of this fact (quantifying on all target types and all functions) would depend on | |
universes, we use a more intrinsic definition: if all the possible tangent directions to the set | |
`s` at the point `x` span a dense subset of the whole subset, it is easy to check that the | |
derivative has to be unique. | |
Therefore, we introduce the set of all tangent directions, named `tangent_cone_at`, | |
and express `unique_diff_within_at` and `unique_diff_on` in terms of it. | |
One should however think of this definition as an implementation detail: the only reason to | |
introduce the predicates `unique_diff_within_at` and `unique_diff_on` is to ensure the uniqueness | |
of the derivative. This is why their names reflect their uses, and not how they are defined. | |
## Implementation details | |
Note that this file is imported by `fderiv.lean`. Hence, derivatives are not defined yet. The | |
property of uniqueness of the derivative is therefore proved in `fderiv.lean`, but based on the | |
properties of the tangent cone we prove here. | |
-/ | |
variables (π : Type*) [nontrivially_normed_field π] | |
open filter set | |
open_locale topological_space | |
section tangent_cone | |
variables {E : Type*} [add_comm_monoid E] [module π E] [topological_space E] | |
/-- The set of all tangent directions to the set `s` at the point `x`. -/ | |
def tangent_cone_at (s : set E) (x : E) : set E := | |
{y : E | β(c : β β π) (d : β β E), (βαΆ n in at_top, x + d n β s) β§ | |
(tendsto (Ξ»n, β₯c nβ₯) at_top at_top) β§ (tendsto (Ξ»n, c n β’ d n) at_top (π y))} | |
/-- A property ensuring that the tangent cone to `s` at `x` spans a dense subset of the whole space. | |
The main role of this property is to ensure that the differential within `s` at `x` is unique, | |
hence this name. The uniqueness it asserts is proved in `unique_diff_within_at.eq` in `fderiv.lean`. | |
To avoid pathologies in dimension 0, we also require that `x` belongs to the closure of `s` (which | |
is automatic when `E` is not `0`-dimensional). | |
-/ | |
@[mk_iff] structure unique_diff_within_at (s : set E) (x : E) : Prop := | |
(dense_tangent_cone : dense ((submodule.span π (tangent_cone_at π s x)) : set E)) | |
(mem_closure : x β closure s) | |
/-- A property ensuring that the tangent cone to `s` at any of its points spans a dense subset of | |
the whole space. The main role of this property is to ensure that the differential along `s` is | |
unique, hence this name. The uniqueness it asserts is proved in `unique_diff_on.eq` in | |
`fderiv.lean`. -/ | |
def unique_diff_on (s : set E) : Prop := | |
βx β s, unique_diff_within_at π s x | |
end tangent_cone | |
variables {E : Type*} [normed_add_comm_group E] [normed_space π E] | |
variables {F : Type*} [normed_add_comm_group F] [normed_space π F] | |
variables {G : Type*} [normed_add_comm_group G] [normed_space β G] | |
variables {π} {x y : E} {s t : set E} | |
section tangent_cone | |
/- This section is devoted to the properties of the tangent cone. -/ | |
open normed_field | |
lemma tangent_cone_univ : tangent_cone_at π univ x = univ := | |
begin | |
refine univ_subset_iff.1 (Ξ»y hy, _), | |
rcases exists_one_lt_norm π with β¨w, hwβ©, | |
refine β¨Ξ»n, w^n, Ξ»n, (w^n)β»ΒΉ β’ y, univ_mem' (Ξ»n, mem_univ _), _, _β©, | |
{ simp only [norm_pow], | |
exact tendsto_pow_at_top_at_top_of_one_lt hw }, | |
{ convert tendsto_const_nhds, | |
ext n, | |
have : w ^ n * (w ^ n)β»ΒΉ = 1, | |
{ apply mul_inv_cancel, | |
apply pow_ne_zero, | |
simpa [norm_eq_zero] using (ne_of_lt (lt_trans zero_lt_one hw)).symm }, | |
rw [smul_smul, this, one_smul] } | |
end | |
lemma tangent_cone_mono (h : s β t) : | |
tangent_cone_at π s x β tangent_cone_at π t x := | |
begin | |
rintros y β¨c, d, ds, ctop, climβ©, | |
exact β¨c, d, mem_of_superset ds (Ξ»n hn, h hn), ctop, climβ© | |
end | |
/-- Auxiliary lemma ensuring that, under the assumptions defining the tangent cone, | |
the sequence `d` tends to 0 at infinity. -/ | |
lemma tangent_cone_at.lim_zero {Ξ± : Type*} (l : filter Ξ±) {c : Ξ± β π} {d : Ξ± β E} | |
(hc : tendsto (Ξ»n, β₯c nβ₯) l at_top) (hd : tendsto (Ξ»n, c n β’ d n) l (π y)) : | |
tendsto d l (π 0) := | |
begin | |
have A : tendsto (Ξ»n, β₯c nβ₯β»ΒΉ) l (π 0) := tendsto_inv_at_top_zero.comp hc, | |
have B : tendsto (Ξ»n, β₯c n β’ d nβ₯) l (π β₯yβ₯) := | |
(continuous_norm.tendsto _).comp hd, | |
have C : tendsto (Ξ»n, β₯c nβ₯β»ΒΉ * β₯c n β’ d nβ₯) l (π (0 * β₯yβ₯)) := A.mul B, | |
rw zero_mul at C, | |
have : βαΆ n in l, β₯c nβ₯β»ΒΉ * β₯c n β’ d nβ₯ = β₯d nβ₯, | |
{ apply (eventually_ne_of_tendsto_norm_at_top hc 0).mono (Ξ»n hn, _), | |
rw [norm_smul, β mul_assoc, inv_mul_cancel, one_mul], | |
rwa [ne.def, norm_eq_zero] }, | |
have D : tendsto (Ξ» n, β₯d nβ₯) l (π 0) := | |
tendsto.congr' this C, | |
rw tendsto_zero_iff_norm_tendsto_zero, | |
exact D | |
end | |
lemma tangent_cone_mono_nhds (h : π[s] x β€ π[t] x) : | |
tangent_cone_at π s x β tangent_cone_at π t x := | |
begin | |
rintros y β¨c, d, ds, ctop, climβ©, | |
refine β¨c, d, _, ctop, climβ©, | |
suffices : tendsto (Ξ» n, x + d n) at_top (π[t] x), | |
from tendsto_principal.1 (tendsto_inf.1 this).2, | |
refine (tendsto_inf.2 β¨_, tendsto_principal.2 dsβ©).mono_right h, | |
simpa only [add_zero] using tendsto_const_nhds.add (tangent_cone_at.lim_zero at_top ctop clim) | |
end | |
/-- Tangent cone of `s` at `x` depends only on `π[s] x`. -/ | |
lemma tangent_cone_congr (h : π[s] x = π[t] x) : | |
tangent_cone_at π s x = tangent_cone_at π t x := | |
subset.antisymm | |
(tangent_cone_mono_nhds $ le_of_eq h) | |
(tangent_cone_mono_nhds $ le_of_eq h.symm) | |
/-- Intersecting with a neighborhood of the point does not change the tangent cone. -/ | |
lemma tangent_cone_inter_nhds (ht : t β π x) : | |
tangent_cone_at π (s β© t) x = tangent_cone_at π s x := | |
tangent_cone_congr (nhds_within_restrict' _ ht).symm | |
/-- The tangent cone of a product contains the tangent cone of its left factor. -/ | |
lemma subset_tangent_cone_prod_left {t : set F} {y : F} (ht : y β closure t) : | |
linear_map.inl π E F '' (tangent_cone_at π s x) β tangent_cone_at π (s ΓΛ’ t) (x, y) := | |
begin | |
rintros _ β¨v, β¨c, d, hd, hc, hyβ©, rflβ©, | |
have : βn, βd', y + d' β t β§ β₯c n β’ d'β₯ < ((1:β)/2)^n, | |
{ assume n, | |
rcases mem_closure_iff_nhds.1 ht _ (eventually_nhds_norm_smul_sub_lt (c n) y | |
(pow_pos one_half_pos n)) with β¨z, hz, hztβ©, | |
exact β¨z - y, by simpa using hzt, by simpa using hzβ© }, | |
choose d' hd' using this, | |
refine β¨c, Ξ»n, (d n, d' n), _, hc, _β©, | |
show βαΆ n in at_top, (x, y) + (d n, d' n) β s ΓΛ’ t, | |
{ filter_upwards [hd] with n hn, | |
simp [hn, (hd' n).1] }, | |
{ apply tendsto.prod_mk_nhds hy _, | |
refine squeeze_zero_norm (Ξ»n, (hd' n).2.le) _, | |
exact tendsto_pow_at_top_nhds_0_of_lt_1 one_half_pos.le one_half_lt_one } | |
end | |
/-- The tangent cone of a product contains the tangent cone of its right factor. -/ | |
lemma subset_tangent_cone_prod_right {t : set F} {y : F} | |
(hs : x β closure s) : | |
linear_map.inr π E F '' (tangent_cone_at π t y) β tangent_cone_at π (s ΓΛ’ t) (x, y) := | |
begin | |
rintros _ β¨w, β¨c, d, hd, hc, hyβ©, rflβ©, | |
have : βn, βd', x + d' β s β§ β₯c n β’ d'β₯ < ((1:β)/2)^n, | |
{ assume n, | |
rcases mem_closure_iff_nhds.1 hs _ (eventually_nhds_norm_smul_sub_lt (c n) x | |
(pow_pos one_half_pos n)) with β¨z, hz, hzsβ©, | |
exact β¨z - x, by simpa using hzs, by simpa using hzβ© }, | |
choose d' hd' using this, | |
refine β¨c, Ξ»n, (d' n, d n), _, hc, _β©, | |
show βαΆ n in at_top, (x, y) + (d' n, d n) β s ΓΛ’ t, | |
{ filter_upwards [hd] with n hn, | |
simp [hn, (hd' n).1] }, | |
{ apply tendsto.prod_mk_nhds _ hy, | |
refine squeeze_zero_norm (Ξ»n, (hd' n).2.le) _, | |
exact tendsto_pow_at_top_nhds_0_of_lt_1 one_half_pos.le one_half_lt_one } | |
end | |
/-- The tangent cone of a product contains the tangent cone of each factor. -/ | |
lemma maps_to_tangent_cone_pi {ΞΉ : Type*} [decidable_eq ΞΉ] {E : ΞΉ β Type*} | |
[Ξ i, normed_add_comm_group (E i)] [Ξ i, normed_space π (E i)] | |
{s : Ξ i, set (E i)} {x : Ξ i, E i} {i : ΞΉ} (hi : β j β i, x j β closure (s j)) : | |
maps_to (linear_map.single i : E i ββ[π] Ξ j, E j) (tangent_cone_at π (s i) (x i)) | |
(tangent_cone_at π (set.pi univ s) x) := | |
begin | |
rintros w β¨c, d, hd, hc, hyβ©, | |
have : β n (j β i), β d', x j + d' β s j β§ β₯c n β’ d'β₯ < (1 / 2 : β) ^ n, | |
{ assume n j hj, | |
rcases mem_closure_iff_nhds.1 (hi j hj) _ (eventually_nhds_norm_smul_sub_lt (c n) (x j) | |
(pow_pos one_half_pos n)) with β¨z, hz, hzsβ©, | |
exact β¨z - x j, by simpa using hzs, by simpa using hzβ© }, | |
choose! d' hd's hcd', | |
refine β¨c, Ξ» n, function.update (d' n) i (d n), hd.mono (Ξ» n hn j hj', _), hc, | |
tendsto_pi_nhds.2 $ Ξ» j, _β©, | |
{ rcases em (j = i) with rfl|hj; simp * }, | |
{ rcases em (j = i) with rfl|hj, | |
{ simp [hy] }, | |
{ suffices : tendsto (Ξ» n, c n β’ d' n j) at_top (π 0), by simpa [hj], | |
refine squeeze_zero_norm (Ξ» n, (hcd' n j hj).le) _, | |
exact tendsto_pow_at_top_nhds_0_of_lt_1 one_half_pos.le one_half_lt_one } } | |
end | |
/-- If a subset of a real vector space contains an open segment, then the direction of this | |
segment belongs to the tangent cone at its endpoints. -/ | |
lemma mem_tangent_cone_of_open_segment_subset {s : set G} {x y : G} (h : open_segment β x y β s) : | |
y - x β tangent_cone_at β s x := | |
begin | |
let c := Ξ»n:β, (2:β)^(n+1), | |
let d := Ξ»n:β, (c n)β»ΒΉ β’ (y-x), | |
refine β¨c, d, filter.univ_mem' (Ξ»n, h _), _, _β©, | |
show x + d n β open_segment β x y, | |
{ rw open_segment_eq_image, | |
refine β¨(c n)β»ΒΉ, β¨_, _β©, _β©, | |
{ rw inv_pos, apply pow_pos, norm_num }, | |
{ apply inv_lt_one, apply one_lt_pow _ (nat.succ_ne_zero _), norm_num }, | |
{ simp only [d, sub_smul, smul_sub, one_smul], abel } }, | |
show filter.tendsto (Ξ» (n : β), β₯c nβ₯) filter.at_top filter.at_top, | |
{ have : (Ξ» (n : β), β₯c nβ₯) = c, | |
by { ext n, exact abs_of_nonneg (pow_nonneg (by norm_num) _) }, | |
rw this, | |
exact (tendsto_pow_at_top_at_top_of_one_lt (by norm_num)).comp (tendsto_add_at_top_nat 1) }, | |
show filter.tendsto (Ξ» (n : β), c n β’ d n) filter.at_top (π (y - x)), | |
{ have : (Ξ» (n : β), c n β’ d n) = (Ξ»n, y - x), | |
{ ext n, | |
simp only [d, smul_smul], | |
rw [mul_inv_cancel, one_smul], | |
exact pow_ne_zero _ (by norm_num) }, | |
rw this, | |
apply tendsto_const_nhds } | |
end | |
/-- If a subset of a real vector space contains a segment, then the direction of this | |
segment belongs to the tangent cone at its endpoints. -/ | |
lemma mem_tangent_cone_of_segment_subset {s : set G} {x y : G} (h : segment β x y β s) : | |
y - x β tangent_cone_at β s x := | |
mem_tangent_cone_of_open_segment_subset ((open_segment_subset_segment β x y).trans h) | |
end tangent_cone | |
section unique_diff | |
/-! | |
### Properties of `unique_diff_within_at` and `unique_diff_on` | |
This section is devoted to properties of the predicates | |
`unique_diff_within_at` and `unique_diff_on`. -/ | |
lemma unique_diff_on.unique_diff_within_at {s : set E} {x} (hs : unique_diff_on π s) (h : x β s) : | |
unique_diff_within_at π s x := | |
hs x h | |
lemma unique_diff_within_at_univ : unique_diff_within_at π univ x := | |
by { rw [unique_diff_within_at_iff, tangent_cone_univ], simp } | |
lemma unique_diff_on_univ : unique_diff_on π (univ : set E) := | |
Ξ»x hx, unique_diff_within_at_univ | |
lemma unique_diff_on_empty : unique_diff_on π (β : set E) := | |
Ξ» x hx, hx.elim | |
lemma unique_diff_within_at.mono_nhds (h : unique_diff_within_at π s x) | |
(st : π[s] x β€ π[t] x) : | |
unique_diff_within_at π t x := | |
begin | |
simp only [unique_diff_within_at_iff] at *, | |
rw [mem_closure_iff_nhds_within_ne_bot] at h β’, | |
exact β¨h.1.mono $ submodule.span_mono $ tangent_cone_mono_nhds st, | |
h.2.mono stβ© | |
end | |
lemma unique_diff_within_at.mono (h : unique_diff_within_at π s x) (st : s β t) : | |
unique_diff_within_at π t x := | |
h.mono_nhds $ nhds_within_mono _ st | |
lemma unique_diff_within_at_congr (st : π[s] x = π[t] x) : | |
unique_diff_within_at π s x β unique_diff_within_at π t x := | |
β¨Ξ» h, h.mono_nhds $ le_of_eq st, Ξ» h, h.mono_nhds $ le_of_eq st.symmβ© | |
lemma unique_diff_within_at_inter (ht : t β π x) : | |
unique_diff_within_at π (s β© t) x β unique_diff_within_at π s x := | |
unique_diff_within_at_congr $ (nhds_within_restrict' _ ht).symm | |
lemma unique_diff_within_at.inter (hs : unique_diff_within_at π s x) (ht : t β π x) : | |
unique_diff_within_at π (s β© t) x := | |
(unique_diff_within_at_inter ht).2 hs | |
lemma unique_diff_within_at_inter' (ht : t β π[s] x) : | |
unique_diff_within_at π (s β© t) x β unique_diff_within_at π s x := | |
unique_diff_within_at_congr $ (nhds_within_restrict'' _ ht).symm | |
lemma unique_diff_within_at.inter' (hs : unique_diff_within_at π s x) (ht : t β π[s] x) : | |
unique_diff_within_at π (s β© t) x := | |
(unique_diff_within_at_inter' ht).2 hs | |
lemma unique_diff_within_at_of_mem_nhds (h : s β π x) : unique_diff_within_at π s x := | |
by simpa only [univ_inter] using unique_diff_within_at_univ.inter h | |
lemma is_open.unique_diff_within_at (hs : is_open s) (xs : x β s) : unique_diff_within_at π s x := | |
unique_diff_within_at_of_mem_nhds (is_open.mem_nhds hs xs) | |
lemma unique_diff_on.inter (hs : unique_diff_on π s) (ht : is_open t) : unique_diff_on π (s β© t) := | |
Ξ»x hx, (hs x hx.1).inter (is_open.mem_nhds ht hx.2) | |
lemma is_open.unique_diff_on (hs : is_open s) : unique_diff_on π s := | |
Ξ»x hx, is_open.unique_diff_within_at hs hx | |
/-- The product of two sets of unique differentiability at points `x` and `y` has unique | |
differentiability at `(x, y)`. -/ | |
lemma unique_diff_within_at.prod {t : set F} {y : F} | |
(hs : unique_diff_within_at π s x) (ht : unique_diff_within_at π t y) : | |
unique_diff_within_at π (s ΓΛ’ t) (x, y) := | |
begin | |
rw [unique_diff_within_at_iff] at β’ hs ht, | |
rw [closure_prod_eq], | |
refine β¨_, hs.2, ht.2β©, | |
have : _ β€ submodule.span π (tangent_cone_at π (s ΓΛ’ t) (x, y)) := | |
submodule.span_mono (union_subset (subset_tangent_cone_prod_left ht.2) | |
(subset_tangent_cone_prod_right hs.2)), | |
rw [linear_map.span_inl_union_inr, set_like.le_def] at this, | |
exact (hs.1.prod ht.1).mono this | |
end | |
lemma unique_diff_within_at.univ_pi (ΞΉ : Type*) [fintype ΞΉ] (E : ΞΉ β Type*) | |
[Ξ i, normed_add_comm_group (E i)] [Ξ i, normed_space π (E i)] | |
(s : Ξ i, set (E i)) (x : Ξ i, E i) (h : β i, unique_diff_within_at π (s i) (x i)) : | |
unique_diff_within_at π (set.pi univ s) x := | |
begin | |
classical, | |
simp only [unique_diff_within_at_iff, closure_pi_set] at h β’, | |
refine β¨(dense_pi univ (Ξ» i _, (h i).1)).mono _, Ξ» i _, (h i).2β©, | |
norm_cast, | |
simp only [β submodule.supr_map_single, supr_le_iff, linear_map.map_span, submodule.span_le, | |
β maps_to'], | |
exact Ξ» i, (maps_to_tangent_cone_pi $ Ξ» j hj, (h j).2).mono subset.rfl submodule.subset_span | |
end | |
lemma unique_diff_within_at.pi (ΞΉ : Type*) [fintype ΞΉ] (E : ΞΉ β Type*) | |
[Ξ i, normed_add_comm_group (E i)] [Ξ i, normed_space π (E i)] | |
(s : Ξ i, set (E i)) (x : Ξ i, E i) (I : set ΞΉ) | |
(h : β i β I, unique_diff_within_at π (s i) (x i)) : | |
unique_diff_within_at π (set.pi I s) x := | |
begin | |
classical, | |
rw [β set.univ_pi_piecewise], | |
refine unique_diff_within_at.univ_pi _ _ _ _ (Ξ» i, _), | |
by_cases hi : i β I; simp [*, unique_diff_within_at_univ], | |
end | |
/-- The product of two sets of unique differentiability is a set of unique differentiability. -/ | |
lemma unique_diff_on.prod {t : set F} (hs : unique_diff_on π s) (ht : unique_diff_on π t) : | |
unique_diff_on π (s ΓΛ’ t) := | |
Ξ» β¨x, yβ© h, unique_diff_within_at.prod (hs x h.1) (ht y h.2) | |
/-- The finite product of a family of sets of unique differentiability is a set of unique | |
differentiability. -/ | |
lemma unique_diff_on.pi (ΞΉ : Type*) [fintype ΞΉ] (E : ΞΉ β Type*) | |
[Ξ i, normed_add_comm_group (E i)] [Ξ i, normed_space π (E i)] | |
(s : Ξ i, set (E i)) (I : set ΞΉ) (h : β i β I, unique_diff_on π (s i)) : | |
unique_diff_on π (set.pi I s) := | |
Ξ» x hx, unique_diff_within_at.pi _ _ _ _ _ $ Ξ» i hi, h i hi (x i) (hx i hi) | |
/-- The finite product of a family of sets of unique differentiability is a set of unique | |
differentiability. -/ | |
lemma unique_diff_on.univ_pi (ΞΉ : Type*) [fintype ΞΉ] (E : ΞΉ β Type*) | |
[Ξ i, normed_add_comm_group (E i)] [Ξ i, normed_space π (E i)] | |
(s : Ξ i, set (E i)) (h : β i, unique_diff_on π (s i)) : | |
unique_diff_on π (set.pi univ s) := | |
unique_diff_on.pi _ _ _ _ $ Ξ» i _, h i | |
/-- In a real vector space, a convex set with nonempty interior is a set of unique | |
differentiability at every point of its closure. -/ | |
theorem unique_diff_within_at_convex {s : set G} (conv : convex β s) (hs : (interior s).nonempty) | |
{x : G} (hx : x β closure s) : unique_diff_within_at β s x := | |
begin | |
rcases hs with β¨y, hyβ©, | |
suffices : y - x β interior (tangent_cone_at β s x), | |
{ refine β¨dense.of_closure _, hxβ©, | |
simp [(submodule.span β (tangent_cone_at β s x)).eq_top_of_nonempty_interior' | |
β¨y - x, interior_mono submodule.subset_span thisβ©] }, | |
rw [mem_interior_iff_mem_nhds], | |
replace hy : interior s β π y := is_open.mem_nhds is_open_interior hy, | |
apply mem_of_superset ((is_open_map_sub_right x).image_mem_nhds hy), | |
rintros _ β¨z, zs, rflβ©, | |
refine mem_tangent_cone_of_open_segment_subset (subset.trans _ interior_subset), | |
exact conv.open_segment_closure_interior_subset_interior hx zs, | |
end | |
/-- In a real vector space, a convex set with nonempty interior is a set of unique | |
differentiability. -/ | |
theorem unique_diff_on_convex {s : set G} (conv : convex β s) (hs : (interior s).nonempty) : | |
unique_diff_on β s := | |
Ξ» x xs, unique_diff_within_at_convex conv hs (subset_closure xs) | |
lemma unique_diff_on_Ici (a : β) : unique_diff_on β (Ici a) := | |
unique_diff_on_convex (convex_Ici a) $ by simp only [interior_Ici, nonempty_Ioi] | |
lemma unique_diff_on_Iic (a : β) : unique_diff_on β (Iic a) := | |
unique_diff_on_convex (convex_Iic a) $ by simp only [interior_Iic, nonempty_Iio] | |
lemma unique_diff_on_Ioi (a : β) : unique_diff_on β (Ioi a) := | |
is_open_Ioi.unique_diff_on | |
lemma unique_diff_on_Iio (a : β) : unique_diff_on β (Iio a) := | |
is_open_Iio.unique_diff_on | |
lemma unique_diff_on_Icc {a b : β} (hab : a < b) : unique_diff_on β (Icc a b) := | |
unique_diff_on_convex (convex_Icc a b) $ by simp only [interior_Icc, nonempty_Ioo, hab] | |
lemma unique_diff_on_Ico (a b : β) : unique_diff_on β (Ico a b) := | |
if hab : a < b | |
then unique_diff_on_convex (convex_Ico a b) $ by simp only [interior_Ico, nonempty_Ioo, hab] | |
else by simp only [Ico_eq_empty hab, unique_diff_on_empty] | |
lemma unique_diff_on_Ioc (a b : β) : unique_diff_on β (Ioc a b) := | |
if hab : a < b | |
then unique_diff_on_convex (convex_Ioc a b) $ by simp only [interior_Ioc, nonempty_Ioo, hab] | |
else by simp only [Ioc_eq_empty hab, unique_diff_on_empty] | |
lemma unique_diff_on_Ioo (a b : β) : unique_diff_on β (Ioo a b) := | |
is_open_Ioo.unique_diff_on | |
/-- The real interval `[0, 1]` is a set of unique differentiability. -/ | |
lemma unique_diff_on_Icc_zero_one : unique_diff_on β (Icc (0:β) 1) := | |
unique_diff_on_Icc zero_lt_one | |
lemma unique_diff_within_at_Ioi (a : β) : unique_diff_within_at β (Ioi a) a := | |
unique_diff_within_at_convex (convex_Ioi a) (by simp) (by simp) | |
lemma unique_diff_within_at_Iio (a : β) : unique_diff_within_at β (Iio a) a := | |
unique_diff_within_at_convex (convex_Iio a) (by simp) (by simp) | |
end unique_diff | |