Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Frédéric Dupuis. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Frédéric Dupuis | |
-/ | |
import analysis.convex.function | |
import topology.algebra.affine | |
import topology.local_extr | |
import topology.metric_space.basic | |
/-! | |
# Minima and maxima of convex functions | |
We show that if a function `f : E → β` is convex, then a local minimum is also | |
a global minimum, and likewise for concave functions. | |
-/ | |
variables {E β : Type*} [add_comm_group E] [topological_space E] | |
[module ℝ E] [topological_add_group E] [has_continuous_smul ℝ E] | |
[ordered_add_comm_group β] [module ℝ β] [ordered_smul ℝ β] | |
{s : set E} | |
open set filter function | |
open_locale classical topological_space | |
/-- | |
Helper lemma for the more general case: `is_min_on.of_is_local_min_on_of_convex_on`. | |
-/ | |
lemma is_min_on.of_is_local_min_on_of_convex_on_Icc {f : ℝ → β} {a b : ℝ} (a_lt_b : a < b) | |
(h_local_min : is_local_min_on f (Icc a b) a) (h_conv : convex_on ℝ (Icc a b) f) : | |
is_min_on f (Icc a b) a := | |
begin | |
rintro c hc, dsimp only [mem_set_of_eq], | |
rw [is_local_min_on, nhds_within_Icc_eq_nhds_within_Ici a_lt_b] at h_local_min, | |
rcases hc.1.eq_or_lt with rfl|a_lt_c, { exact le_rfl }, | |
have H₁ : ∀ᶠ y in 𝓝[>] a, f a ≤ f y, | |
from h_local_min.filter_mono (nhds_within_mono _ Ioi_subset_Ici_self), | |
have H₂ : ∀ᶠ y in 𝓝[>] a, y ∈ Ioc a c, | |
from Ioc_mem_nhds_within_Ioi (left_mem_Ico.2 a_lt_c), | |
rcases (H₁.and H₂).exists with ⟨y, hfy, hy_ac⟩, | |
rcases (convex.mem_Ioc a_lt_c).mp hy_ac with ⟨ya, yc, ya₀, yc₀, yac, rfl⟩, | |
suffices : ya • f a + yc • f a ≤ ya • f a + yc • f c, | |
from (smul_le_smul_iff_of_pos yc₀).1 (le_of_add_le_add_left this), | |
calc ya • f a + yc • f a = f a : by rw [← add_smul, yac, one_smul] | |
... ≤ f (ya * a + yc * c) : hfy | |
... ≤ ya • f a + yc • f c : h_conv.2 (left_mem_Icc.2 a_lt_b.le) hc ya₀ yc₀.le yac | |
end | |
/-- | |
A local minimum of a convex function is a global minimum, restricted to a set `s`. | |
-/ | |
lemma is_min_on.of_is_local_min_on_of_convex_on {f : E → β} {a : E} | |
(a_in_s : a ∈ s) (h_localmin : is_local_min_on f s a) (h_conv : convex_on ℝ s f) : | |
is_min_on f s a := | |
begin | |
intros x x_in_s, | |
let g : ℝ →ᵃ[ℝ] E := affine_map.line_map a x, | |
have hg0 : g 0 = a := affine_map.line_map_apply_zero a x, | |
have hg1 : g 1 = x := affine_map.line_map_apply_one a x, | |
have hgc : continuous g, from affine_map.line_map_continuous, | |
have h_maps : maps_to g (Icc 0 1) s, | |
{ simpa only [maps_to', ← segment_eq_image_line_map] | |
using h_conv.1.segment_subset a_in_s x_in_s }, | |
have fg_local_min_on : is_local_min_on (f ∘ g) (Icc 0 1) 0, | |
{ rw ← hg0 at h_localmin, | |
exact h_localmin.comp_continuous_on h_maps hgc.continuous_on (left_mem_Icc.2 zero_le_one) }, | |
have fg_min_on : is_min_on (f ∘ g) (Icc 0 1 : set ℝ) 0, | |
{ refine is_min_on.of_is_local_min_on_of_convex_on_Icc one_pos fg_local_min_on _, | |
exact (h_conv.comp_affine_map g).subset h_maps (convex_Icc 0 1) }, | |
simpa only [hg0, hg1, comp_app, mem_set_of_eq] using fg_min_on (right_mem_Icc.2 zero_le_one) | |
end | |
/-- A local maximum of a concave function is a global maximum, restricted to a set `s`. -/ | |
lemma is_max_on.of_is_local_max_on_of_concave_on {f : E → β} {a : E} | |
(a_in_s : a ∈ s) (h_localmax: is_local_max_on f s a) (h_conc : concave_on ℝ s f) : | |
is_max_on f s a := | |
@is_min_on.of_is_local_min_on_of_convex_on _ βᵒᵈ _ _ _ _ _ _ _ _ s f a a_in_s h_localmax h_conc | |
/-- A local minimum of a convex function is a global minimum. -/ | |
lemma is_min_on.of_is_local_min_of_convex_univ {f : E → β} {a : E} | |
(h_local_min : is_local_min f a) (h_conv : convex_on ℝ univ f) : ∀ x, f a ≤ f x := | |
λ x, (is_min_on.of_is_local_min_on_of_convex_on (mem_univ a) | |
(h_local_min.on univ) h_conv) (mem_univ x) | |
/-- A local maximum of a concave function is a global maximum. -/ | |
lemma is_max_on.of_is_local_max_of_convex_univ {f : E → β} {a : E} | |
(h_local_max : is_local_max f a) (h_conc : concave_on ℝ univ f) : ∀ x, f x ≤ f a := | |
@is_min_on.of_is_local_min_of_convex_univ _ βᵒᵈ _ _ _ _ _ _ _ _ f a h_local_max h_conc | |