Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
1.6 kB
/-
Copyright (c) 2019 Yury Kudriashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudriashov, YaΓ«l Dillies
-/
import analysis.convex.basic
import data.complex.module
/-!
# Convexity of half spaces in β„‚
The open and closed half-spaces in β„‚ given by an inequality on either the real or imaginary part
are all convex over ℝ.
-/
lemma convex_halfspace_re_lt (r : ℝ) : convex ℝ {c : β„‚ | c.re < r} :=
convex_halfspace_lt (is_linear_map.mk complex.add_re complex.smul_re) _
lemma convex_halfspace_re_le (r : ℝ) : convex ℝ {c : β„‚ | c.re ≀ r} :=
convex_halfspace_le (is_linear_map.mk complex.add_re complex.smul_re) _
lemma convex_halfspace_re_gt (r : ℝ) : convex ℝ {c : β„‚ | r < c.re } :=
convex_halfspace_gt (is_linear_map.mk complex.add_re complex.smul_re) _
lemma convex_halfspace_re_ge (r : ℝ) : convex ℝ {c : β„‚ | r ≀ c.re} :=
convex_halfspace_ge (is_linear_map.mk complex.add_re complex.smul_re) _
lemma convex_halfspace_im_lt (r : ℝ) : convex ℝ {c : β„‚ | c.im < r} :=
convex_halfspace_lt (is_linear_map.mk complex.add_im complex.smul_im) _
lemma convex_halfspace_im_le (r : ℝ) : convex ℝ {c : β„‚ | c.im ≀ r} :=
convex_halfspace_le (is_linear_map.mk complex.add_im complex.smul_im) _
lemma convex_halfspace_im_gt (r : ℝ) : convex ℝ {c : β„‚ | r < c.im} :=
convex_halfspace_gt (is_linear_map.mk complex.add_im complex.smul_im) _
lemma convex_halfspace_im_ge (r : ℝ) : convex ℝ {c : β„‚ | r ≀ c.im} :=
convex_halfspace_ge (is_linear_map.mk complex.add_im complex.smul_im) _