Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Yury Kudryashov All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yury Kudryashov, Frédéric Dupuis | |
-/ | |
import analysis.convex.hull | |
import analysis.inner_product_space.basic | |
/-! | |
# Convex cones | |
In a `𝕜`-module `E`, we define a convex cone as a set `s` such that `a • x + b • y ∈ s` whenever | |
`x, y ∈ s` and `a, b > 0`. We prove that convex cones form a `complete_lattice`, and define their | |
images (`convex_cone.map`) and preimages (`convex_cone.comap`) under linear maps. | |
We define pointed, blunt, flat and salient cones, and prove the correspondence between | |
convex cones and ordered modules. | |
We also define `convex.to_cone` to be the minimal cone that includes a given convex set. | |
We define `set.inner_dual_cone` to be the cone consisting of all points `y` such that for | |
all points `x` in a given set `0 ≤ ⟪ x, y ⟫`. | |
## Main statements | |
We prove two extension theorems: | |
* `riesz_extension`: | |
[M. Riesz extension theorem](https://en.wikipedia.org/wiki/M._Riesz_extension_theorem) says that | |
if `s` is a convex cone in a real vector space `E`, `p` is a submodule of `E` | |
such that `p + s = E`, and `f` is a linear function `p → ℝ` which is | |
nonnegative on `p ∩ s`, then there exists a globally defined linear function | |
`g : E → ℝ` that agrees with `f` on `p`, and is nonnegative on `s`. | |
* `exists_extension_of_le_sublinear`: | |
Hahn-Banach theorem: if `N : E → ℝ` is a sublinear map, `f` is a linear map | |
defined on a subspace of `E`, and `f x ≤ N x` for all `x` in the domain of `f`, | |
then `f` can be extended to the whole space to a linear map `g` such that `g x ≤ N x` | |
for all `x` | |
## Implementation notes | |
While `convex 𝕜` is a predicate on sets, `convex_cone 𝕜 E` is a bundled convex cone. | |
## References | |
* https://en.wikipedia.org/wiki/Convex_cone | |
-/ | |
open set linear_map | |
open_locale classical pointwise | |
variables {𝕜 E F G : Type*} | |
/-! ### Definition of `convex_cone` and basic properties -/ | |
section definitions | |
variables (𝕜 E) [ordered_semiring 𝕜] | |
/-- A convex cone is a subset `s` of a `𝕜`-module such that `a • x + b • y ∈ s` whenever `a, b > 0` | |
and `x, y ∈ s`. -/ | |
structure convex_cone [add_comm_monoid E] [has_smul 𝕜 E] := | |
(carrier : set E) | |
(smul_mem' : ∀ ⦃c : 𝕜⦄, 0 < c → ∀ ⦃x : E⦄, x ∈ carrier → c • x ∈ carrier) | |
(add_mem' : ∀ ⦃x⦄ (hx : x ∈ carrier) ⦃y⦄ (hy : y ∈ carrier), x + y ∈ carrier) | |
end definitions | |
variables {𝕜 E} | |
namespace convex_cone | |
section ordered_semiring | |
variables [ordered_semiring 𝕜] [add_comm_monoid E] | |
section has_smul | |
variables [has_smul 𝕜 E] (S T : convex_cone 𝕜 E) | |
instance : has_coe (convex_cone 𝕜 E) (set E) := ⟨convex_cone.carrier⟩ | |
instance : has_mem E (convex_cone 𝕜 E) := ⟨λ m S, m ∈ S.carrier⟩ | |
instance : has_le (convex_cone 𝕜 E) := ⟨λ S T, (S : set E) ⊆ T⟩ | |
instance : has_lt (convex_cone 𝕜 E) := ⟨λ S T, (S : set E) ⊂ T⟩ | |
@[simp, norm_cast] lemma mem_coe {x : E} : x ∈ (S : set E) ↔ x ∈ S := iff.rfl | |
@[simp] lemma coe_mk {s : set E} {h₁ h₂} : ↑(@mk 𝕜 _ _ _ _ s h₁ h₂) = s := rfl | |
@[simp] lemma mem_mk {s : set E} {h₁ h₂ x} : x ∈ @mk 𝕜 _ _ _ _ s h₁ h₂ ↔ x ∈ s := iff.rfl | |
/-- Two `convex_cone`s are equal if the underlying sets are equal. -/ | |
theorem ext' {S T : convex_cone 𝕜 E} (h : (S : set E) = T) : S = T := | |
by cases S; cases T; congr' | |
/-- Two `convex_cone`s are equal if and only if the underlying sets are equal. -/ | |
protected theorem ext'_iff {S T : convex_cone 𝕜 E} : (S : set E) = T ↔ S = T := | |
⟨ext', λ h, h ▸ rfl⟩ | |
/-- Two `convex_cone`s are equal if they have the same elements. -/ | |
@[ext] theorem ext {S T : convex_cone 𝕜 E} (h : ∀ x, x ∈ S ↔ x ∈ T) : S = T := ext' $ set.ext h | |
lemma smul_mem {c : 𝕜} {x : E} (hc : 0 < c) (hx : x ∈ S) : c • x ∈ S := S.smul_mem' hc hx | |
lemma add_mem ⦃x⦄ (hx : x ∈ S) ⦃y⦄ (hy : y ∈ S) : x + y ∈ S := S.add_mem' hx hy | |
instance : has_inf (convex_cone 𝕜 E) := | |
⟨λ S T, ⟨S ∩ T, λ c hc x hx, ⟨S.smul_mem hc hx.1, T.smul_mem hc hx.2⟩, | |
λ x hx y hy, ⟨S.add_mem hx.1 hy.1, T.add_mem hx.2 hy.2⟩⟩⟩ | |
@[simp] lemma coe_inf : ((S ⊓ T : convex_cone 𝕜 E) : set E) = ↑S ∩ ↑T := rfl | |
lemma mem_inf {x} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T := iff.rfl | |
instance : has_Inf (convex_cone 𝕜 E) := | |
⟨λ S, ⟨⋂ s ∈ S, ↑s, | |
λ c hc x hx, mem_bInter $ λ s hs, s.smul_mem hc $ mem_Inter₂.1 hx s hs, | |
λ x hx y hy, mem_bInter $ λ s hs, s.add_mem (mem_Inter₂.1 hx s hs) (mem_Inter₂.1 hy s hs)⟩⟩ | |
@[simp] lemma coe_Inf (S : set (convex_cone 𝕜 E)) : ↑(Inf S) = ⋂ s ∈ S, (s : set E) := rfl | |
lemma mem_Inf {x : E} {S : set (convex_cone 𝕜 E)} : x ∈ Inf S ↔ ∀ s ∈ S, x ∈ s := mem_Inter₂ | |
@[simp] lemma coe_infi {ι : Sort*} (f : ι → convex_cone 𝕜 E) : ↑(infi f) = ⋂ i, (f i : set E) := | |
by simp [infi] | |
lemma mem_infi {ι : Sort*} {x : E} {f : ι → convex_cone 𝕜 E} : x ∈ infi f ↔ ∀ i, x ∈ f i := | |
mem_Inter₂.trans $ by simp | |
variables (𝕜) | |
instance : has_bot (convex_cone 𝕜 E) := ⟨⟨∅, λ c hc x, false.elim, λ x, false.elim⟩⟩ | |
lemma mem_bot (x : E) : x ∈ (⊥ : convex_cone 𝕜 E) = false := rfl | |
@[simp] lemma coe_bot : ↑(⊥ : convex_cone 𝕜 E) = (∅ : set E) := rfl | |
instance : has_top (convex_cone 𝕜 E) := ⟨⟨univ, λ c hc x hx, mem_univ _, λ x hx y hy, mem_univ _⟩⟩ | |
lemma mem_top (x : E) : x ∈ (⊤ : convex_cone 𝕜 E) := mem_univ x | |
@[simp] lemma coe_top : ↑(⊤ : convex_cone 𝕜 E) = (univ : set E) := rfl | |
instance : complete_lattice (convex_cone 𝕜 E) := | |
{ le := (≤), | |
lt := (<), | |
bot := (⊥), | |
bot_le := λ S x, false.elim, | |
top := (⊤), | |
le_top := λ S x hx, mem_top 𝕜 x, | |
inf := (⊓), | |
Inf := has_Inf.Inf, | |
sup := λ a b, Inf {x | a ≤ x ∧ b ≤ x}, | |
Sup := λ s, Inf {T | ∀ S ∈ s, S ≤ T}, | |
le_sup_left := λ a b, λ x hx, mem_Inf.2 $ λ s hs, hs.1 hx, | |
le_sup_right := λ a b, λ x hx, mem_Inf.2 $ λ s hs, hs.2 hx, | |
sup_le := λ a b c ha hb x hx, mem_Inf.1 hx c ⟨ha, hb⟩, | |
le_inf := λ a b c ha hb x hx, ⟨ha hx, hb hx⟩, | |
inf_le_left := λ a b x, and.left, | |
inf_le_right := λ a b x, and.right, | |
le_Sup := λ s p hs x hx, mem_Inf.2 $ λ t ht, ht p hs hx, | |
Sup_le := λ s p hs x hx, mem_Inf.1 hx p hs, | |
le_Inf := λ s a ha x hx, mem_Inf.2 $ λ t ht, ha t ht hx, | |
Inf_le := λ s a ha x hx, mem_Inf.1 hx _ ha, | |
.. partial_order.lift (coe : convex_cone 𝕜 E → set E) (λ a b, ext') } | |
instance : inhabited (convex_cone 𝕜 E) := ⟨⊥⟩ | |
end has_smul | |
section module | |
variables [module 𝕜 E] (S : convex_cone 𝕜 E) | |
protected lemma convex : convex 𝕜 (S : set E) := | |
convex_iff_forall_pos.2 $ λ x y hx hy a b ha hb hab, | |
S.add_mem (S.smul_mem ha hx) (S.smul_mem hb hy) | |
end module | |
end ordered_semiring | |
section linear_ordered_field | |
variables [linear_ordered_field 𝕜] | |
section add_comm_monoid | |
variables [add_comm_monoid E] [add_comm_monoid F] [add_comm_monoid G] | |
section mul_action | |
variables [mul_action 𝕜 E] (S : convex_cone 𝕜 E) | |
lemma smul_mem_iff {c : 𝕜} (hc : 0 < c) {x : E} : | |
c • x ∈ S ↔ x ∈ S := | |
⟨λ h, inv_smul_smul₀ hc.ne' x ▸ S.smul_mem (inv_pos.2 hc) h, S.smul_mem hc⟩ | |
end mul_action | |
section module | |
variables [module 𝕜 E] [module 𝕜 F] [module 𝕜 G] | |
/-- The image of a convex cone under a `𝕜`-linear map is a convex cone. -/ | |
def map (f : E →ₗ[𝕜] F) (S : convex_cone 𝕜 E) : convex_cone 𝕜 F := | |
{ carrier := f '' S, | |
smul_mem' := λ c hc y ⟨x, hx, hy⟩, hy ▸ f.map_smul c x ▸ mem_image_of_mem f (S.smul_mem hc hx), | |
add_mem' := λ y₁ ⟨x₁, hx₁, hy₁⟩ y₂ ⟨x₂, hx₂, hy₂⟩, hy₁ ▸ hy₂ ▸ f.map_add x₁ x₂ ▸ | |
mem_image_of_mem f (S.add_mem hx₁ hx₂) } | |
lemma map_map (g : F →ₗ[𝕜] G) (f : E →ₗ[𝕜] F) (S : convex_cone 𝕜 E) : | |
(S.map f).map g = S.map (g.comp f) := | |
ext' $ image_image g f S | |
@[simp] lemma map_id (S : convex_cone 𝕜 E) : S.map linear_map.id = S := ext' $ image_id _ | |
/-- The preimage of a convex cone under a `𝕜`-linear map is a convex cone. -/ | |
def comap (f : E →ₗ[𝕜] F) (S : convex_cone 𝕜 F) : convex_cone 𝕜 E := | |
{ carrier := f ⁻¹' S, | |
smul_mem' := λ c hc x hx, by { rw [mem_preimage, f.map_smul c], exact S.smul_mem hc hx }, | |
add_mem' := λ x hx y hy, by { rw [mem_preimage, f.map_add], exact S.add_mem hx hy } } | |
@[simp] lemma comap_id (S : convex_cone 𝕜 E) : S.comap linear_map.id = S := ext' preimage_id | |
lemma comap_comap (g : F →ₗ[𝕜] G) (f : E →ₗ[𝕜] F) (S : convex_cone 𝕜 G) : | |
(S.comap g).comap f = S.comap (g.comp f) := | |
ext' $ preimage_comp.symm | |
@[simp] lemma mem_comap {f : E →ₗ[𝕜] F} {S : convex_cone 𝕜 F} {x : E} : x ∈ S.comap f ↔ f x ∈ S := | |
iff.rfl | |
end module | |
end add_comm_monoid | |
section ordered_add_comm_group | |
variables [ordered_add_comm_group E] [module 𝕜 E] | |
/-- | |
Constructs an ordered module given an `ordered_add_comm_group`, a cone, and a proof that | |
the order relation is the one defined by the cone. | |
-/ | |
lemma to_ordered_smul (S : convex_cone 𝕜 E) (h : ∀ x y : E, x ≤ y ↔ y - x ∈ S) : | |
ordered_smul 𝕜 E := | |
ordered_smul.mk' | |
begin | |
intros x y z xy hz, | |
rw [h (z • x) (z • y), ←smul_sub z y x], | |
exact smul_mem S hz ((h x y).mp xy.le), | |
end | |
end ordered_add_comm_group | |
end linear_ordered_field | |
/-! ### Convex cones with extra properties -/ | |
section ordered_semiring | |
variables [ordered_semiring 𝕜] | |
section add_comm_monoid | |
variables [add_comm_monoid E] [has_smul 𝕜 E] (S : convex_cone 𝕜 E) | |
/-- A convex cone is pointed if it includes `0`. -/ | |
def pointed (S : convex_cone 𝕜 E) : Prop := (0 : E) ∈ S | |
/-- A convex cone is blunt if it doesn't include `0`. -/ | |
def blunt (S : convex_cone 𝕜 E) : Prop := (0 : E) ∉ S | |
lemma pointed_iff_not_blunt (S : convex_cone 𝕜 E) : S.pointed ↔ ¬S.blunt := | |
⟨λ h₁ h₂, h₂ h₁, not_not.mp⟩ | |
lemma blunt_iff_not_pointed (S : convex_cone 𝕜 E) : S.blunt ↔ ¬S.pointed := | |
by rw [pointed_iff_not_blunt, not_not] | |
end add_comm_monoid | |
section add_comm_group | |
variables [add_comm_group E] [has_smul 𝕜 E] (S : convex_cone 𝕜 E) | |
/-- A convex cone is flat if it contains some nonzero vector `x` and its opposite `-x`. -/ | |
def flat : Prop := ∃ x ∈ S, x ≠ (0 : E) ∧ -x ∈ S | |
/-- A convex cone is salient if it doesn't include `x` and `-x` for any nonzero `x`. -/ | |
def salient : Prop := ∀ x ∈ S, x ≠ (0 : E) → -x ∉ S | |
lemma salient_iff_not_flat (S : convex_cone 𝕜 E) : S.salient ↔ ¬S.flat := | |
begin | |
split, | |
{ rintros h₁ ⟨x, xs, H₁, H₂⟩, | |
exact h₁ x xs H₁ H₂ }, | |
{ intro h, | |
unfold flat at h, | |
push_neg at h, | |
exact h } | |
end | |
/-- A flat cone is always pointed (contains `0`). -/ | |
lemma flat.pointed {S : convex_cone 𝕜 E} (hS : S.flat) : S.pointed := | |
begin | |
obtain ⟨x, hx, _, hxneg⟩ := hS, | |
rw [pointed, ←add_neg_self x], | |
exact add_mem S hx hxneg, | |
end | |
/-- A blunt cone (one not containing `0`) is always salient. -/ | |
lemma blunt.salient {S : convex_cone 𝕜 E} : S.blunt → S.salient := | |
begin | |
rw [salient_iff_not_flat, blunt_iff_not_pointed], | |
exact mt flat.pointed, | |
end | |
/-- A pointed convex cone defines a preorder. -/ | |
def to_preorder (h₁ : S.pointed) : preorder E := | |
{ le := λ x y, y - x ∈ S, | |
le_refl := λ x, by change x - x ∈ S; rw [sub_self x]; exact h₁, | |
le_trans := λ x y z xy zy, by simpa using add_mem S zy xy } | |
/-- A pointed and salient cone defines a partial order. -/ | |
def to_partial_order (h₁ : S.pointed) (h₂ : S.salient) : partial_order E := | |
{ le_antisymm := | |
begin | |
intros a b ab ba, | |
by_contradiction h, | |
have h' : b - a ≠ 0 := λ h'', h (eq_of_sub_eq_zero h'').symm, | |
have H := h₂ (b-a) ab h', | |
rw neg_sub b a at H, | |
exact H ba, | |
end, | |
..to_preorder S h₁ } | |
/-- A pointed and salient cone defines an `ordered_add_comm_group`. -/ | |
def to_ordered_add_comm_group (h₁ : S.pointed) (h₂ : S.salient) : | |
ordered_add_comm_group E := | |
{ add_le_add_left := | |
begin | |
intros a b hab c, | |
change c + b - (c + a) ∈ S, | |
rw add_sub_add_left_eq_sub, | |
exact hab, | |
end, | |
..to_partial_order S h₁ h₂, | |
..show add_comm_group E, by apply_instance } | |
end add_comm_group | |
end ordered_semiring | |
/-! ### Positive cone of an ordered module -/ | |
section positive_cone | |
variables (𝕜 E) [ordered_semiring 𝕜] [ordered_add_comm_group E] [module 𝕜 E] [ordered_smul 𝕜 E] | |
/-- | |
The positive cone is the convex cone formed by the set of nonnegative elements in an ordered | |
module. | |
-/ | |
def positive_cone : convex_cone 𝕜 E := | |
{ carrier := {x | 0 ≤ x}, | |
smul_mem' := | |
begin | |
rintro c hc x (hx : _ ≤ _), | |
rw ←smul_zero c, | |
exact smul_le_smul_of_nonneg hx hc.le, | |
end, | |
add_mem' := λ x (hx : _ ≤ _) y (hy : _ ≤ _), add_nonneg hx hy } | |
/-- The positive cone of an ordered module is always salient. -/ | |
lemma salient_positive_cone : salient (positive_cone 𝕜 E) := | |
λ x xs hx hx', lt_irrefl (0 : E) | |
(calc | |
0 < x : lt_of_le_of_ne xs hx.symm | |
... ≤ x + (-x) : le_add_of_nonneg_right hx' | |
... = 0 : add_neg_self x) | |
/-- The positive cone of an ordered module is always pointed. -/ | |
lemma pointed_positive_cone : pointed (positive_cone 𝕜 E) := le_refl 0 | |
end positive_cone | |
end convex_cone | |
/-! ### Cone over a convex set -/ | |
section cone_from_convex | |
variables [linear_ordered_field 𝕜] [ordered_add_comm_group E] [module 𝕜 E] | |
namespace convex | |
/-- The set of vectors proportional to those in a convex set forms a convex cone. -/ | |
def to_cone (s : set E) (hs : convex 𝕜 s) : convex_cone 𝕜 E := | |
begin | |
apply convex_cone.mk (⋃ (c : 𝕜) (H : 0 < c), c • s); | |
simp only [mem_Union, mem_smul_set], | |
{ rintros c c_pos _ ⟨c', c'_pos, x, hx, rfl⟩, | |
exact ⟨c * c', mul_pos c_pos c'_pos, x, hx, (smul_smul _ _ _).symm⟩ }, | |
{ rintros _ ⟨cx, cx_pos, x, hx, rfl⟩ _ ⟨cy, cy_pos, y, hy, rfl⟩, | |
have : 0 < cx + cy, from add_pos cx_pos cy_pos, | |
refine ⟨_, this, _, convex_iff_div.1 hs hx hy cx_pos.le cy_pos.le this, _⟩, | |
simp only [smul_add, smul_smul, mul_div_assoc', mul_div_cancel_left _ this.ne'] } | |
end | |
variables {s : set E} (hs : convex 𝕜 s) {x : E} | |
lemma mem_to_cone : x ∈ hs.to_cone s ↔ ∃ (c : 𝕜), 0 < c ∧ ∃ y ∈ s, c • y = x := | |
by simp only [to_cone, convex_cone.mem_mk, mem_Union, mem_smul_set, eq_comm, exists_prop] | |
lemma mem_to_cone' : x ∈ hs.to_cone s ↔ ∃ (c : 𝕜), 0 < c ∧ c • x ∈ s := | |
begin | |
refine hs.mem_to_cone.trans ⟨_, _⟩, | |
{ rintros ⟨c, hc, y, hy, rfl⟩, | |
exact ⟨c⁻¹, inv_pos.2 hc, by rwa [smul_smul, inv_mul_cancel hc.ne', one_smul]⟩ }, | |
{ rintros ⟨c, hc, hcx⟩, | |
exact ⟨c⁻¹, inv_pos.2 hc, _, hcx, by rw [smul_smul, inv_mul_cancel hc.ne', one_smul]⟩ } | |
end | |
lemma subset_to_cone : s ⊆ hs.to_cone s := | |
λ x hx, hs.mem_to_cone'.2 ⟨1, zero_lt_one, by rwa one_smul⟩ | |
/-- `hs.to_cone s` is the least cone that includes `s`. -/ | |
lemma to_cone_is_least : is_least { t : convex_cone 𝕜 E | s ⊆ t } (hs.to_cone s) := | |
begin | |
refine ⟨hs.subset_to_cone, λ t ht x hx, _⟩, | |
rcases hs.mem_to_cone.1 hx with ⟨c, hc, y, hy, rfl⟩, | |
exact t.smul_mem hc (ht hy) | |
end | |
lemma to_cone_eq_Inf : hs.to_cone s = Inf { t : convex_cone 𝕜 E | s ⊆ t } := | |
hs.to_cone_is_least.is_glb.Inf_eq.symm | |
end convex | |
lemma convex_hull_to_cone_is_least (s : set E) : | |
is_least {t : convex_cone 𝕜 E | s ⊆ t} ((convex_convex_hull 𝕜 s).to_cone _) := | |
begin | |
convert (convex_convex_hull 𝕜 s).to_cone_is_least, | |
ext t, | |
exact ⟨λ h, convex_hull_min h t.convex, (subset_convex_hull 𝕜 s).trans⟩, | |
end | |
lemma convex_hull_to_cone_eq_Inf (s : set E) : | |
(convex_convex_hull 𝕜 s).to_cone _ = Inf {t : convex_cone 𝕜 E | s ⊆ t} := | |
(convex_hull_to_cone_is_least s).is_glb.Inf_eq.symm | |
end cone_from_convex | |
/-! | |
### M. Riesz extension theorem | |
Given a convex cone `s` in a vector space `E`, a submodule `p`, and a linear `f : p → ℝ`, assume | |
that `f` is nonnegative on `p ∩ s` and `p + s = E`. Then there exists a globally defined linear | |
function `g : E → ℝ` that agrees with `f` on `p`, and is nonnegative on `s`. | |
We prove this theorem using Zorn's lemma. `riesz_extension.step` is the main part of the proof. | |
It says that if the domain `p` of `f` is not the whole space, then `f` can be extended to a larger | |
subspace `p ⊔ span ℝ {y}` without breaking the non-negativity condition. | |
In `riesz_extension.exists_top` we use Zorn's lemma to prove that we can extend `f` | |
to a linear map `g` on `⊤ : submodule E`. Mathematically this is the same as a linear map on `E` | |
but in Lean `⊤ : submodule E` is isomorphic but is not equal to `E`. In `riesz_extension` | |
we use this isomorphism to prove the theorem. | |
-/ | |
variables [add_comm_group E] [module ℝ E] | |
namespace riesz_extension | |
open submodule | |
variables (s : convex_cone ℝ E) (f : linear_pmap ℝ E ℝ) | |
/-- Induction step in M. Riesz extension theorem. Given a convex cone `s` in a vector space `E`, | |
a partially defined linear map `f : f.domain → ℝ`, assume that `f` is nonnegative on `f.domain ∩ p` | |
and `p + s = E`. If `f` is not defined on the whole `E`, then we can extend it to a larger | |
submodule without breaking the non-negativity condition. -/ | |
lemma step (nonneg : ∀ x : f.domain, (x : E) ∈ s → 0 ≤ f x) | |
(dense : ∀ y, ∃ x : f.domain, (x : E) + y ∈ s) (hdom : f.domain ≠ ⊤) : | |
∃ g, f < g ∧ ∀ x : g.domain, (x : E) ∈ s → 0 ≤ g x := | |
begin | |
obtain ⟨y, -, hy⟩ : ∃ (y : E) (h : y ∈ ⊤), y ∉ f.domain, | |
{ exact @set_like.exists_of_lt (submodule ℝ E) _ _ _ _ (lt_top_iff_ne_top.2 hdom) }, | |
obtain ⟨c, le_c, c_le⟩ : | |
∃ c, (∀ x : f.domain, -(x:E) - y ∈ s → f x ≤ c) ∧ (∀ x : f.domain, (x:E) + y ∈ s → c ≤ f x), | |
{ set Sp := f '' {x : f.domain | (x:E) + y ∈ s}, | |
set Sn := f '' {x : f.domain | -(x:E) - y ∈ s}, | |
suffices : (upper_bounds Sn ∩ lower_bounds Sp).nonempty, | |
by simpa only [set.nonempty, upper_bounds, lower_bounds, ball_image_iff] using this, | |
refine exists_between_of_forall_le (nonempty.image f _) (nonempty.image f (dense y)) _, | |
{ rcases (dense (-y)) with ⟨x, hx⟩, | |
rw [← neg_neg x, add_subgroup_class.coe_neg, ← sub_eq_add_neg] at hx, | |
exact ⟨_, hx⟩ }, | |
rintros a ⟨xn, hxn, rfl⟩ b ⟨xp, hxp, rfl⟩, | |
have := s.add_mem hxp hxn, | |
rw [add_assoc, add_sub_cancel'_right, ← sub_eq_add_neg, ← add_subgroup_class.coe_sub] at this, | |
replace := nonneg _ this, | |
rwa [f.map_sub, sub_nonneg] at this }, | |
have hy' : y ≠ 0, from λ hy₀, hy (hy₀.symm ▸ zero_mem _), | |
refine ⟨f.sup_span_singleton y (-c) hy, _, _⟩, | |
{ refine lt_iff_le_not_le.2 ⟨f.left_le_sup _ _, λ H, _⟩, | |
replace H := linear_pmap.domain_mono.monotone H, | |
rw [linear_pmap.domain_sup_span_singleton, sup_le_iff, span_le, singleton_subset_iff] at H, | |
exact hy H.2 }, | |
{ rintros ⟨z, hz⟩ hzs, | |
rcases mem_sup.1 hz with ⟨x, hx, y', hy', rfl⟩, | |
rcases mem_span_singleton.1 hy' with ⟨r, rfl⟩, | |
simp only [subtype.coe_mk] at hzs, | |
erw [linear_pmap.sup_span_singleton_apply_mk _ _ _ _ _ hx, smul_neg, | |
← sub_eq_add_neg, sub_nonneg], | |
rcases lt_trichotomy r 0 with hr|hr|hr, | |
{ have : -(r⁻¹ • x) - y ∈ s, | |
by rwa [← s.smul_mem_iff (neg_pos.2 hr), smul_sub, smul_neg, neg_smul, neg_neg, smul_smul, | |
mul_inv_cancel hr.ne, one_smul, sub_eq_add_neg, neg_smul, neg_neg], | |
replace := le_c (r⁻¹ • ⟨x, hx⟩) this, | |
rwa [← mul_le_mul_left (neg_pos.2 hr), neg_mul, neg_mul, | |
neg_le_neg_iff, f.map_smul, smul_eq_mul, ← mul_assoc, mul_inv_cancel hr.ne, | |
one_mul] at this }, | |
{ subst r, | |
simp only [zero_smul, add_zero] at hzs ⊢, | |
apply nonneg, | |
exact hzs }, | |
{ have : r⁻¹ • x + y ∈ s, | |
by rwa [← s.smul_mem_iff hr, smul_add, smul_smul, mul_inv_cancel hr.ne', one_smul], | |
replace := c_le (r⁻¹ • ⟨x, hx⟩) this, | |
rwa [← mul_le_mul_left hr, f.map_smul, smul_eq_mul, ← mul_assoc, | |
mul_inv_cancel hr.ne', one_mul] at this } } | |
end | |
theorem exists_top (p : linear_pmap ℝ E ℝ) | |
(hp_nonneg : ∀ x : p.domain, (x : E) ∈ s → 0 ≤ p x) | |
(hp_dense : ∀ y, ∃ x : p.domain, (x : E) + y ∈ s) : | |
∃ q ≥ p, q.domain = ⊤ ∧ ∀ x : q.domain, (x : E) ∈ s → 0 ≤ q x := | |
begin | |
replace hp_nonneg : p ∈ { p | _ }, by { rw mem_set_of_eq, exact hp_nonneg }, | |
obtain ⟨q, hqs, hpq, hq⟩ := zorn_nonempty_partial_order₀ _ _ _ hp_nonneg, | |
{ refine ⟨q, hpq, _, hqs⟩, | |
contrapose! hq, | |
rcases step s q hqs _ hq with ⟨r, hqr, hr⟩, | |
{ exact ⟨r, hr, hqr.le, hqr.ne'⟩ }, | |
{ exact λ y, let ⟨x, hx⟩ := hp_dense y in ⟨of_le hpq.left x, hx⟩ } }, | |
{ intros c hcs c_chain y hy, | |
clear hp_nonneg hp_dense p, | |
have cne : c.nonempty := ⟨y, hy⟩, | |
refine ⟨linear_pmap.Sup c c_chain.directed_on, _, λ _, linear_pmap.le_Sup c_chain.directed_on⟩, | |
rintros ⟨x, hx⟩ hxs, | |
have hdir : directed_on (≤) (linear_pmap.domain '' c), | |
from directed_on_image.2 (c_chain.directed_on.mono linear_pmap.domain_mono.monotone), | |
rcases (mem_Sup_of_directed (cne.image _) hdir).1 hx with ⟨_, ⟨f, hfc, rfl⟩, hfx⟩, | |
have : f ≤ linear_pmap.Sup c c_chain.directed_on, from linear_pmap.le_Sup _ hfc, | |
convert ← hcs hfc ⟨x, hfx⟩ hxs, | |
apply this.2, refl } | |
end | |
end riesz_extension | |
/-- M. **Riesz extension theorem**: given a convex cone `s` in a vector space `E`, a submodule `p`, | |
and a linear `f : p → ℝ`, assume that `f` is nonnegative on `p ∩ s` and `p + s = E`. Then | |
there exists a globally defined linear function `g : E → ℝ` that agrees with `f` on `p`, | |
and is nonnegative on `s`. -/ | |
theorem riesz_extension (s : convex_cone ℝ E) (f : linear_pmap ℝ E ℝ) | |
(nonneg : ∀ x : f.domain, (x : E) ∈ s → 0 ≤ f x) (dense : ∀ y, ∃ x : f.domain, (x : E) + y ∈ s) : | |
∃ g : E →ₗ[ℝ] ℝ, (∀ x : f.domain, g x = f x) ∧ (∀ x ∈ s, 0 ≤ g x) := | |
begin | |
rcases riesz_extension.exists_top s f nonneg dense with ⟨⟨g_dom, g⟩, ⟨hpg, hfg⟩, htop, hgs⟩, | |
clear hpg, | |
refine ⟨g ∘ₗ ↑(linear_equiv.of_top _ htop).symm, _, _⟩; | |
simp only [comp_apply, linear_equiv.coe_coe, linear_equiv.of_top_symm_apply], | |
{ exact λ x, (hfg (submodule.coe_mk _ _).symm).symm }, | |
{ exact λ x hx, hgs ⟨x, _⟩ hx } | |
end | |
/-- **Hahn-Banach theorem**: if `N : E → ℝ` is a sublinear map, `f` is a linear map | |
defined on a subspace of `E`, and `f x ≤ N x` for all `x` in the domain of `f`, | |
then `f` can be extended to the whole space to a linear map `g` such that `g x ≤ N x` | |
for all `x`. -/ | |
theorem exists_extension_of_le_sublinear (f : linear_pmap ℝ E ℝ) (N : E → ℝ) | |
(N_hom : ∀ (c : ℝ), 0 < c → ∀ x, N (c • x) = c * N x) | |
(N_add : ∀ x y, N (x + y) ≤ N x + N y) | |
(hf : ∀ x : f.domain, f x ≤ N x) : | |
∃ g : E →ₗ[ℝ] ℝ, (∀ x : f.domain, g x = f x) ∧ (∀ x, g x ≤ N x) := | |
begin | |
let s : convex_cone ℝ (E × ℝ) := | |
{ carrier := {p : E × ℝ | N p.1 ≤ p.2 }, | |
smul_mem' := λ c hc p hp, | |
calc N (c • p.1) = c * N p.1 : N_hom c hc p.1 | |
... ≤ c * p.2 : mul_le_mul_of_nonneg_left hp hc.le, | |
add_mem' := λ x hx y hy, (N_add _ _).trans (add_le_add hx hy) }, | |
obtain ⟨g, g_eq, g_nonneg⟩ := | |
riesz_extension s ((-f).coprod (linear_map.id.to_pmap ⊤)) _ _; | |
try { simp only [linear_pmap.coprod_apply, to_pmap_apply, id_apply, | |
linear_pmap.neg_apply, ← sub_eq_neg_add, sub_nonneg, subtype.coe_mk] at * }, | |
replace g_eq : ∀ (x : f.domain) (y : ℝ), g (x, y) = y - f x, | |
{ intros x y, | |
simpa only [subtype.coe_mk, subtype.coe_eta] using g_eq ⟨(x, y), ⟨x.2, trivial⟩⟩ }, | |
{ refine ⟨-g.comp (inl ℝ E ℝ), _, _⟩; simp only [neg_apply, inl_apply, comp_apply], | |
{ intro x, simp [g_eq x 0] }, | |
{ intro x, | |
have A : (x, N x) = (x, 0) + (0, N x), by simp, | |
have B := g_nonneg ⟨x, N x⟩ (le_refl (N x)), | |
rw [A, map_add, ← neg_le_iff_add_nonneg'] at B, | |
have C := g_eq 0 (N x), | |
simp only [submodule.coe_zero, f.map_zero, sub_zero] at C, | |
rwa ← C } }, | |
{ exact λ x hx, le_trans (hf _) hx }, | |
{ rintros ⟨x, y⟩, | |
refine ⟨⟨(0, N x - y), ⟨f.domain.zero_mem, trivial⟩⟩, _⟩, | |
simp only [convex_cone.mem_mk, mem_set_of_eq, subtype.coe_mk, prod.fst_add, prod.snd_add, | |
zero_add, sub_add_cancel] } | |
end | |
/-! ### The dual cone -/ | |
section dual | |
variables {H : Type*} [inner_product_space ℝ H] (s t : set H) | |
open_locale real_inner_product_space | |
/-- The dual cone is the cone consisting of all points `y` such that for | |
all points `x` in a given set `0 ≤ ⟪ x, y ⟫`. -/ | |
def set.inner_dual_cone (s : set H) : convex_cone ℝ H := | |
{ carrier := { y | ∀ x ∈ s, 0 ≤ ⟪ x, y ⟫ }, | |
smul_mem' := λ c hc y hy x hx, | |
begin | |
rw real_inner_smul_right, | |
exact mul_nonneg hc.le (hy x hx) | |
end, | |
add_mem' := λ u hu v hv x hx, | |
begin | |
rw inner_add_right, | |
exact add_nonneg (hu x hx) (hv x hx) | |
end } | |
lemma mem_inner_dual_cone (y : H) (s : set H) : | |
y ∈ s.inner_dual_cone ↔ ∀ x ∈ s, 0 ≤ ⟪ x, y ⟫ := by refl | |
@[simp] lemma inner_dual_cone_empty : (∅ : set H).inner_dual_cone = ⊤ := | |
convex_cone.ext' (eq_univ_of_forall | |
(λ x y hy, false.elim (set.not_mem_empty _ hy))) | |
lemma inner_dual_cone_le_inner_dual_cone (h : t ⊆ s) : | |
s.inner_dual_cone ≤ t.inner_dual_cone := | |
λ y hy x hx, hy x (h hx) | |
lemma pointed_inner_dual_cone : s.inner_dual_cone.pointed := | |
λ x hx, by rw inner_zero_right | |
/-- The dual cone of `s` equals the intersection of dual cones of the points in `s`. -/ | |
lemma inner_dual_cone_eq_Inter_inner_dual_cone_singleton : | |
(s.inner_dual_cone : set H) = ⋂ i : s, (({i} : set H).inner_dual_cone : set H) := | |
begin | |
simp_rw [set.Inter_coe_set, subtype.coe_mk], | |
refine set.ext (λ x, iff.intro (λ hx, _) _), | |
{ refine set.mem_Inter.2 (λ i, set.mem_Inter.2 (λ hi _, _)), | |
rintro ⟨ ⟩, | |
exact hx i hi }, | |
{ simp only [set.mem_Inter, convex_cone.mem_coe, mem_inner_dual_cone, | |
set.mem_singleton_iff, forall_eq, imp_self] } | |
end | |
end dual | |