Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
5.11 kB
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import analysis.convex.join
/-!
# Stone's separation theorem
This file prove Stone's separation theorem. This tells us that any two disjoint convex sets can be
separated by a convex set whose complement is also convex.
In locally convex real topological vector spaces, the Hahn-Banach separation theorems provide
stronger statements: one may find a separating hyperplane, instead of merely a convex set whose
complement is convex.
-/
open set
open_locale big_operators
variables {𝕜 E ι : Type*} [linear_ordered_field 𝕜] [add_comm_group E] [module 𝕜 E] {s t : set E}
/-- In a tetrahedron with vertices `x`, `y`, `p`, `q`, any segment `[u, v]` joining the opposite
edges `[x, p]` and `[y, q]` passes through any triangle of vertices `p`, `q`, `z` where
`z ∈ [x, y]`. -/
lemma not_disjoint_segment_convex_hull_triple {p q u v x y z : E}
(hz : z ∈ segment 𝕜 x y) (hu : u ∈ segment 𝕜 x p) (hv : v ∈ segment 𝕜 y q) :
¬ disjoint (segment 𝕜 u v) (convex_hull 𝕜 {p, q, z}) :=
begin
rw not_disjoint_iff,
obtain ⟨az, bz, haz, hbz, habz, rfl⟩ := hz,
obtain rfl | haz' := haz.eq_or_lt,
{ rw zero_add at habz,
rw [zero_smul, zero_add, habz, one_smul],
refine ⟨v, right_mem_segment _ _ _, segment_subset_convex_hull _ _ hv⟩; simp },
obtain ⟨av, bv, hav, hbv, habv, rfl⟩ := hv,
obtain rfl | hav' := hav.eq_or_lt,
{ rw zero_add at habv,
rw [zero_smul, zero_add, habv, one_smul],
exact ⟨q, right_mem_segment _ _ _, subset_convex_hull _ _ $ by simp⟩ },
obtain ⟨au, bu, hau, hbu, habu, rfl⟩ := hu,
have hab : 0 < az * av + bz * au :=
add_pos_of_pos_of_nonneg (mul_pos haz' hav') (mul_nonneg hbz hau),
refine ⟨(az * av / (az * av + bz * au)) • (au • x + bu • p) +
(bz * au / (az * av + bz * au)) • (av • y + bv • q), ⟨_, _, _, _, _, rfl⟩, _⟩,
{ exact div_nonneg (mul_nonneg haz hav) hab.le },
{ exact div_nonneg (mul_nonneg hbz hau) hab.le },
{ rw [←add_div, div_self hab.ne'] },
rw [smul_add, smul_add, add_add_add_comm, add_comm, ←mul_smul, ←mul_smul],
classical,
let w : fin 3 → 𝕜 := ![az * av * bu, bz * au * bv, au * av],
let z : fin 3 → E := ![p, q, az • x + bz • y],
have hw₀ : ∀ i, 0 ≤ w i,
{ rintro i,
fin_cases i,
{ exact mul_nonneg (mul_nonneg haz hav) hbu },
{ exact mul_nonneg (mul_nonneg hbz hau) hbv },
{ exact mul_nonneg hau hav } },
have hw : ∑ i, w i = az * av + bz * au,
{ transitivity az * av * bu + (bz * au * bv + au * av),
{ simp [w, fin.sum_univ_succ, fin.sum_univ_zero] },
rw [←one_mul (au * av), ←habz, add_mul, ←add_assoc, add_add_add_comm, mul_assoc, ←mul_add,
mul_assoc, ←mul_add, mul_comm av, ←add_mul, ←mul_add, add_comm bu, add_comm bv, habu, habv,
one_mul, mul_one] },
have hz : ∀ i, z i ∈ ({p, q, az • x + bz • y} : set E),
{ rintro i,
fin_cases i; simp [z] },
convert finset.center_mass_mem_convex_hull (finset.univ : finset (fin 3)) (λ i _, hw₀ i)
(by rwa hw) (λ i _, hz i),
rw finset.center_mass,
simp_rw [div_eq_inv_mul, hw, mul_assoc, mul_smul (az * av + bz * au)⁻¹, ←smul_add, add_assoc,
←mul_assoc],
congr' 3,
rw [←mul_smul, ←mul_rotate, mul_right_comm, mul_smul, ←mul_smul _ av, mul_rotate, mul_smul _ bz,
←smul_add],
simp only [list.map, list.pmap, nat.add_def, add_zero, fin.mk_eq_subtype_mk, fin.mk_bit0,
fin.mk_one, list.foldr_cons, list.foldr_nil],
refl,
end
/-- **Stone's Separation Theorem** -/
lemma exists_convex_convex_compl_subset (hs : convex 𝕜 s) (ht : convex 𝕜 t) (hst : disjoint s t) :
∃ C : set E, convex 𝕜 C ∧ convex 𝕜 Cᶜ ∧ s ⊆ C ∧ t ⊆ Cᶜ :=
begin
let S : set (set E) := {C | convex 𝕜 C ∧ disjoint C t},
obtain ⟨C, hC, hsC, hCmax⟩ := zorn_subset_nonempty S
(λ c hcS hc ⟨t, ht⟩, ⟨⋃₀ c, ⟨hc.directed_on.convex_sUnion (λ s hs, (hcS hs).1),
disjoint_sUnion_left.2 $ λ c hc, (hcS hc).2⟩, λ s, subset_sUnion_of_mem⟩) s ⟨hs, hst⟩,
refine ⟨C, hC.1, convex_iff_segment_subset.2 $ λ x y hx hy z hz hzC, _, hsC,
hC.2.subset_compl_left⟩,
suffices h : ∀ c ∈ Cᶜ, ∃ a ∈ C, (segment 𝕜 c a ∩ t).nonempty,
{ obtain ⟨p, hp, u, hu, hut⟩ := h x hx,
obtain ⟨q, hq, v, hv, hvt⟩ := h y hy,
refine not_disjoint_segment_convex_hull_triple hz hu hv
(hC.2.symm.mono (ht.segment_subset hut hvt) $ convex_hull_min _ hC.1),
simp [insert_subset, hp, hq, singleton_subset_iff.2 hzC] },
rintro c hc,
by_contra' h,
suffices h : disjoint (convex_hull 𝕜 (insert c C)) t,
{ rw ←hCmax _ ⟨convex_convex_hull _ _, h⟩
((subset_insert _ _).trans $ subset_convex_hull _ _) at hc,
exact hc (subset_convex_hull _ _ $ mem_insert _ _) },
rw [convex_hull_insert ⟨z, hzC⟩, convex_join_singleton_left],
refine disjoint_Union₂_left.2 (λ a ha b hb, h a _ ⟨b, hb⟩),
rwa ←hC.1.convex_hull_eq,
end