Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Yaël Dillies. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yaël Dillies | |
-/ | |
import analysis.convex.strict_convex_space | |
/-! | |
# Uniformly convex spaces | |
This file defines uniformly convex spaces, which are real normed vector spaces in which for all | |
strictly positive `ε`, there exists some strictly positive `δ` such that `ε ≤ ∥x - y∥` implies | |
`∥x + y∥ ≤ 2 - δ` for all `x` and `y` of norm at most than `1`. This means that the triangle | |
inequality is strict with a uniform bound, as opposed to strictly convex spaces where the triangle | |
inequality is strict but not necessarily uniformly (`∥x + y∥ < ∥x∥ + ∥y∥` for all `x` and `y` not in | |
the same ray). | |
## Main declarations | |
`uniform_convex_space E` means that `E` is a uniformly convex space. | |
## TODO | |
* Milman-Pettis | |
* Hanner's inequalities | |
## Tags | |
convex, uniformly convex | |
-/ | |
open set metric | |
open_locale convex pointwise | |
/-- A *uniformly convex space* is a real normed space where the triangle inequality is strict with a | |
uniform bound. Namely, over the `x` and `y` of norm `1`, `∥x + y∥` is uniformly bounded above | |
by a constant `< 2` when `∥x - y∥` is uniformly bounded below by a positive constant. | |
See also `uniform_convex_space.of_uniform_convex_closed_unit_ball`. -/ | |
class uniform_convex_space (E : Type*) [seminormed_add_comm_group E] : Prop := | |
(uniform_convex : ∀ ⦃ε : ℝ⦄, 0 < ε → ∃ δ, 0 < δ ∧ | |
∀ ⦃x : E⦄, ∥x∥ = 1 → ∀ ⦃y⦄, ∥y∥ = 1 → ε ≤ ∥x - y∥ → ∥x + y∥ ≤ 2 - δ) | |
variables {E : Type*} | |
section seminormed_add_comm_group | |
variables (E) [seminormed_add_comm_group E] [uniform_convex_space E] {ε : ℝ} | |
lemma exists_forall_sphere_dist_add_le_two_sub (hε : 0 < ε) : | |
∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ∥x∥ = 1 → ∀ ⦃y⦄, ∥y∥ = 1 → ε ≤ ∥x - y∥ → ∥x + y∥ ≤ 2 - δ := | |
uniform_convex_space.uniform_convex hε | |
variables [normed_space ℝ E] | |
lemma exists_forall_closed_ball_dist_add_le_two_sub (hε : 0 < ε) : | |
∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ∥x∥ ≤ 1 → ∀ ⦃y⦄, ∥y∥ ≤ 1 → ε ≤ ∥x - y∥ → ∥x + y∥ ≤ 2 - δ := | |
begin | |
have hε' : 0 < ε / 3 := div_pos hε zero_lt_three, | |
obtain ⟨δ, hδ, h⟩ := exists_forall_sphere_dist_add_le_two_sub E hε', | |
set δ' := min (1/2) (min (ε/3) $ δ/3), | |
refine ⟨δ', lt_min one_half_pos $ lt_min hε' (div_pos hδ zero_lt_three), λ x hx y hy hxy, _⟩, | |
obtain hx' | hx' := le_or_lt (∥x∥) (1 - δ'), | |
{ exact (norm_add_le_of_le hx' hy).trans (sub_add_eq_add_sub _ _ _).le }, | |
obtain hy' | hy' := le_or_lt (∥y∥) (1 - δ'), | |
{ exact (norm_add_le_of_le hx hy').trans (add_sub_assoc _ _ _).ge }, | |
have hδ' : 0 < 1 - δ' := sub_pos_of_lt (min_lt_of_left_lt one_half_lt_one), | |
have h₁ : ∀ z : E, 1 - δ' < ∥z∥ → ∥∥z∥⁻¹ • z∥ = 1, | |
{ rintro z hz, | |
rw [norm_smul_of_nonneg (inv_nonneg.2 $ norm_nonneg _), inv_mul_cancel (hδ'.trans hz).ne'] }, | |
have h₂ : ∀ z : E, ∥z∥ ≤ 1 → 1 - δ' ≤ ∥z∥ → ∥∥z∥⁻¹ • z - z∥ ≤ δ', | |
{ rintro z hz hδz, | |
nth_rewrite 2 ←one_smul ℝ z, | |
rwa [←sub_smul, norm_smul_of_nonneg (sub_nonneg_of_le $ one_le_inv (hδ'.trans_le hδz) hz), | |
sub_mul, inv_mul_cancel (hδ'.trans_le hδz).ne', one_mul, sub_le] }, | |
set x' := ∥x∥⁻¹ • x, | |
set y' := ∥y∥⁻¹ • y, | |
have hxy' : ε/3 ≤ ∥x' - y'∥ := | |
calc ε/3 = ε - (ε/3 + ε/3) : by ring | |
... ≤ ∥x - y∥ - (∥x' - x∥ + ∥y' - y∥) : sub_le_sub hxy (add_le_add | |
((h₂ _ hx hx'.le).trans $ min_le_of_right_le $ min_le_left _ _) $ | |
(h₂ _ hy hy'.le).trans $ min_le_of_right_le $ min_le_left _ _) | |
... ≤ _ : begin | |
have : ∀ x' y', x - y = x' - y' + (x - x') + (y' - y) := λ _ _, by abel, | |
rw [sub_le_iff_le_add, norm_sub_rev _ x, ←add_assoc, this], | |
exact norm_add₃_le _ _ _, | |
end, | |
calc ∥x + y∥ ≤ ∥x' + y'∥ + ∥x' - x∥ + ∥y' - y∥ : begin | |
have : ∀ x' y', x + y = x' + y' + (x - x') + (y - y') := λ _ _, by abel, | |
rw [norm_sub_rev, norm_sub_rev y', this], | |
exact norm_add₃_le _ _ _, | |
end | |
... ≤ 2 - δ + δ' + δ' | |
: add_le_add_three (h (h₁ _ hx') (h₁ _ hy') hxy') (h₂ _ hx hx'.le) (h₂ _ hy hy'.le) | |
... ≤ 2 - δ' : begin | |
rw [←le_sub_iff_add_le, ←le_sub_iff_add_le, sub_sub, sub_sub], | |
refine sub_le_sub_left _ _, | |
ring_nf, | |
rw ←mul_div_cancel' δ three_ne_zero, | |
exact mul_le_mul_of_nonneg_left (min_le_of_right_le $ min_le_right _ _) three_pos.le, | |
end, | |
end | |
lemma exists_forall_closed_ball_dist_add_le_two_mul_sub (hε : 0 < ε) (r : ℝ) : | |
∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ∥x∥ ≤ r → ∀ ⦃y⦄, ∥y∥ ≤ r → ε ≤ ∥x - y∥ → ∥x + y∥ ≤ 2 * r - δ := | |
begin | |
obtain hr | hr := le_or_lt r 0, | |
{ exact ⟨1, one_pos, λ x hx y hy h, (hε.not_le $ h.trans $ (norm_sub_le _ _).trans $ | |
add_nonpos (hx.trans hr) (hy.trans hr)).elim⟩ }, | |
obtain ⟨δ, hδ, h⟩ := exists_forall_closed_ball_dist_add_le_two_sub E (div_pos hε hr), | |
refine ⟨δ * r, mul_pos hδ hr, λ x hx y hy hxy, _⟩, | |
rw [←div_le_one hr, div_eq_inv_mul, ←norm_smul_of_nonneg (inv_nonneg.2 hr.le)] at hx hy; | |
try { apply_instance }, | |
have := h hx hy, | |
simp_rw [←smul_add, ←smul_sub, norm_smul_of_nonneg (inv_nonneg.2 hr.le), ←div_eq_inv_mul, | |
div_le_div_right hr, div_le_iff hr, sub_mul] at this, | |
exact this hxy, | |
end | |
end seminormed_add_comm_group | |
variables [normed_add_comm_group E] [normed_space ℝ E] [uniform_convex_space E] | |
@[priority 100] -- See note [lower instance priority] | |
instance uniform_convex_space.to_strict_convex_space : strict_convex_space ℝ E := | |
strict_convex_space.of_norm_add_lt one_half_pos one_half_pos (add_halves _) $ λ x y hx hy hxy, begin | |
obtain ⟨δ, hδ, h⟩ := exists_forall_closed_ball_dist_add_le_two_sub E (norm_sub_pos_iff.2 hxy), | |
rw [←smul_add, norm_smul_of_nonneg one_half_pos.le, ←lt_div_iff' one_half_pos, one_div_one_div], | |
exact (h hx hy le_rfl).trans_lt (sub_lt_self _ hδ), | |
end | |