Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
16.7 kB
/-
Copyright (c) 2021 YaΓ«l Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: YaΓ«l Dillies
-/
import analysis.convex.basic
/-!
# Star-convex sets
This files defines star-convex sets (aka star domains, star-shaped set, radially convex set).
A set is star-convex at `x` if every segment from `x` to a point in the set is contained in the set.
This is the prototypical example of a contractible set in homotopy theory (by scaling every point
towards `x`), but has wider uses.
Note that this has nothing to do with star rings, `has_star` and co.
## Main declarations
* `star_convex π•œ x s`: `s` is star-convex at `x` with scalars `π•œ`.
## Implementation notes
Instead of saying that a set is star-convex, we say a set is star-convex *at a point*. This has the
advantage of allowing us to talk about convexity as being "everywhere star-convexity" and of making
the union of star-convex sets be star-convex.
Incidentally, this choice means we don't need to assume a set is nonempty for it to be star-convex.
Concretely, the empty set is star-convex at every point.
## TODO
Balanced sets are star-convex.
The closure of a star-convex set is star-convex.
Star-convex sets are contractible.
A nonempty open star-convex set in `ℝ^n` is diffeomorphic to the entire space.
-/
open set
open_locale convex pointwise
variables {π•œ E F Ξ² : Type*}
section ordered_semiring
variables [ordered_semiring π•œ]
section add_comm_monoid
variables [add_comm_monoid E] [add_comm_monoid F]
section has_smul
variables (π•œ) [has_smul π•œ E] [has_smul π•œ F] (x : E) (s : set E)
/-- Star-convexity of sets. `s` is star-convex at `x` if every segment from `x` to a point in `s` is
contained in `s`. -/
def star_convex : Prop :=
βˆ€ ⦃y : E⦄, y ∈ s β†’ βˆ€ ⦃a b : π•œβ¦„, 0 ≀ a β†’ 0 ≀ b β†’ a + b = 1 β†’ a β€’ x + b β€’ y ∈ s
variables {π•œ x s} {t : set E}
lemma convex_iff_forall_star_convex : convex π•œ s ↔ βˆ€ x ∈ s, star_convex π•œ x s :=
forall_congr $ Ξ» x, forall_swap
lemma convex.star_convex (h : convex π•œ s) (hx : x ∈ s) : star_convex π•œ x s :=
convex_iff_forall_star_convex.1 h _ hx
lemma star_convex_iff_segment_subset : star_convex π•œ x s ↔ βˆ€ ⦃y⦄, y ∈ s β†’ [x -[π•œ] y] βŠ† s :=
begin
split,
{ rintro h y hy z ⟨a, b, ha, hb, hab, rfl⟩,
exact h hy ha hb hab },
{ rintro h y hy a b ha hb hab,
exact h hy ⟨a, b, ha, hb, hab, rfl⟩ }
end
lemma star_convex.segment_subset (h : star_convex π•œ x s) {y : E} (hy : y ∈ s) : [x -[π•œ] y] βŠ† s :=
star_convex_iff_segment_subset.1 h hy
lemma star_convex.open_segment_subset (h : star_convex π•œ x s) {y : E} (hy : y ∈ s) :
open_segment π•œ x y βŠ† s :=
(open_segment_subset_segment π•œ x y).trans (h.segment_subset hy)
/-- Alternative definition of star-convexity, in terms of pointwise set operations. -/
lemma star_convex_iff_pointwise_add_subset :
star_convex π•œ x s ↔ βˆ€ ⦃a b : π•œβ¦„, 0 ≀ a β†’ 0 ≀ b β†’ a + b = 1 β†’ a β€’ {x} + b β€’ s βŠ† s :=
begin
refine ⟨_, λ h y hy a b ha hb hab,
h ha hb hab (add_mem_add (smul_mem_smul_set $ mem_singleton _) ⟨_, hy, rfl⟩)⟩,
rintro hA a b ha hb hab w ⟨au, bv, ⟨u, (rfl : u = x), rfl⟩, ⟨v, hv, rfl⟩, rfl⟩,
exact hA hv ha hb hab,
end
lemma star_convex_empty (x : E) : star_convex π•œ x βˆ… := Ξ» y hy, hy.elim
lemma star_convex_univ (x : E) : star_convex π•œ x univ := Ξ» _ _ _ _ _ _ _, trivial
lemma star_convex.inter (hs : star_convex π•œ x s) (ht : star_convex π•œ x t) :
star_convex π•œ x (s ∩ t) :=
λ y hy a b ha hb hab, ⟨hs hy.left ha hb hab, ht hy.right ha hb hab⟩
lemma star_convex_sInter {S : set (set E)} (h : βˆ€ s ∈ S, star_convex π•œ x s) :
star_convex π•œ x (β‹‚β‚€ S) :=
Ξ» y hy a b ha hb hab s hs, h s hs (hy s hs) ha hb hab
lemma star_convex_Inter {ΞΉ : Sort*} {s : ΞΉ β†’ set E} (h : βˆ€ i, star_convex π•œ x (s i)) :
star_convex π•œ x (β‹‚ i, s i) :=
(sInter_range s) β–Έ star_convex_sInter $ forall_range_iff.2 h
lemma star_convex.union (hs : star_convex π•œ x s) (ht : star_convex π•œ x t) :
star_convex π•œ x (s βˆͺ t) :=
begin
rintro y (hy | hy) a b ha hb hab,
{ exact or.inl (hs hy ha hb hab) },
{ exact or.inr (ht hy ha hb hab) }
end
lemma star_convex_Union {ΞΉ : Sort*} {s : ΞΉ β†’ set E} (hs : βˆ€ i, star_convex π•œ x (s i)) :
star_convex π•œ x (⋃ i, s i) :=
begin
rintro y hy a b ha hb hab,
rw mem_Union at ⊒ hy,
obtain ⟨i, hy⟩ := hy,
exact ⟨i, hs i hy ha hb hab⟩,
end
lemma star_convex_sUnion {S : set (set E)} (hS : βˆ€ s ∈ S, star_convex π•œ x s) :
star_convex π•œ x (⋃₀ S) :=
begin
rw sUnion_eq_Union,
exact star_convex_Union (Ξ» s, hS _ s.2),
end
lemma star_convex.prod {y : F} {s : set E} {t : set F} (hs : star_convex π•œ x s)
(ht : star_convex π•œ y t) :
star_convex π•œ (x, y) (s Γ—Λ’ t) :=
λ y hy a b ha hb hab, ⟨hs hy.1 ha hb hab, ht hy.2 ha hb hab⟩
lemma star_convex_pi {ΞΉ : Type*} {E : ΞΉ β†’ Type*} [Ξ  i, add_comm_monoid (E i)]
[Ξ  i, has_smul π•œ (E i)] {x : Ξ  i, E i} {s : set ΞΉ} {t : Ξ  i, set (E i)}
(ht : βˆ€ i, star_convex π•œ (x i) (t i)) :
star_convex π•œ x (s.pi t) :=
Ξ» y hy a b ha hb hab i hi, ht i (hy i hi) ha hb hab
end has_smul
section module
variables [module π•œ E] [module π•œ F] {x y z : E} {s : set E}
lemma star_convex.mem (hs : star_convex π•œ x s) (h : s.nonempty) : x ∈ s :=
begin
obtain ⟨y, hy⟩ := h,
convert hs hy zero_le_one le_rfl (add_zero 1),
rw [one_smul, zero_smul, add_zero],
end
lemma convex.star_convex_iff (hs : convex π•œ s) (h : s.nonempty) : star_convex π•œ x s ↔ x ∈ s :=
⟨λ hxs, hxs.mem h, hs.star_convex⟩
lemma star_convex_iff_forall_pos (hx : x ∈ s) :
star_convex π•œ x s ↔ βˆ€ ⦃y⦄, y ∈ s β†’ βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ a + b = 1 β†’ a β€’ x + b β€’ y ∈ s :=
begin
refine ⟨λ h y hy a b ha hb hab, h hy ha.le hb.le hab, _⟩,
intros h y hy a b ha hb hab,
obtain rfl | ha := ha.eq_or_lt,
{ rw zero_add at hab,
rwa [hab, one_smul, zero_smul, zero_add] },
obtain rfl | hb := hb.eq_or_lt,
{ rw add_zero at hab,
rwa [hab, one_smul, zero_smul, add_zero] },
exact h hy ha hb hab,
end
lemma star_convex_iff_forall_ne_pos (hx : x ∈ s) :
star_convex π•œ x s ↔ βˆ€ ⦃y⦄, y ∈ s β†’ x β‰  y β†’ βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ a + b = 1 β†’
a β€’ x + b β€’ y ∈ s :=
begin
refine ⟨λ h y hy _ a b ha hb hab, h hy ha.le hb.le hab, _⟩,
intros h y hy a b ha hb hab,
obtain rfl | ha' := ha.eq_or_lt,
{ rw [zero_add] at hab, rwa [hab, zero_smul, one_smul, zero_add] },
obtain rfl | hb' := hb.eq_or_lt,
{ rw [add_zero] at hab, rwa [hab, zero_smul, one_smul, add_zero] },
obtain rfl | hxy := eq_or_ne x y,
{ rwa convex.combo_self hab },
exact h hy hxy ha' hb' hab,
end
lemma star_convex_iff_open_segment_subset (hx : x ∈ s) :
star_convex π•œ x s ↔ βˆ€ ⦃y⦄, y ∈ s β†’ open_segment π•œ x y βŠ† s :=
star_convex_iff_segment_subset.trans $ forallβ‚‚_congr $ Ξ» y hy,
(open_segment_subset_iff_segment_subset hx hy).symm
lemma star_convex_singleton (x : E) : star_convex π•œ x {x} :=
begin
rintro y (rfl : y = x) a b ha hb hab,
exact convex.combo_self hab _,
end
lemma star_convex.linear_image (hs : star_convex π•œ x s) (f : E β†’β‚—[π•œ] F) :
star_convex π•œ (f x) (s.image f) :=
begin
intros y hy a b ha hb hab,
obtain ⟨y', hy', rfl⟩ := hy,
exact ⟨a β€’ x + b β€’ y', hs hy' ha hb hab, by rw [f.map_add, f.map_smul, f.map_smul]⟩,
end
lemma star_convex.is_linear_image (hs : star_convex π•œ x s) {f : E β†’ F} (hf : is_linear_map π•œ f) :
star_convex π•œ (f x) (f '' s) :=
hs.linear_image $ hf.mk' f
lemma star_convex.linear_preimage {s : set F} (f : E β†’β‚—[π•œ] F) (hs : star_convex π•œ (f x) s) :
star_convex π•œ x (s.preimage f) :=
begin
intros y hy a b ha hb hab,
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul],
exact hs hy ha hb hab,
end
lemma star_convex.is_linear_preimage {s : set F} {f : E β†’ F} (hs : star_convex π•œ (f x) s)
(hf : is_linear_map π•œ f) :
star_convex π•œ x (preimage f s) :=
hs.linear_preimage $ hf.mk' f
lemma star_convex.add {t : set E} (hs : star_convex π•œ x s) (ht : star_convex π•œ y t) :
star_convex π•œ (x + y) (s + t) :=
by { rw ←add_image_prod, exact (hs.prod ht).is_linear_image is_linear_map.is_linear_map_add }
lemma star_convex.add_left (hs : star_convex π•œ x s) (z : E) :
star_convex π•œ (z + x) ((Ξ» x, z + x) '' s) :=
begin
intros y hy a b ha hb hab,
obtain ⟨y', hy', rfl⟩ := hy,
refine ⟨a β€’ x + b β€’ y', hs hy' ha hb hab, _⟩,
rw [smul_add, smul_add, add_add_add_comm, ←add_smul, hab, one_smul],
end
lemma star_convex.add_right (hs : star_convex π•œ x s) (z : E) :
star_convex π•œ (x + z) ((Ξ» x, x + z) '' s) :=
begin
intros y hy a b ha hb hab,
obtain ⟨y', hy', rfl⟩ := hy,
refine ⟨a β€’ x + b β€’ y', hs hy' ha hb hab, _⟩,
rw [smul_add, smul_add, add_add_add_comm, ←add_smul, hab, one_smul],
end
/-- The translation of a star-convex set is also star-convex. -/
lemma star_convex.preimage_add_right (hs : star_convex π•œ (z + x) s) :
star_convex π•œ x ((Ξ» x, z + x) ⁻¹' s) :=
begin
intros y hy a b ha hb hab,
have h := hs hy ha hb hab,
rwa [smul_add, smul_add, add_add_add_comm, ←add_smul, hab, one_smul] at h,
end
/-- The translation of a star-convex set is also star-convex. -/
lemma star_convex.preimage_add_left (hs : star_convex π•œ (x + z) s) :
star_convex π•œ x ((Ξ» x, x + z) ⁻¹' s) :=
begin
rw add_comm at hs,
simpa only [add_comm] using hs.preimage_add_right,
end
end module
end add_comm_monoid
section add_comm_group
variables [add_comm_group E] [module π•œ E] {x y : E}
lemma star_convex.sub' {s : set (E Γ— E)} (hs : star_convex π•œ (x, y) s) :
star_convex π•œ (x - y) ((Ξ» x : E Γ— E, x.1 - x.2) '' s) :=
hs.is_linear_image is_linear_map.is_linear_map_sub
end add_comm_group
end ordered_semiring
section ordered_comm_semiring
variables [ordered_comm_semiring π•œ]
section add_comm_monoid
variables [add_comm_monoid E] [add_comm_monoid F] [module π•œ E] [module π•œ F] {x : E} {s : set E}
lemma star_convex.smul (hs : star_convex π•œ x s) (c : π•œ) : star_convex π•œ (c β€’ x) (c β€’ s) :=
hs.linear_image $ linear_map.lsmul _ _ c
lemma star_convex.preimage_smul {c : π•œ} (hs : star_convex π•œ (c β€’ x) s) :
star_convex π•œ x ((Ξ» z, c β€’ z) ⁻¹' s) :=
hs.linear_preimage (linear_map.lsmul _ _ c)
lemma star_convex.affinity (hs : star_convex π•œ x s) (z : E) (c : π•œ) :
star_convex π•œ (z + c β€’ x) ((Ξ» x, z + c β€’ x) '' s) :=
begin
have h := (hs.smul c).add_left z,
rwa [←image_smul, image_image] at h,
end
end add_comm_monoid
end ordered_comm_semiring
section ordered_ring
variables [ordered_ring π•œ]
section add_comm_monoid
variables [add_comm_monoid E] [smul_with_zero π•œ E]{s : set E}
lemma star_convex_zero_iff :
star_convex π•œ 0 s ↔ βˆ€ ⦃x : E⦄, x ∈ s β†’ βˆ€ ⦃a : π•œβ¦„, 0 ≀ a β†’ a ≀ 1 β†’ a β€’ x ∈ s :=
begin
refine forall_congr (Ξ» x, forall_congr $ Ξ» hx, ⟨λ h a haβ‚€ ha₁, _, Ξ» h a b ha hb hab, _⟩),
{ simpa only [sub_add_cancel, eq_self_iff_true, forall_true_left, zero_add, smul_zero'] using
h (sub_nonneg_of_le ha₁) haβ‚€ },
{ rw [smul_zero', zero_add],
exact h hb (by { rw ←hab, exact le_add_of_nonneg_left ha }) }
end
end add_comm_monoid
section add_comm_group
variables [add_comm_group E] [add_comm_group F] [module π•œ E] [module π•œ F] {x y : E} {s t : set E}
lemma star_convex.add_smul_mem (hs : star_convex π•œ x s) (hy : x + y ∈ s) {t : π•œ} (htβ‚€ : 0 ≀ t)
(ht₁ : t ≀ 1) :
x + t β€’ y ∈ s :=
begin
have h : x + t β€’ y = (1 - t) β€’ x + t β€’ (x + y),
{ rw [smul_add, ←add_assoc, ←add_smul, sub_add_cancel, one_smul] },
rw h,
exact hs hy (sub_nonneg_of_le ht₁) htβ‚€ (sub_add_cancel _ _),
end
lemma star_convex.smul_mem (hs : star_convex π•œ 0 s) (hx : x ∈ s) {t : π•œ} (htβ‚€ : 0 ≀ t)
(ht₁ : t ≀ 1) :
t β€’ x ∈ s :=
by simpa using hs.add_smul_mem (by simpa using hx) htβ‚€ ht₁
lemma star_convex.add_smul_sub_mem (hs : star_convex π•œ x s) (hy : y ∈ s) {t : π•œ} (htβ‚€ : 0 ≀ t)
(ht₁ : t ≀ 1) :
x + t β€’ (y - x) ∈ s :=
begin
apply hs.segment_subset hy,
rw segment_eq_image',
exact mem_image_of_mem _ ⟨htβ‚€, htβ‚βŸ©,
end
/-- The preimage of a star-convex set under an affine map is star-convex. -/
lemma star_convex.affine_preimage (f : E →ᡃ[π•œ] F) {s : set F} (hs : star_convex π•œ (f x) s) :
star_convex π•œ x (f ⁻¹' s) :=
begin
intros y hy a b ha hb hab,
rw [mem_preimage, convex.combo_affine_apply hab],
exact hs hy ha hb hab,
end
/-- The image of a star-convex set under an affine map is star-convex. -/
lemma star_convex.affine_image (f : E →ᡃ[π•œ] F) {s : set E} (hs : star_convex π•œ x s) :
star_convex π•œ (f x) (f '' s) :=
begin
rintro y ⟨y', ⟨hy', hy'f⟩⟩ a b ha hb hab,
refine ⟨a β€’ x + b β€’ y', ⟨hs hy' ha hb hab, _⟩⟩,
rw [convex.combo_affine_apply hab, hy'f],
end
lemma star_convex.neg (hs : star_convex π•œ x s) : star_convex π•œ (-x) (-s) :=
by { rw ←image_neg, exact hs.is_linear_image is_linear_map.is_linear_map_neg }
lemma star_convex.sub (hs : star_convex π•œ x s) (ht : star_convex π•œ y t) :
star_convex π•œ (x - y) (s - t) :=
by { simp_rw sub_eq_add_neg, exact hs.add ht.neg }
end add_comm_group
end ordered_ring
section linear_ordered_field
variables [linear_ordered_field π•œ]
section add_comm_group
variables [add_comm_group E] [module π•œ E] {x : E} {s : set E}
/-- Alternative definition of star-convexity, using division. -/
lemma star_convex_iff_div :
star_convex π•œ x s ↔ βˆ€ ⦃y⦄, y ∈ s β†’ βˆ€ ⦃a b : π•œβ¦„, 0 ≀ a β†’ 0 ≀ b β†’ 0 < a + b β†’
(a / (a + b)) β€’ x + (b / (a + b)) β€’ y ∈ s :=
⟨λ h y hy a b ha hb hab, begin
apply h hy,
{ have ha', from mul_le_mul_of_nonneg_left ha (inv_pos.2 hab).le,
rwa [mul_zero, ←div_eq_inv_mul] at ha' },
{ have hb', from mul_le_mul_of_nonneg_left hb (inv_pos.2 hab).le,
rwa [mul_zero, ←div_eq_inv_mul] at hb' },
{ rw ←add_div,
exact div_self hab.ne' }
end, Ξ» h y hy a b ha hb hab,
begin
have h', from h hy ha hb,
rw [hab, div_one, div_one] at h',
exact h' zero_lt_one
end⟩
lemma star_convex.mem_smul (hs : star_convex π•œ 0 s) (hx : x ∈ s) {t : π•œ} (ht : 1 ≀ t) :
x ∈ t β€’ s :=
begin
rw mem_smul_set_iff_inv_smul_memβ‚€ (zero_lt_one.trans_le ht).ne',
exact hs.smul_mem hx (inv_nonneg.2 $ zero_le_one.trans ht) (inv_le_one ht),
end
end add_comm_group
end linear_ordered_field
/-!
#### Star-convex sets in an ordered space
Relates `star_convex` and `set.ord_connected`.
-/
section ord_connected
lemma set.ord_connected.star_convex [ordered_semiring π•œ] [ordered_add_comm_monoid E]
[module π•œ E] [ordered_smul π•œ E] {x : E} {s : set E} (hs : s.ord_connected) (hx : x ∈ s)
(h : βˆ€ y ∈ s, x ≀ y ∨ y ≀ x) :
star_convex π•œ x s :=
begin
intros y hy a b ha hb hab,
obtain hxy | hyx := h _ hy,
{ refine hs.out hx hy (mem_Icc.2 ⟨_, _⟩),
calc
x = a β€’ x + b β€’ x : (convex.combo_self hab _).symm
... ≀ a β€’ x + b β€’ y : add_le_add_left (smul_le_smul_of_nonneg hxy hb) _,
calc
a β€’ x + b β€’ y
≀ a β€’ y + b β€’ y : add_le_add_right (smul_le_smul_of_nonneg hxy ha) _
... = y : convex.combo_self hab _ },
{ refine hs.out hy hx (mem_Icc.2 ⟨_, _⟩),
calc
y = a β€’ y + b β€’ y : (convex.combo_self hab _).symm
... ≀ a β€’ x + b β€’ y : add_le_add_right (smul_le_smul_of_nonneg hyx ha) _,
calc
a β€’ x + b β€’ y
≀ a β€’ x + b β€’ x : add_le_add_left (smul_le_smul_of_nonneg hyx hb) _
... = x : convex.combo_self hab _ }
end
lemma star_convex_iff_ord_connected [linear_ordered_field π•œ] {x : π•œ} {s : set π•œ} (hx : x ∈ s) :
star_convex π•œ x s ↔ s.ord_connected :=
by simp_rw [ord_connected_iff_interval_subset_left hx, star_convex_iff_segment_subset,
segment_eq_interval]
alias star_convex_iff_ord_connected ↔ star_convex.ord_connected _
end ord_connected
/-! #### Star-convexity of submodules/subspaces -/
section submodule
open submodule
lemma submodule.star_convex [ordered_semiring π•œ] [add_comm_monoid E] [module π•œ E]
(K : submodule π•œ E) :
star_convex π•œ (0 : E) K :=
K.convex.star_convex K.zero_mem
lemma subspace.star_convex [linear_ordered_field π•œ] [add_comm_group E] [module π•œ E]
(K : subspace π•œ E) :
star_convex π•œ (0 : E) K :=
K.convex.star_convex K.zero_mem
end submodule