Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Yaël Dillies, Bhavik Mehta. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yaël Dillies, Bhavik Mehta | |
-/ | |
import analysis.convex.star | |
import analysis.normed_space.pointwise | |
import analysis.seminorm | |
import tactic.congrm | |
/-! | |
# The Minkowksi functional | |
This file defines the Minkowski functional, aka gauge. | |
The Minkowski functional of a set `s` is the function which associates each point to how much you | |
need to scale `s` for `x` to be inside it. When `s` is symmetric, convex and absorbent, its gauge is | |
a seminorm. Reciprocally, any seminorm arises as the gauge of some set, namely its unit ball. This | |
induces the equivalence of seminorms and locally convex topological vector spaces. | |
## Main declarations | |
For a real vector space, | |
* `gauge`: Aka Minkowksi functional. `gauge s x` is the least (actually, an infimum) `r` such | |
that `x ∈ r • s`. | |
* `gauge_seminorm`: The Minkowski functional as a seminorm, when `s` is symmetric, convex and | |
absorbent. | |
## References | |
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] | |
## Tags | |
Minkowski functional, gauge | |
-/ | |
open normed_field set | |
open_locale pointwise | |
noncomputable theory | |
variables {E : Type*} | |
section add_comm_group | |
variables [add_comm_group E] [module ℝ E] | |
/--The Minkowski functional. Given a set `s` in a real vector space, `gauge s` is the functional | |
which sends `x : E` to the smallest `r : ℝ` such that `x` is in `s` scaled by `r`. -/ | |
def gauge (s : set E) (x : E) : ℝ := Inf {r : ℝ | 0 < r ∧ x ∈ r • s} | |
variables {s t : set E} {a : ℝ} {x : E} | |
lemma gauge_def : gauge s x = Inf {r ∈ set.Ioi 0 | x ∈ r • s} := rfl | |
/-- An alternative definition of the gauge using scalar multiplication on the element rather than on | |
the set. -/ | |
lemma gauge_def' : gauge s x = Inf {r ∈ set.Ioi 0 | r⁻¹ • x ∈ s} := | |
begin | |
congrm Inf (λ r, _), | |
exact and_congr_right (λ hr, mem_smul_set_iff_inv_smul_mem₀ hr.ne' _ _), | |
end | |
private lemma gauge_set_bdd_below : bdd_below {r : ℝ | 0 < r ∧ x ∈ r • s} := ⟨0, λ r hr, hr.1.le⟩ | |
/-- If the given subset is `absorbent` then the set we take an infimum over in `gauge` is nonempty, | |
which is useful for proving many properties about the gauge. -/ | |
lemma absorbent.gauge_set_nonempty (absorbs : absorbent ℝ s) : | |
{r : ℝ | 0 < r ∧ x ∈ r • s}.nonempty := | |
let ⟨r, hr₁, hr₂⟩ := absorbs x in ⟨r, hr₁, hr₂ r (real.norm_of_nonneg hr₁.le).ge⟩ | |
lemma gauge_mono (hs : absorbent ℝ s) (h : s ⊆ t) : gauge t ≤ gauge s := | |
λ x, cInf_le_cInf gauge_set_bdd_below hs.gauge_set_nonempty $ λ r hr, ⟨hr.1, smul_set_mono h hr.2⟩ | |
lemma exists_lt_of_gauge_lt (absorbs : absorbent ℝ s) (h : gauge s x < a) : | |
∃ b, 0 < b ∧ b < a ∧ x ∈ b • s := | |
begin | |
obtain ⟨b, ⟨hb, hx⟩, hba⟩ := exists_lt_of_cInf_lt absorbs.gauge_set_nonempty h, | |
exact ⟨b, hb, hba, hx⟩, | |
end | |
/-- The gauge evaluated at `0` is always zero (mathematically this requires `0` to be in the set `s` | |
but, the real infimum of the empty set in Lean being defined as `0`, it holds unconditionally). -/ | |
@[simp] lemma gauge_zero : gauge s 0 = 0 := | |
begin | |
rw gauge_def', | |
by_cases (0 : E) ∈ s, | |
{ simp only [smul_zero, sep_true, h, cInf_Ioi] }, | |
{ simp only [smul_zero, sep_false, h, real.Inf_empty] } | |
end | |
@[simp] lemma gauge_zero' : gauge (0 : set E) = 0 := | |
begin | |
ext, | |
rw gauge_def', | |
obtain rfl | hx := eq_or_ne x 0, | |
{ simp only [cInf_Ioi, mem_zero, pi.zero_apply, eq_self_iff_true, sep_true, smul_zero] }, | |
{ simp only [mem_zero, pi.zero_apply, inv_eq_zero, smul_eq_zero], | |
convert real.Inf_empty, | |
exact eq_empty_iff_forall_not_mem.2 (λ r hr, hr.2.elim (ne_of_gt hr.1) hx) } | |
end | |
@[simp] lemma gauge_empty : gauge (∅ : set E) = 0 := | |
by { ext, simp only [gauge_def', real.Inf_empty, mem_empty_eq, pi.zero_apply, sep_false] } | |
lemma gauge_of_subset_zero (h : s ⊆ 0) : gauge s = 0 := | |
by { obtain rfl | rfl := subset_singleton_iff_eq.1 h, exacts [gauge_empty, gauge_zero'] } | |
/-- The gauge is always nonnegative. -/ | |
lemma gauge_nonneg (x : E) : 0 ≤ gauge s x := real.Inf_nonneg _ $ λ x hx, hx.1.le | |
lemma gauge_neg (symmetric : ∀ x ∈ s, -x ∈ s) (x : E) : gauge s (-x) = gauge s x := | |
begin | |
have : ∀ x, -x ∈ s ↔ x ∈ s := λ x, ⟨λ h, by simpa using symmetric _ h, symmetric x⟩, | |
rw [gauge_def', gauge_def'], | |
simp_rw [smul_neg, this], | |
end | |
lemma gauge_le_of_mem (ha : 0 ≤ a) (hx : x ∈ a • s) : gauge s x ≤ a := | |
begin | |
obtain rfl | ha' := ha.eq_or_lt, | |
{ rw [mem_singleton_iff.1 (zero_smul_set_subset _ hx), gauge_zero] }, | |
{ exact cInf_le gauge_set_bdd_below ⟨ha', hx⟩ } | |
end | |
lemma gauge_le_eq (hs₁ : convex ℝ s) (hs₀ : (0 : E) ∈ s) (hs₂ : absorbent ℝ s) (ha : 0 ≤ a) : | |
{x | gauge s x ≤ a} = ⋂ (r : ℝ) (H : a < r), r • s := | |
begin | |
ext, | |
simp_rw [set.mem_Inter, set.mem_set_of_eq], | |
refine ⟨λ h r hr, _, λ h, le_of_forall_pos_lt_add (λ ε hε, _)⟩, | |
{ have hr' := ha.trans_lt hr, | |
rw mem_smul_set_iff_inv_smul_mem₀ hr'.ne', | |
obtain ⟨δ, δ_pos, hδr, hδ⟩ := exists_lt_of_gauge_lt hs₂ (h.trans_lt hr), | |
suffices : (r⁻¹ * δ) • δ⁻¹ • x ∈ s, | |
{ rwa [smul_smul, mul_inv_cancel_right₀ δ_pos.ne'] at this }, | |
rw mem_smul_set_iff_inv_smul_mem₀ δ_pos.ne' at hδ, | |
refine hs₁.smul_mem_of_zero_mem hs₀ hδ | |
⟨mul_nonneg (inv_nonneg.2 hr'.le) δ_pos.le, _⟩, | |
rw [inv_mul_le_iff hr', mul_one], | |
exact hδr.le }, | |
{ have hε' := (lt_add_iff_pos_right a).2 (half_pos hε), | |
exact (gauge_le_of_mem (ha.trans hε'.le) $ h _ hε').trans_lt | |
(add_lt_add_left (half_lt_self hε) _) } | |
end | |
lemma gauge_lt_eq' (absorbs : absorbent ℝ s) (a : ℝ) : | |
{x | gauge s x < a} = ⋃ (r : ℝ) (H : 0 < r) (H : r < a), r • s := | |
begin | |
ext, | |
simp_rw [mem_set_of_eq, mem_Union, exists_prop], | |
exact ⟨exists_lt_of_gauge_lt absorbs, | |
λ ⟨r, hr₀, hr₁, hx⟩, (gauge_le_of_mem hr₀.le hx).trans_lt hr₁⟩, | |
end | |
lemma gauge_lt_eq (absorbs : absorbent ℝ s) (a : ℝ) : | |
{x | gauge s x < a} = ⋃ (r ∈ set.Ioo 0 (a : ℝ)), r • s := | |
begin | |
ext, | |
simp_rw [mem_set_of_eq, mem_Union, exists_prop, mem_Ioo, and_assoc], | |
exact ⟨exists_lt_of_gauge_lt absorbs, | |
λ ⟨r, hr₀, hr₁, hx⟩, (gauge_le_of_mem hr₀.le hx).trans_lt hr₁⟩, | |
end | |
lemma gauge_lt_one_subset_self (hs : convex ℝ s) (h₀ : (0 : E) ∈ s) (absorbs : absorbent ℝ s) : | |
{x | gauge s x < 1} ⊆ s := | |
begin | |
rw gauge_lt_eq absorbs, | |
refine set.Union₂_subset (λ r hr _, _), | |
rintro ⟨y, hy, rfl⟩, | |
exact hs.smul_mem_of_zero_mem h₀ hy (Ioo_subset_Icc_self hr), | |
end | |
lemma gauge_le_one_of_mem {x : E} (hx : x ∈ s) : gauge s x ≤ 1 := | |
gauge_le_of_mem zero_le_one $ by rwa one_smul | |
lemma self_subset_gauge_le_one : s ⊆ {x | gauge s x ≤ 1} := λ x, gauge_le_one_of_mem | |
lemma convex.gauge_le (hs : convex ℝ s) (h₀ : (0 : E) ∈ s) (absorbs : absorbent ℝ s) (a : ℝ) : | |
convex ℝ {x | gauge s x ≤ a} := | |
begin | |
by_cases ha : 0 ≤ a, | |
{ rw gauge_le_eq hs h₀ absorbs ha, | |
exact convex_Inter (λ i, convex_Inter (λ hi, hs.smul _)) }, | |
{ convert convex_empty, | |
exact eq_empty_iff_forall_not_mem.2 (λ x hx, ha $ (gauge_nonneg _).trans hx) } | |
end | |
lemma balanced.star_convex (hs : balanced ℝ s) : star_convex ℝ 0 s := | |
star_convex_zero_iff.2 $ λ x hx a ha₀ ha₁, | |
hs _ (by rwa real.norm_of_nonneg ha₀) (smul_mem_smul_set hx) | |
lemma le_gauge_of_not_mem (hs₀ : star_convex ℝ 0 s) (hs₂ : absorbs ℝ s {x}) (hx : x ∉ a • s) : | |
a ≤ gauge s x := | |
begin | |
rw star_convex_zero_iff at hs₀, | |
obtain ⟨r, hr, h⟩ := hs₂, | |
refine le_cInf ⟨r, hr, singleton_subset_iff.1 $ h _ (real.norm_of_nonneg hr.le).ge⟩ _, | |
rintro b ⟨hb, x, hx', rfl⟩, | |
refine not_lt.1 (λ hba, hx _), | |
have ha := hb.trans hba, | |
refine ⟨(a⁻¹ * b) • x, hs₀ hx' (mul_nonneg (inv_nonneg.2 ha.le) hb.le) _, _⟩, | |
{ rw ←div_eq_inv_mul, | |
exact div_le_one_of_le hba.le ha.le }, | |
{ rw [←mul_smul, mul_inv_cancel_left₀ ha.ne'] } | |
end | |
lemma one_le_gauge_of_not_mem (hs₁ : star_convex ℝ 0 s) (hs₂ : absorbs ℝ s {x}) (hx : x ∉ s) : | |
1 ≤ gauge s x := | |
le_gauge_of_not_mem hs₁ hs₂ $ by rwa one_smul | |
section linear_ordered_field | |
variables {α : Type*} [linear_ordered_field α] [mul_action_with_zero α ℝ] [ordered_smul α ℝ] | |
lemma gauge_smul_of_nonneg [mul_action_with_zero α E] [is_scalar_tower α ℝ (set E)] {s : set E} | |
{a : α} (ha : 0 ≤ a) (x : E) : | |
gauge s (a • x) = a • gauge s x := | |
begin | |
obtain rfl | ha' := ha.eq_or_lt, | |
{ rw [zero_smul, gauge_zero, zero_smul] }, | |
rw [gauge_def', gauge_def', ←real.Inf_smul_of_nonneg ha], | |
congr' 1, | |
ext r, | |
simp_rw [set.mem_smul_set, set.mem_sep_eq], | |
split, | |
{ rintro ⟨hr, hx⟩, | |
simp_rw mem_Ioi at ⊢ hr, | |
rw ←mem_smul_set_iff_inv_smul_mem₀ hr.ne' at hx, | |
have := smul_pos (inv_pos.2 ha') hr, | |
refine ⟨a⁻¹ • r, ⟨this, _⟩, smul_inv_smul₀ ha'.ne' _⟩, | |
rwa [←mem_smul_set_iff_inv_smul_mem₀ this.ne', smul_assoc, | |
mem_smul_set_iff_inv_smul_mem₀ (inv_ne_zero ha'.ne'), inv_inv] }, | |
{ rintro ⟨r, ⟨hr, hx⟩, rfl⟩, | |
rw mem_Ioi at ⊢ hr, | |
rw ←mem_smul_set_iff_inv_smul_mem₀ hr.ne' at hx, | |
have := smul_pos ha' hr, | |
refine ⟨this, _⟩, | |
rw [←mem_smul_set_iff_inv_smul_mem₀ this.ne', smul_assoc], | |
exact smul_mem_smul_set hx } | |
end | |
/-- In textbooks, this is the homogeneity of the Minkowksi functional. -/ | |
lemma gauge_smul [module α E] [is_scalar_tower α ℝ (set E)] {s : set E} | |
(symmetric : ∀ x ∈ s, -x ∈ s) (r : α) (x : E) : | |
gauge s (r • x) = abs r • gauge s x := | |
begin | |
rw ←gauge_smul_of_nonneg (abs_nonneg r), | |
obtain h | h := abs_choice r, | |
{ rw h }, | |
{ rw [h, neg_smul, gauge_neg symmetric] }, | |
{ apply_instance } | |
end | |
lemma gauge_smul_left_of_nonneg [mul_action_with_zero α E] [smul_comm_class α ℝ ℝ] | |
[is_scalar_tower α ℝ ℝ] [is_scalar_tower α ℝ E] {s : set E} {a : α} (ha : 0 ≤ a) : | |
gauge (a • s) = a⁻¹ • gauge s := | |
begin | |
obtain rfl | ha' := ha.eq_or_lt, | |
{ rw [inv_zero, zero_smul, gauge_of_subset_zero (zero_smul_set_subset _)] }, | |
ext, | |
rw [gauge_def', pi.smul_apply, gauge_def', ←real.Inf_smul_of_nonneg (inv_nonneg.2 ha)], | |
congr' 1, | |
ext r, | |
simp_rw [set.mem_smul_set, set.mem_sep_eq], | |
split, | |
{ rintro ⟨hr, y, hy, h⟩, | |
simp_rw [mem_Ioi] at ⊢ hr, | |
refine ⟨a • r, ⟨smul_pos ha' hr, _⟩, inv_smul_smul₀ ha'.ne' _⟩, | |
rwa [smul_inv₀, smul_assoc, ←h, inv_smul_smul₀ ha'.ne'] }, | |
{ rintro ⟨r, ⟨hr, hx⟩, rfl⟩, | |
rw mem_Ioi at ⊢ hr, | |
have := smul_pos ha' hr, | |
refine ⟨smul_pos (inv_pos.2 ha') hr, r⁻¹ • x, hx, _⟩, | |
rw [smul_inv₀, smul_assoc, inv_inv] } | |
end | |
lemma gauge_smul_left [module α E] [smul_comm_class α ℝ ℝ] [is_scalar_tower α ℝ ℝ] | |
[is_scalar_tower α ℝ E] {s : set E} (symmetric : ∀ x ∈ s, -x ∈ s) (a : α) : | |
gauge (a • s) = |a|⁻¹ • gauge s := | |
begin | |
rw ←gauge_smul_left_of_nonneg (abs_nonneg a), | |
obtain h | h := abs_choice a, | |
{ rw h }, | |
{ rw [h, set.neg_smul_set, ←set.smul_set_neg], | |
congr, | |
ext y, | |
refine ⟨symmetric _, λ hy, _⟩, | |
rw ←neg_neg y, | |
exact symmetric _ hy }, | |
{ apply_instance } | |
end | |
end linear_ordered_field | |
section topological_space | |
variables [topological_space E] [has_continuous_smul ℝ E] | |
lemma interior_subset_gauge_lt_one (s : set E) : interior s ⊆ {x | gauge s x < 1} := | |
begin | |
intros x hx, | |
let f : ℝ → E := λ t, t • x, | |
have hf : continuous f, | |
{ continuity }, | |
let s' := f ⁻¹' (interior s), | |
have hs' : is_open s' := hf.is_open_preimage _ is_open_interior, | |
have one_mem : (1 : ℝ) ∈ s', | |
{ simpa only [s', f, set.mem_preimage, one_smul] }, | |
obtain ⟨ε, hε₀, hε⟩ := (metric.nhds_basis_closed_ball.1 _).1 | |
(is_open_iff_mem_nhds.1 hs' 1 one_mem), | |
rw real.closed_ball_eq_Icc at hε, | |
have hε₁ : 0 < 1 + ε := hε₀.trans (lt_one_add ε), | |
have : (1 + ε)⁻¹ < 1, | |
{ rw inv_lt_one_iff, | |
right, | |
linarith }, | |
refine (gauge_le_of_mem (inv_nonneg.2 hε₁.le) _).trans_lt this, | |
rw mem_inv_smul_set_iff₀ hε₁.ne', | |
exact interior_subset | |
(hε ⟨(sub_le_self _ hε₀.le).trans ((le_add_iff_nonneg_right _).2 hε₀.le), le_rfl⟩), | |
end | |
lemma gauge_lt_one_eq_self_of_open (hs₁ : convex ℝ s) (hs₀ : (0 : E) ∈ s) (hs₂ : is_open s) : | |
{x | gauge s x < 1} = s := | |
begin | |
refine (gauge_lt_one_subset_self hs₁ ‹_› $ absorbent_nhds_zero $ hs₂.mem_nhds hs₀).antisymm _, | |
convert interior_subset_gauge_lt_one s, | |
exact hs₂.interior_eq.symm, | |
end | |
lemma gauge_lt_one_of_mem_of_open (hs₁ : convex ℝ s) (hs₀ : (0 : E) ∈ s) (hs₂ : is_open s) | |
{x : E} (hx : x ∈ s) : | |
gauge s x < 1 := | |
by rwa ←gauge_lt_one_eq_self_of_open hs₁ hs₀ hs₂ at hx | |
lemma gauge_lt_of_mem_smul (x : E) (ε : ℝ) (hε : 0 < ε) (hs₀ : (0 : E) ∈ s) | |
(hs₁ : convex ℝ s) (hs₂ : is_open s) (hx : x ∈ ε • s) : | |
gauge s x < ε := | |
begin | |
have : ε⁻¹ • x ∈ s, | |
{ rwa ←mem_smul_set_iff_inv_smul_mem₀ hε.ne' }, | |
have h_gauge_lt := gauge_lt_one_of_mem_of_open hs₁ hs₀ hs₂ this, | |
rwa [gauge_smul_of_nonneg (inv_nonneg.2 hε.le), smul_eq_mul, inv_mul_lt_iff hε, mul_one] | |
at h_gauge_lt, | |
apply_instance | |
end | |
end topological_space | |
lemma gauge_add_le (hs : convex ℝ s) (absorbs : absorbent ℝ s) (x y : E) : | |
gauge s (x + y) ≤ gauge s x + gauge s y := | |
begin | |
refine le_of_forall_pos_lt_add (λ ε hε, _), | |
obtain ⟨a, ha, ha', hx⟩ := exists_lt_of_gauge_lt absorbs | |
(lt_add_of_pos_right (gauge s x) (half_pos hε)), | |
obtain ⟨b, hb, hb', hy⟩ := exists_lt_of_gauge_lt absorbs | |
(lt_add_of_pos_right (gauge s y) (half_pos hε)), | |
rw mem_smul_set_iff_inv_smul_mem₀ ha.ne' at hx, | |
rw mem_smul_set_iff_inv_smul_mem₀ hb.ne' at hy, | |
suffices : gauge s (x + y) ≤ a + b, | |
{ linarith }, | |
have hab : 0 < a + b := add_pos ha hb, | |
apply gauge_le_of_mem hab.le, | |
have := convex_iff_div.1 hs hx hy ha.le hb.le hab, | |
rwa [smul_smul, smul_smul, ←mul_div_right_comm, ←mul_div_right_comm, mul_inv_cancel ha.ne', | |
mul_inv_cancel hb.ne', ←smul_add, one_div, ←mem_smul_set_iff_inv_smul_mem₀ hab.ne'] at this, | |
end | |
/-- `gauge s` as a seminorm when `s` is symmetric, convex and absorbent. -/ | |
@[simps] def gauge_seminorm (hs₀ : ∀ x ∈ s, -x ∈ s) (hs₁ : convex ℝ s) (hs₂ : absorbent ℝ s) : | |
seminorm ℝ E := | |
seminorm.of (gauge s) (gauge_add_le hs₁ hs₂) | |
(λ r x, by rw [gauge_smul hs₀, real.norm_eq_abs, smul_eq_mul]; apply_instance) | |
section gauge_seminorm | |
variables {hs₀ : ∀ x ∈ s, -x ∈ s} {hs₁ : convex ℝ s} {hs₂ : absorbent ℝ s} | |
section topological_space | |
variables [topological_space E] [has_continuous_smul ℝ E] | |
lemma gauge_seminorm_lt_one_of_open (hs : is_open s) {x : E} (hx : x ∈ s) : | |
gauge_seminorm hs₀ hs₁ hs₂ x < 1 := | |
gauge_lt_one_of_mem_of_open hs₁ hs₂.zero_mem hs hx | |
end topological_space | |
end gauge_seminorm | |
/-- Any seminorm arises as the gauge of its unit ball. -/ | |
@[simp] protected lemma seminorm.gauge_ball (p : seminorm ℝ E) : gauge (p.ball 0 1) = p := | |
begin | |
ext, | |
obtain hp | hp := {r : ℝ | 0 < r ∧ x ∈ r • p.ball 0 1}.eq_empty_or_nonempty, | |
{ rw [gauge, hp, real.Inf_empty], | |
by_contra, | |
have hpx : 0 < p x := (p.nonneg x).lt_of_ne h, | |
have hpx₂ : 0 < 2 * p x := mul_pos zero_lt_two hpx, | |
refine hp.subset ⟨hpx₂, (2 * p x)⁻¹ • x, _, smul_inv_smul₀ hpx₂.ne' _⟩, | |
rw [p.mem_ball_zero, p.smul, real.norm_eq_abs, abs_of_pos (inv_pos.2 hpx₂), inv_mul_lt_iff hpx₂, | |
mul_one], | |
exact lt_mul_of_one_lt_left hpx one_lt_two }, | |
refine is_glb.cInf_eq ⟨λ r, _, λ r hr, le_of_forall_pos_le_add $ λ ε hε, _⟩ hp, | |
{ rintro ⟨hr, y, hy, rfl⟩, | |
rw p.mem_ball_zero at hy, | |
rw [p.smul, real.norm_eq_abs, abs_of_pos hr], | |
exact mul_le_of_le_one_right hr.le hy.le }, | |
{ have hpε : 0 < p x + ε := add_pos_of_nonneg_of_pos (p.nonneg _) hε, | |
refine hr ⟨hpε, (p x + ε)⁻¹ • x, _, smul_inv_smul₀ hpε.ne' _⟩, | |
rw [p.mem_ball_zero, p.smul, real.norm_eq_abs, abs_of_pos (inv_pos.2 hpε), inv_mul_lt_iff hpε, | |
mul_one], | |
exact lt_add_of_pos_right _ hε } | |
end | |
lemma seminorm.gauge_seminorm_ball (p : seminorm ℝ E) : | |
gauge_seminorm (λ x, p.symmetric_ball_zero 1) (p.convex_ball 0 1) | |
(p.absorbent_ball_zero zero_lt_one) = p := fun_like.coe_injective p.gauge_ball | |
end add_comm_group | |
section norm | |
variables [seminormed_add_comm_group E] [normed_space ℝ E] {s : set E} {r : ℝ} {x : E} | |
lemma gauge_unit_ball (x : E) : gauge (metric.ball (0 : E) 1) x = ∥x∥ := | |
begin | |
obtain rfl | hx := eq_or_ne x 0, | |
{ rw [norm_zero, gauge_zero] }, | |
refine (le_of_forall_pos_le_add $ λ ε hε, _).antisymm _, | |
{ have := add_pos_of_nonneg_of_pos (norm_nonneg x) hε, | |
refine gauge_le_of_mem this.le _, | |
rw [smul_ball this.ne', smul_zero, real.norm_of_nonneg this.le, mul_one, mem_ball_zero_iff], | |
exact lt_add_of_pos_right _ hε }, | |
refine le_gauge_of_not_mem balanced_ball_zero.star_convex | |
(absorbent_ball_zero zero_lt_one).absorbs (λ h, _), | |
obtain hx' | hx' := eq_or_ne (∥x∥) 0, | |
{ rw hx' at h, | |
exact hx (zero_smul_set_subset _ h) }, | |
{ rw [mem_smul_set_iff_inv_smul_mem₀ hx', mem_ball_zero_iff, norm_smul, norm_inv, norm_norm, | |
inv_mul_cancel hx'] at h, | |
exact lt_irrefl _ h } | |
end | |
lemma gauge_ball (hr : 0 < r) (x : E) : gauge (metric.ball (0 : E) r) x = ∥x∥ / r := | |
begin | |
rw [←smul_unit_ball_of_pos hr, gauge_smul_left, pi.smul_apply, gauge_unit_ball, smul_eq_mul, | |
abs_of_nonneg hr.le, div_eq_inv_mul], | |
simp_rw [mem_ball_zero_iff, norm_neg], | |
exact λ _, id, | |
end | |
lemma mul_gauge_le_norm (hs : metric.ball (0 : E) r ⊆ s) : r * gauge s x ≤ ∥x∥ := | |
begin | |
obtain hr | hr := le_or_lt r 0, | |
{ exact (mul_nonpos_of_nonpos_of_nonneg hr $ gauge_nonneg _).trans (norm_nonneg _) }, | |
rw [mul_comm, ←le_div_iff hr, ←gauge_ball hr], | |
exact gauge_mono (absorbent_ball_zero hr) hs x, | |
end | |
end norm | |