Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Yury G. Kudryashov. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yury G. Kudryashov | |
-/ | |
import analysis.convex.function | |
import analysis.convex.strict_convex_space | |
import measure_theory.function.ae_eq_of_integral | |
import measure_theory.integral.average | |
/-! | |
# Jensen's inequality for integrals | |
In this file we prove several forms of Jensen's inequality for integrals. | |
- for convex sets: `convex.average_mem`, `convex.set_average_mem`, `convex.integral_mem`; | |
- for convex functions: `convex.on.average_mem_epigraph`, `convex_on.map_average_le`, | |
`convex_on.set_average_mem_epigraph`, `convex_on.map_set_average_le`, `convex_on.map_integral_le`; | |
- for strictly convex sets: `strict_convex.ae_eq_const_or_average_mem_interior`; | |
- for a closed ball in a strictly convex normed space: | |
`ae_eq_const_or_norm_integral_lt_of_norm_le_const`; | |
- for strictly convex functions: `strict_convex_on.ae_eq_const_or_map_average_lt`. | |
## TODO | |
- Use a typeclass for strict convexity of a closed ball. | |
## Tags | |
convex, integral, center mass, average value, Jensen's inequality | |
-/ | |
open measure_theory measure_theory.measure metric set filter topological_space function | |
open_locale topological_space big_operators ennreal convex | |
variables {α E F : Type*} {m0 : measurable_space α} | |
[normed_add_comm_group E] [normed_space ℝ E] [complete_space E] | |
[normed_add_comm_group F] [normed_space ℝ F] [complete_space F] | |
{μ : measure α} {s : set E} {t : set α} {f : α → E} {g : E → ℝ} {C : ℝ} | |
/-! | |
### Non-strict Jensen's inequality | |
-/ | |
/-- If `μ` is a probability measure on `α`, `s` is a convex closed set in `E`, and `f` is an | |
integrable function sending `μ`-a.e. points to `s`, then the expected value of `f` belongs to `s`: | |
`∫ x, f x ∂μ ∈ s`. See also `convex.sum_mem` for a finite sum version of this lemma. -/ | |
lemma convex.integral_mem [is_probability_measure μ] (hs : convex ℝ s) (hsc : is_closed s) | |
(hf : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) : | |
∫ x, f x ∂μ ∈ s := | |
begin | |
borelize E, | |
rcases hfi.ae_strongly_measurable with ⟨g, hgm, hfg⟩, | |
haveI : separable_space (range g ∩ s : set E) := | |
(hgm.is_separable_range.mono (inter_subset_left _ _)).separable_space, | |
obtain ⟨y₀, h₀⟩ : (range g ∩ s).nonempty, | |
{ rcases (hf.and hfg).exists with ⟨x₀, h₀⟩, | |
exact ⟨f x₀, by simp only [h₀.2, mem_range_self], h₀.1⟩ }, | |
rw [integral_congr_ae hfg], rw [integrable_congr hfg] at hfi, | |
have hg : ∀ᵐ x ∂μ, g x ∈ closure (range g ∩ s), | |
{ filter_upwards [hfg.rw (λ x y, y ∈ s) hf] with x hx, | |
apply subset_closure, | |
exact ⟨mem_range_self _, hx⟩ }, | |
set G : ℕ → simple_func α E := simple_func.approx_on _ hgm.measurable (range g ∩ s) y₀ h₀, | |
have : tendsto (λ n, (G n).integral μ) at_top (𝓝 $ ∫ x, g x ∂μ), | |
from tendsto_integral_approx_on_of_measurable hfi _ hg _ (integrable_const _), | |
refine hsc.mem_of_tendsto this (eventually_of_forall $ λ n, hs.sum_mem _ _ _), | |
{ exact λ _ _, ennreal.to_real_nonneg }, | |
{ rw [← ennreal.to_real_sum, (G n).sum_range_measure_preimage_singleton, measure_univ, | |
ennreal.one_to_real], | |
exact λ _ _, measure_ne_top _ _ }, | |
{ simp only [simple_func.mem_range, forall_range_iff], | |
assume x, | |
apply inter_subset_right (range g), | |
exact simple_func.approx_on_mem hgm.measurable _ _ _ }, | |
end | |
/-- If `μ` is a non-zero finite measure on `α`, `s` is a convex closed set in `E`, and `f` is an | |
integrable function sending `μ`-a.e. points to `s`, then the average value of `f` belongs to `s`: | |
`⨍ x, f x ∂μ ∈ s`. See also `convex.center_mass_mem` for a finite sum version of this lemma. -/ | |
lemma convex.average_mem [is_finite_measure μ] (hs : convex ℝ s) (hsc : is_closed s) (hμ : μ ≠ 0) | |
(hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) : | |
⨍ x, f x ∂μ ∈ s := | |
begin | |
haveI : is_probability_measure ((μ univ)⁻¹ • μ), | |
from is_probability_measure_smul hμ, | |
refine hs.integral_mem hsc (ae_mono' _ hfs) hfi.to_average, | |
exact absolutely_continuous.smul (refl _) _ | |
end | |
/-- If `μ` is a non-zero finite measure on `α`, `s` is a convex closed set in `E`, and `f` is an | |
integrable function sending `μ`-a.e. points to `s`, then the average value of `f` belongs to `s`: | |
`⨍ x, f x ∂μ ∈ s`. See also `convex.center_mass_mem` for a finite sum version of this lemma. -/ | |
lemma convex.set_average_mem (hs : convex ℝ s) (hsc : is_closed s) (h0 : μ t ≠ 0) (ht : μ t ≠ ∞) | |
(hfs : ∀ᵐ x ∂μ.restrict t, f x ∈ s) (hfi : integrable_on f t μ) : | |
⨍ x in t, f x ∂μ ∈ s := | |
begin | |
haveI : fact (μ t < ∞) := ⟨ht.lt_top⟩, | |
refine hs.average_mem hsc _ hfs hfi, | |
rwa [ne.def, restrict_eq_zero] | |
end | |
/-- If `μ` is a non-zero finite measure on `α`, `s` is a convex set in `E`, and `f` is an integrable | |
function sending `μ`-a.e. points to `s`, then the average value of `f` belongs to `closure s`: | |
`⨍ x, f x ∂μ ∈ s`. See also `convex.center_mass_mem` for a finite sum version of this lemma. -/ | |
lemma convex.set_average_mem_closure (hs : convex ℝ s) (h0 : μ t ≠ 0) (ht : μ t ≠ ∞) | |
(hfs : ∀ᵐ x ∂μ.restrict t, f x ∈ s) (hfi : integrable_on f t μ) : | |
⨍ x in t, f x ∂μ ∈ closure s := | |
hs.closure.set_average_mem is_closed_closure h0 ht (hfs.mono $ λ x hx, subset_closure hx) hfi | |
lemma convex_on.average_mem_epigraph [is_finite_measure μ] (hg : convex_on ℝ s g) | |
(hgc : continuous_on g s) (hsc : is_closed s) (hμ : μ ≠ 0) (hfs : ∀ᵐ x ∂μ, f x ∈ s) | |
(hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) : | |
(⨍ x, f x ∂μ, ⨍ x, g (f x) ∂μ) ∈ {p : E × ℝ | p.1 ∈ s ∧ g p.1 ≤ p.2} := | |
have ht_mem : ∀ᵐ x ∂μ, (f x, g (f x)) ∈ {p : E × ℝ | p.1 ∈ s ∧ g p.1 ≤ p.2}, | |
from hfs.mono (λ x hx, ⟨hx, le_rfl⟩), | |
by simpa only [average_pair hfi hgi] | |
using hg.convex_epigraph.average_mem (hsc.epigraph hgc) hμ ht_mem (hfi.prod_mk hgi) | |
lemma concave_on.average_mem_hypograph [is_finite_measure μ] (hg : concave_on ℝ s g) | |
(hgc : continuous_on g s) (hsc : is_closed s) (hμ : μ ≠ 0) (hfs : ∀ᵐ x ∂μ, f x ∈ s) | |
(hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) : | |
(⨍ x, f x ∂μ, ⨍ x, g (f x) ∂μ) ∈ {p : E × ℝ | p.1 ∈ s ∧ p.2 ≤ g p.1} := | |
by simpa only [mem_set_of_eq, pi.neg_apply, average_neg, neg_le_neg_iff] | |
using hg.neg.average_mem_epigraph hgc.neg hsc hμ hfs hfi hgi.neg | |
/-- **Jensen's inequality**: if a function `g : E → ℝ` is convex and continuous on a convex closed | |
set `s`, `μ` is a finite non-zero measure on `α`, and `f : α → E` is a function sending | |
`μ`-a.e. points to `s`, then the value of `g` at the average value of `f` is less than or equal to | |
the average value of `g ∘ f` provided that both `f` and `g ∘ f` are integrable. See also | |
`convex_on.map_center_mass_le` for a finite sum version of this lemma. -/ | |
lemma convex_on.map_average_le [is_finite_measure μ] (hg : convex_on ℝ s g) | |
(hgc : continuous_on g s) (hsc : is_closed s) (hμ : μ ≠ 0) (hfs : ∀ᵐ x ∂μ, f x ∈ s) | |
(hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) : | |
g (⨍ x, f x ∂μ) ≤ ⨍ x, g (f x) ∂μ := | |
(hg.average_mem_epigraph hgc hsc hμ hfs hfi hgi).2 | |
/-- **Jensen's inequality**: if a function `g : E → ℝ` is concave and continuous on a convex closed | |
set `s`, `μ` is a finite non-zero measure on `α`, and `f : α → E` is a function sending | |
`μ`-a.e. points to `s`, then the average value of `g ∘ f` is less than or equal to the value of `g` | |
at the average value of `f` provided that both `f` and `g ∘ f` are integrable. See also | |
`concave_on.le_map_center_mass` for a finite sum version of this lemma. -/ | |
lemma concave_on.le_map_average [is_finite_measure μ] (hg : concave_on ℝ s g) | |
(hgc : continuous_on g s) (hsc : is_closed s) (hμ : μ ≠ 0) (hfs : ∀ᵐ x ∂μ, f x ∈ s) | |
(hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) : | |
⨍ x, g (f x) ∂μ ≤ g (⨍ x, f x ∂μ) := | |
(hg.average_mem_hypograph hgc hsc hμ hfs hfi hgi).2 | |
/-- **Jensen's inequality**: if a function `g : E → ℝ` is convex and continuous on a convex closed | |
set `s`, `μ` is a finite non-zero measure on `α`, and `f : α → E` is a function sending | |
`μ`-a.e. points of a set `t` to `s`, then the value of `g` at the average value of `f` over `t` is | |
less than or equal to the average value of `g ∘ f` over `t` provided that both `f` and `g ∘ f` are | |
integrable. -/ | |
lemma convex_on.set_average_mem_epigraph (hg : convex_on ℝ s g) (hgc : continuous_on g s) | |
(hsc : is_closed s) (h0 : μ t ≠ 0) (ht : μ t ≠ ∞) (hfs : ∀ᵐ x ∂μ.restrict t, f x ∈ s) | |
(hfi : integrable_on f t μ) (hgi : integrable_on (g ∘ f) t μ) : | |
(⨍ x in t, f x ∂μ, ⨍ x in t, g (f x) ∂μ) ∈ {p : E × ℝ | p.1 ∈ s ∧ g p.1 ≤ p.2} := | |
begin | |
haveI : fact (μ t < ∞) := ⟨ht.lt_top⟩, | |
refine hg.average_mem_epigraph hgc hsc _ hfs hfi hgi, | |
rwa [ne.def, restrict_eq_zero] | |
end | |
/-- **Jensen's inequality**: if a function `g : E → ℝ` is concave and continuous on a convex closed | |
set `s`, `μ` is a finite non-zero measure on `α`, and `f : α → E` is a function sending | |
`μ`-a.e. points of a set `t` to `s`, then the average value of `g ∘ f` over `t` is less than or | |
equal to the value of `g` at the average value of `f` over `t` provided that both `f` and `g ∘ f` | |
are integrable. -/ | |
lemma concave_on.set_average_mem_hypograph (hg : concave_on ℝ s g) (hgc : continuous_on g s) | |
(hsc : is_closed s) (h0 : μ t ≠ 0) (ht : μ t ≠ ∞) (hfs : ∀ᵐ x ∂μ.restrict t, f x ∈ s) | |
(hfi : integrable_on f t μ) (hgi : integrable_on (g ∘ f) t μ) : | |
(⨍ x in t, f x ∂μ, ⨍ x in t, g (f x) ∂μ) ∈ {p : E × ℝ | p.1 ∈ s ∧ p.2 ≤ g p.1} := | |
by simpa only [mem_set_of_eq, pi.neg_apply, average_neg, neg_le_neg_iff] | |
using hg.neg.set_average_mem_epigraph hgc.neg hsc h0 ht hfs hfi hgi.neg | |
/-- **Jensen's inequality**: if a function `g : E → ℝ` is convex and continuous on a convex closed | |
set `s`, `μ` is a finite non-zero measure on `α`, and `f : α → E` is a function sending | |
`μ`-a.e. points of a set `t` to `s`, then the value of `g` at the average value of `f` over `t` is | |
less than or equal to the average value of `g ∘ f` over `t` provided that both `f` and `g ∘ f` are | |
integrable. -/ | |
lemma convex_on.map_set_average_le (hg : convex_on ℝ s g) (hgc : continuous_on g s) | |
(hsc : is_closed s) (h0 : μ t ≠ 0) (ht : μ t ≠ ∞) (hfs : ∀ᵐ x ∂μ.restrict t, f x ∈ s) | |
(hfi : integrable_on f t μ) (hgi : integrable_on (g ∘ f) t μ) : | |
g (⨍ x in t, f x ∂μ) ≤ ⨍ x in t, g (f x) ∂μ := | |
(hg.set_average_mem_epigraph hgc hsc h0 ht hfs hfi hgi).2 | |
/-- **Jensen's inequality**: if a function `g : E → ℝ` is concave and continuous on a convex closed | |
set `s`, `μ` is a finite non-zero measure on `α`, and `f : α → E` is a function sending | |
`μ`-a.e. points of a set `t` to `s`, then the average value of `g ∘ f` over `t` is less than or | |
equal to the value of `g` at the average value of `f` over `t` provided that both `f` and `g ∘ f` | |
are integrable. -/ | |
lemma concave_on.le_map_set_average (hg : concave_on ℝ s g) (hgc : continuous_on g s) | |
(hsc : is_closed s) (h0 : μ t ≠ 0) (ht : μ t ≠ ∞) (hfs : ∀ᵐ x ∂μ.restrict t, f x ∈ s) | |
(hfi : integrable_on f t μ) (hgi : integrable_on (g ∘ f) t μ) : | |
⨍ x in t, g (f x) ∂μ ≤ g (⨍ x in t, f x ∂μ) := | |
(hg.set_average_mem_hypograph hgc hsc h0 ht hfs hfi hgi).2 | |
/-- **Jensen's inequality**: if a function `g : E → ℝ` is convex and continuous on a convex closed | |
set `s`, `μ` is a probability measure on `α`, and `f : α → E` is a function sending `μ`-a.e. points | |
to `s`, then the value of `g` at the expected value of `f` is less than or equal to the expected | |
value of `g ∘ f` provided that both `f` and `g ∘ f` are integrable. See also | |
`convex_on.map_center_mass_le` for a finite sum version of this lemma. -/ | |
lemma convex_on.map_integral_le [is_probability_measure μ] (hg : convex_on ℝ s g) | |
(hgc : continuous_on g s) (hsc : is_closed s) (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) | |
(hgi : integrable (g ∘ f) μ) : | |
g (∫ x, f x ∂μ) ≤ ∫ x, g (f x) ∂μ := | |
by simpa only [average_eq_integral] | |
using hg.map_average_le hgc hsc (is_probability_measure.ne_zero μ) hfs hfi hgi | |
/-- **Jensen's inequality**: if a function `g : E → ℝ` is concave and continuous on a convex closed | |
set `s`, `μ` is a probability measure on `α`, and `f : α → E` is a function sending `μ`-a.e. points | |
to `s`, then the expected value of `g ∘ f` is less than or equal to the value of `g` at the expected | |
value of `f` provided that both `f` and `g ∘ f` are integrable. -/ | |
lemma concave_on.le_map_integral [is_probability_measure μ] (hg : concave_on ℝ s g) | |
(hgc : continuous_on g s) (hsc : is_closed s) (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) | |
(hgi : integrable (g ∘ f) μ) : | |
∫ x, g (f x) ∂μ ≤ g (∫ x, f x ∂μ) := | |
by simpa only [average_eq_integral] | |
using hg.le_map_average hgc hsc (is_probability_measure.ne_zero μ) hfs hfi hgi | |
/-! | |
### Strict Jensen's inequality | |
-/ | |
/-- If `f : α → E` is an integrable function, then either it is a.e. equal to the constant | |
`⨍ x, f x ∂μ` or there exists a measurable set such that `μ t ≠ 0`, `μ tᶜ ≠ 0`, and the average | |
values of `f` over `t` and `tᶜ` are different. -/ | |
lemma ae_eq_const_or_exists_average_ne_compl [is_finite_measure μ] (hfi : integrable f μ) : | |
(f =ᵐ[μ] const α (⨍ x, f x ∂μ)) ∨ ∃ t, measurable_set t ∧ μ t ≠ 0 ∧ μ tᶜ ≠ 0 ∧ | |
⨍ x in t, f x ∂μ ≠ ⨍ x in tᶜ, f x ∂μ := | |
begin | |
refine or_iff_not_imp_right.mpr (λ H, _), push_neg at H, | |
refine hfi.ae_eq_of_forall_set_integral_eq _ _ (integrable_const _) (λ t ht ht', _), clear ht', | |
simp only [const_apply, set_integral_const], | |
by_cases h₀ : μ t = 0, | |
{ rw [restrict_eq_zero.2 h₀, integral_zero_measure, h₀, ennreal.zero_to_real, zero_smul] }, | |
by_cases h₀' : μ tᶜ = 0, | |
{ rw ← ae_eq_univ at h₀', | |
rw [restrict_congr_set h₀', restrict_univ, measure_congr h₀', measure_smul_average] }, | |
have := average_mem_open_segment_compl_self ht.null_measurable_set h₀ h₀' hfi, | |
rw [← H t ht h₀ h₀', open_segment_same, mem_singleton_iff] at this, | |
rw [this, measure_smul_set_average _ (measure_ne_top μ _)] | |
end | |
/-- If an integrable function `f : α → E` takes values in a convex set `s` and for some set `t` of | |
positive measure, the average value of `f` over `t` belongs to the interior of `s`, then the average | |
of `f` over the whole space belongs to the interior of `s`. -/ | |
lemma convex.average_mem_interior_of_set [is_finite_measure μ] (hs : convex ℝ s) (h0 : μ t ≠ 0) | |
(hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (ht : ⨍ x in t, f x ∂μ ∈ interior s) : | |
⨍ x, f x ∂μ ∈ interior s := | |
begin | |
rw ← measure_to_measurable at h0, rw ← restrict_to_measurable (measure_ne_top μ t) at ht, | |
by_cases h0' : μ (to_measurable μ t)ᶜ = 0, | |
{ rw ← ae_eq_univ at h0', | |
rwa [restrict_congr_set h0', restrict_univ] at ht }, | |
exact hs.open_segment_interior_closure_subset_interior ht | |
(hs.set_average_mem_closure h0' (measure_ne_top _ _) (ae_restrict_of_ae hfs) hfi.integrable_on) | |
(average_mem_open_segment_compl_self (measurable_set_to_measurable μ t).null_measurable_set | |
h0 h0' hfi) | |
end | |
/-- If an integrable function `f : α → E` takes values in a strictly convex closed set `s`, then | |
either it is a.e. equal to its average value, or its average value belongs to the interior of | |
`s`. -/ | |
lemma strict_convex.ae_eq_const_or_average_mem_interior [is_finite_measure μ] | |
(hs : strict_convex ℝ s) (hsc : is_closed s) (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) : | |
f =ᵐ[μ] const α (⨍ x, f x ∂μ) ∨ ⨍ x, f x ∂μ ∈ interior s := | |
begin | |
have : ∀ {t}, μ t ≠ 0 → ⨍ x in t, f x ∂μ ∈ s, | |
from λ t ht, hs.convex.set_average_mem hsc ht (measure_ne_top _ _) (ae_restrict_of_ae hfs) | |
hfi.integrable_on, | |
refine (ae_eq_const_or_exists_average_ne_compl hfi).imp_right _, | |
rintro ⟨t, hm, h₀, h₀', hne⟩, | |
exact hs.open_segment_subset (this h₀) (this h₀') hne | |
(average_mem_open_segment_compl_self hm.null_measurable_set h₀ h₀' hfi) | |
end | |
/-- **Jensen's inequality**, strict version: if an integrable function `f : α → E` takes values in a | |
convex closed set `s`, and `g : E → ℝ` is continuous and strictly convex on `s`, then | |
either `f` is a.e. equal to its average value, or `g (⨍ x, f x ∂μ) < ⨍ x, g (f x) ∂μ`. -/ | |
lemma strict_convex_on.ae_eq_const_or_map_average_lt [is_finite_measure μ] | |
(hg : strict_convex_on ℝ s g) (hgc : continuous_on g s) (hsc : is_closed s) | |
(hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) : | |
f =ᵐ[μ] const α (⨍ x, f x ∂μ) ∨ g (⨍ x, f x ∂μ) < ⨍ x, g (f x) ∂μ := | |
begin | |
have : ∀ {t}, μ t ≠ 0 → ⨍ x in t, f x ∂μ ∈ s ∧ g (⨍ x in t, f x ∂μ) ≤ ⨍ x in t, g (f x) ∂μ, | |
from λ t ht, hg.convex_on.set_average_mem_epigraph hgc hsc ht (measure_ne_top _ _) | |
(ae_restrict_of_ae hfs) hfi.integrable_on hgi.integrable_on, | |
refine (ae_eq_const_or_exists_average_ne_compl hfi).imp_right _, | |
rintro ⟨t, hm, h₀, h₀', hne⟩, | |
rcases average_mem_open_segment_compl_self hm.null_measurable_set h₀ h₀' (hfi.prod_mk hgi) | |
with ⟨a, b, ha, hb, hab, h_avg⟩, | |
simp only [average_pair hfi hgi, average_pair hfi.integrable_on hgi.integrable_on, prod.smul_mk, | |
prod.mk_add_mk, prod.mk.inj_iff, (∘)] at h_avg, | |
rw [← h_avg.1, ← h_avg.2], | |
calc g (a • ⨍ x in t, f x ∂μ + b • ⨍ x in tᶜ, f x ∂μ) | |
< a * g (⨍ x in t, f x ∂μ) + b * g (⨍ x in tᶜ, f x ∂μ) : | |
hg.2 (this h₀).1 (this h₀').1 hne ha hb hab | |
... ≤ a * ⨍ x in t, g (f x) ∂μ + b * ⨍ x in tᶜ, g (f x) ∂μ : | |
add_le_add (mul_le_mul_of_nonneg_left (this h₀).2 ha.le) | |
(mul_le_mul_of_nonneg_left (this h₀').2 hb.le) | |
end | |
/-- **Jensen's inequality**, strict version: if an integrable function `f : α → E` takes values in a | |
convex closed set `s`, and `g : E → ℝ` is continuous and strictly concave on `s`, then | |
either `f` is a.e. equal to its average value, or `⨍ x, g (f x) ∂μ < g (⨍ x, f x ∂μ)`. -/ | |
lemma strict_concave_on.ae_eq_const_or_lt_map_average [is_finite_measure μ] | |
(hg : strict_concave_on ℝ s g) (hgc : continuous_on g s) (hsc : is_closed s) | |
(hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) : | |
f =ᵐ[μ] const α (⨍ x, f x ∂μ) ∨ ⨍ x, g (f x) ∂μ < g (⨍ x, f x ∂μ) := | |
by simpa only [pi.neg_apply, average_neg, neg_lt_neg_iff] | |
using hg.neg.ae_eq_const_or_map_average_lt hgc.neg hsc hfs hfi hgi.neg | |
/-- If `E` is a strictly convex normed space and `f : α → E` is a function such that `∥f x∥ ≤ C` | |
a.e., then either this function is a.e. equal to its average value, or the norm of its average value | |
is strictly less than `C`. -/ | |
lemma ae_eq_const_or_norm_average_lt_of_norm_le_const [strict_convex_space ℝ E] | |
(h_le : ∀ᵐ x ∂μ, ∥f x∥ ≤ C) : | |
(f =ᵐ[μ] const α ⨍ x, f x ∂μ) ∨ ∥⨍ x, f x ∂μ∥ < C := | |
begin | |
cases le_or_lt C 0 with hC0 hC0, | |
{ have : f =ᵐ[μ] 0, from h_le.mono (λ x hx, norm_le_zero_iff.1 (hx.trans hC0)), | |
simp only [average_congr this, pi.zero_apply, average_zero], | |
exact or.inl this }, | |
by_cases hfi : integrable f μ, swap, | |
by simp [average_def', integral_undef hfi, hC0, ennreal.to_real_pos_iff], | |
cases (le_top : μ univ ≤ ∞).eq_or_lt with hμt hμt, { simp [average_def', hμt, hC0] }, | |
haveI : is_finite_measure μ := ⟨hμt⟩, | |
replace h_le : ∀ᵐ x ∂μ, f x ∈ closed_ball (0 : E) C, by simpa only [mem_closed_ball_zero_iff], | |
simpa only [interior_closed_ball _ hC0.ne', mem_ball_zero_iff] | |
using (strict_convex_closed_ball ℝ (0 : E) C).ae_eq_const_or_average_mem_interior | |
is_closed_ball h_le hfi | |
end | |
/-- If `E` is a strictly convex normed space and `f : α → E` is a function such that `∥f x∥ ≤ C` | |
a.e., then either this function is a.e. equal to its average value, or the norm of its integral is | |
strictly less than `(μ univ).to_real * C`. -/ | |
lemma ae_eq_const_or_norm_integral_lt_of_norm_le_const [strict_convex_space ℝ E] | |
[is_finite_measure μ] (h_le : ∀ᵐ x ∂μ, ∥f x∥ ≤ C) : | |
(f =ᵐ[μ] const α ⨍ x, f x ∂μ) ∨ ∥∫ x, f x ∂μ∥ < (μ univ).to_real * C := | |
begin | |
cases eq_or_ne μ 0 with h₀ h₀, { left, simp [h₀] }, | |
have hμ : 0 < (μ univ).to_real, | |
by simp [ennreal.to_real_pos_iff, pos_iff_ne_zero, h₀, measure_lt_top], | |
refine (ae_eq_const_or_norm_average_lt_of_norm_le_const h_le).imp_right (λ H, _), | |
rwa [average_def', norm_smul, norm_inv, real.norm_eq_abs, abs_of_pos hμ, | |
← div_eq_inv_mul, div_lt_iff' hμ] at H | |
end | |
/-- If `E` is a strictly convex normed space and `f : α → E` is a function such that `∥f x∥ ≤ C` | |
a.e. on a set `t` of finite measure, then either this function is a.e. equal to its average value on | |
`t`, or the norm of its integral over `t` is strictly less than `(μ t).to_real * C`. -/ | |
lemma ae_eq_const_or_norm_set_integral_lt_of_norm_le_const [strict_convex_space ℝ E] | |
(ht : μ t ≠ ∞) (h_le : ∀ᵐ x ∂μ.restrict t, ∥f x∥ ≤ C) : | |
(f =ᵐ[μ.restrict t] const α ⨍ x in t, f x ∂μ) ∨ ∥∫ x in t, f x ∂μ∥ < (μ t).to_real * C := | |
begin | |
haveI := fact.mk ht.lt_top, | |
rw [← restrict_apply_univ], | |
exact ae_eq_const_or_norm_integral_lt_of_norm_le_const h_le | |
end | |