Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
6.18 kB
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import analysis.convex.strict_convex_space
/-!
# Uniformly convex spaces
This file defines uniformly convex spaces, which are real normed vector spaces in which for all
strictly positive `ε`, there exists some strictly positive `δ` such that `ε ≤ ∥x - y∥` implies
`∥x + y∥ ≤ 2 - δ` for all `x` and `y` of norm at most than `1`. This means that the triangle
inequality is strict with a uniform bound, as opposed to strictly convex spaces where the triangle
inequality is strict but not necessarily uniformly (`∥x + y∥ < ∥x∥ + ∥y∥` for all `x` and `y` not in
the same ray).
## Main declarations
`uniform_convex_space E` means that `E` is a uniformly convex space.
## TODO
* Milman-Pettis
* Hanner's inequalities
## Tags
convex, uniformly convex
-/
open set metric
open_locale convex pointwise
/-- A *uniformly convex space* is a real normed space where the triangle inequality is strict with a
uniform bound. Namely, over the `x` and `y` of norm `1`, `∥x + y∥` is uniformly bounded above
by a constant `< 2` when `∥x - y∥` is uniformly bounded below by a positive constant.
See also `uniform_convex_space.of_uniform_convex_closed_unit_ball`. -/
class uniform_convex_space (E : Type*) [seminormed_add_comm_group E] : Prop :=
(uniform_convex : ∀ ⦃ε : ℝ⦄, 0 < ε → ∃ δ, 0 < δ ∧
∀ ⦃x : E⦄, ∥x∥ = 1 → ∀ ⦃y⦄, ∥y∥ = 1 → ε ≤ ∥x - y∥ → ∥x + y∥ ≤ 2 - δ)
variables {E : Type*}
section seminormed_add_comm_group
variables (E) [seminormed_add_comm_group E] [uniform_convex_space E] {ε : ℝ}
lemma exists_forall_sphere_dist_add_le_two_sub (hε : 0 < ε) :
∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ∥x∥ = 1 → ∀ ⦃y⦄, ∥y∥ = 1 → ε ≤ ∥x - y∥ → ∥x + y∥ ≤ 2 - δ :=
uniform_convex_space.uniform_convex hε
variables [normed_space ℝ E]
lemma exists_forall_closed_ball_dist_add_le_two_sub (hε : 0 < ε) :
∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ∥x∥ ≤ 1 → ∀ ⦃y⦄, ∥y∥ ≤ 1 → ε ≤ ∥x - y∥ → ∥x + y∥ ≤ 2 - δ :=
begin
have hε' : 0 < ε / 3 := div_pos hε zero_lt_three,
obtain ⟨δ, hδ, h⟩ := exists_forall_sphere_dist_add_le_two_sub E hε',
set δ' := min (1/2) (min (ε/3) $ δ/3),
refine ⟨δ', lt_min one_half_pos $ lt_min hε' (div_pos hδ zero_lt_three), λ x hx y hy hxy, _⟩,
obtain hx' | hx' := le_or_lt (∥x∥) (1 - δ'),
{ exact (norm_add_le_of_le hx' hy).trans (sub_add_eq_add_sub _ _ _).le },
obtain hy' | hy' := le_or_lt (∥y∥) (1 - δ'),
{ exact (norm_add_le_of_le hx hy').trans (add_sub_assoc _ _ _).ge },
have hδ' : 0 < 1 - δ' := sub_pos_of_lt (min_lt_of_left_lt one_half_lt_one),
have h₁ : ∀ z : E, 1 - δ' < ∥z∥ → ∥∥z∥⁻¹ • z∥ = 1,
{ rintro z hz,
rw [norm_smul_of_nonneg (inv_nonneg.2 $ norm_nonneg _), inv_mul_cancel (hδ'.trans hz).ne'] },
have h₂ : ∀ z : E, ∥z∥ ≤ 11 - δ' ≤ ∥z∥ → ∥∥z∥⁻¹ • z - z∥ ≤ δ',
{ rintro z hz hδz,
nth_rewrite 2 ←one_smul ℝ z,
rwa [←sub_smul, norm_smul_of_nonneg (sub_nonneg_of_le $ one_le_inv (hδ'.trans_le hδz) hz),
sub_mul, inv_mul_cancel (hδ'.trans_le hδz).ne', one_mul, sub_le] },
set x' := ∥x∥⁻¹ • x,
set y' := ∥y∥⁻¹ • y,
have hxy' : ε/3 ≤ ∥x' - y'∥ :=
calc ε/3 = ε - (ε/3 + ε/3) : by ring
... ≤ ∥x - y∥ - (∥x' - x∥ + ∥y' - y∥) : sub_le_sub hxy (add_le_add
((h₂ _ hx hx'.le).trans $ min_le_of_right_le $ min_le_left _ _) $
(h₂ _ hy hy'.le).trans $ min_le_of_right_le $ min_le_left _ _)
... ≤ _ : begin
have : ∀ x' y', x - y = x' - y' + (x - x') + (y' - y) := λ _ _, by abel,
rw [sub_le_iff_le_add, norm_sub_rev _ x, ←add_assoc, this],
exact norm_add₃_le _ _ _,
end,
calc ∥x + y∥ ≤ ∥x' + y'∥ + ∥x' - x∥ + ∥y' - y∥ : begin
have : ∀ x' y', x + y = x' + y' + (x - x') + (y - y') := λ _ _, by abel,
rw [norm_sub_rev, norm_sub_rev y', this],
exact norm_add₃_le _ _ _,
end
... ≤ 2 - δ + δ' + δ'
: add_le_add_three (h (h₁ _ hx') (h₁ _ hy') hxy') (h₂ _ hx hx'.le) (h₂ _ hy hy'.le)
... ≤ 2 - δ' : begin
rw [←le_sub_iff_add_le, ←le_sub_iff_add_le, sub_sub, sub_sub],
refine sub_le_sub_left _ _,
ring_nf,
rw ←mul_div_cancel' δ three_ne_zero,
exact mul_le_mul_of_nonneg_left (min_le_of_right_le $ min_le_right _ _) three_pos.le,
end,
end
lemma exists_forall_closed_ball_dist_add_le_two_mul_sub (hε : 0 < ε) (r : ℝ) :
∃ δ, 0 < δ ∧ ∀ ⦃x : E⦄, ∥x∥ ≤ r → ∀ ⦃y⦄, ∥y∥ ≤ r → ε ≤ ∥x - y∥ → ∥x + y∥ ≤ 2 * r - δ :=
begin
obtain hr | hr := le_or_lt r 0,
{ exact ⟨1, one_pos, λ x hx y hy h, (hε.not_le $ h.trans $ (norm_sub_le _ _).trans $
add_nonpos (hx.trans hr) (hy.trans hr)).elim⟩ },
obtain ⟨δ, hδ, h⟩ := exists_forall_closed_ball_dist_add_le_two_sub E (div_pos hε hr),
refine ⟨δ * r, mul_pos hδ hr, λ x hx y hy hxy, _⟩,
rw [←div_le_one hr, div_eq_inv_mul, ←norm_smul_of_nonneg (inv_nonneg.2 hr.le)] at hx hy;
try { apply_instance },
have := h hx hy,
simp_rw [←smul_add, ←smul_sub, norm_smul_of_nonneg (inv_nonneg.2 hr.le), ←div_eq_inv_mul,
div_le_div_right hr, div_le_iff hr, sub_mul] at this,
exact this hxy,
end
end seminormed_add_comm_group
variables [normed_add_comm_group E] [normed_space ℝ E] [uniform_convex_space E]
@[priority 100] -- See note [lower instance priority]
instance uniform_convex_space.to_strict_convex_space : strict_convex_space ℝ E :=
strict_convex_space.of_norm_add_lt one_half_pos one_half_pos (add_halves _) $ λ x y hx hy hxy, begin
obtain ⟨δ, hδ, h⟩ := exists_forall_closed_ball_dist_add_le_two_sub E (norm_sub_pos_iff.2 hxy),
rw [←smul_add, norm_smul_of_nonneg one_half_pos.le, ←lt_div_iff' one_half_pos, one_div_one_div],
exact (h hx hy le_rfl).trans_lt (sub_lt_self _ hδ),
end