Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Heather Macbeth. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Heather Macbeth, Eric Wieser | |
-/ | |
import analysis.normed_space.basic | |
import analysis.normed_space.pi_Lp | |
import analysis.inner_product_space.pi_L2 | |
/-! | |
# Matrices as a normed space | |
In this file we provide the following non-instances for norms on matrices: | |
* The elementwise norm: | |
* `matrix.seminormed_add_comm_group` | |
* `matrix.normed_add_comm_group` | |
* `matrix.normed_space` | |
* The Frobenius norm: | |
* `matrix.frobenius_seminormed_add_comm_group` | |
* `matrix.frobenius_normed_add_comm_group` | |
* `matrix.frobenius_normed_space` | |
* `matrix.frobenius_normed_ring` | |
* `matrix.frobenius_normed_algebra` | |
* The $L^\infty$ operator norm: | |
* `matrix.linfty_op_seminormed_add_comm_group` | |
* `matrix.linfty_op_normed_add_comm_group` | |
* `matrix.linfty_op_normed_space` | |
* `matrix.linfty_op_non_unital_semi_normed_ring` | |
* `matrix.linfty_op_semi_normed_ring` | |
* `matrix.linfty_op_non_unital_normed_ring` | |
* `matrix.linfty_op_normed_ring` | |
* `matrix.linfty_op_normed_algebra` | |
These are not declared as instances because there are several natural choices for defining the norm | |
of a matrix. | |
-/ | |
noncomputable theory | |
open_locale big_operators nnreal matrix | |
namespace matrix | |
variables {R l m n α β : Type*} [fintype l] [fintype m] [fintype n] | |
/-! ### The elementwise supremum norm -/ | |
section linf_linf | |
section seminormed_add_comm_group | |
variables [seminormed_add_comm_group α] [seminormed_add_comm_group β] | |
/-- Seminormed group instance (using sup norm of sup norm) for matrices over a seminormed group. Not | |
declared as an instance because there are several natural choices for defining the norm of a | |
matrix. -/ | |
protected def seminormed_add_comm_group : seminormed_add_comm_group (matrix m n α) := | |
pi.seminormed_add_comm_group | |
local attribute [instance] matrix.seminormed_add_comm_group | |
lemma norm_le_iff {r : ℝ} (hr : 0 ≤ r) {A : matrix m n α} : | |
∥A∥ ≤ r ↔ ∀ i j, ∥A i j∥ ≤ r := | |
by simp [pi_norm_le_iff hr] | |
lemma nnnorm_le_iff {r : ℝ≥0} {A : matrix m n α} : | |
∥A∥₊ ≤ r ↔ ∀ i j, ∥A i j∥₊ ≤ r := | |
by simp [pi_nnnorm_le_iff] | |
lemma norm_lt_iff {r : ℝ} (hr : 0 < r) {A : matrix m n α} : | |
∥A∥ < r ↔ ∀ i j, ∥A i j∥ < r := | |
by simp [pi_norm_lt_iff hr] | |
lemma nnnorm_lt_iff {r : ℝ≥0} (hr : 0 < r) {A : matrix m n α} : | |
∥A∥₊ < r ↔ ∀ i j, ∥A i j∥₊ < r := | |
by simp [pi_nnnorm_lt_iff hr] | |
lemma norm_entry_le_entrywise_sup_norm (A : matrix m n α) {i : m} {j : n} : | |
∥A i j∥ ≤ ∥A∥ := | |
(norm_le_pi_norm (A i) j).trans (norm_le_pi_norm A i) | |
lemma nnnorm_entry_le_entrywise_sup_nnnorm (A : matrix m n α) {i : m} {j : n} : | |
∥A i j∥₊ ≤ ∥A∥₊ := | |
(nnnorm_le_pi_nnnorm (A i) j).trans (nnnorm_le_pi_nnnorm A i) | |
@[simp] lemma nnnorm_map_eq (A : matrix m n α) (f : α → β) (hf : ∀ a, ∥f a∥₊ = ∥a∥₊) : | |
∥A.map f∥₊ = ∥A∥₊ := | |
by simp_rw [pi.nnnorm_def, matrix.map_apply, hf] | |
@[simp] lemma norm_map_eq (A : matrix m n α) (f : α → β) (hf : ∀ a, ∥f a∥ = ∥a∥) : | |
∥A.map f∥ = ∥A∥ := | |
(congr_arg (coe : ℝ≥0 → ℝ) $ nnnorm_map_eq A f $ λ a, subtype.ext $ hf a : _) | |
@[simp] lemma nnnorm_transpose (A : matrix m n α) : ∥Aᵀ∥₊ = ∥A∥₊ := | |
by { simp_rw [pi.nnnorm_def], exact finset.sup_comm _ _ _ } | |
@[simp] lemma norm_transpose (A : matrix m n α) : ∥Aᵀ∥ = ∥A∥ := congr_arg coe $ nnnorm_transpose A | |
@[simp] lemma nnnorm_conj_transpose [star_add_monoid α] [normed_star_group α] (A : matrix m n α) : | |
∥Aᴴ∥₊ = ∥A∥₊ := | |
(nnnorm_map_eq _ _ nnnorm_star).trans A.nnnorm_transpose | |
@[simp] lemma norm_conj_transpose [star_add_monoid α] [normed_star_group α] (A : matrix m n α) : | |
∥Aᴴ∥ = ∥A∥ := | |
congr_arg coe $ nnnorm_conj_transpose A | |
instance [star_add_monoid α] [normed_star_group α] : normed_star_group (matrix m m α) := | |
⟨norm_conj_transpose⟩ | |
@[simp] lemma nnnorm_col (v : m → α) : ∥col v∥₊ = ∥v∥₊ := by simp [pi.nnnorm_def] | |
@[simp] lemma norm_col (v : m → α) : ∥col v∥ = ∥v∥ := congr_arg coe $ nnnorm_col v | |
@[simp] lemma nnnorm_row (v : n → α) : ∥row v∥₊ = ∥v∥₊ := by simp [pi.nnnorm_def] | |
@[simp] lemma norm_row (v : n → α) : ∥row v∥ = ∥v∥ := congr_arg coe $ nnnorm_row v | |
@[simp] lemma nnnorm_diagonal [decidable_eq n] (v : n → α) : ∥diagonal v∥₊ = ∥v∥₊ := | |
begin | |
simp_rw pi.nnnorm_def, | |
congr' 1 with i : 1, | |
refine le_antisymm (finset.sup_le $ λ j hj, _) _, | |
{ obtain rfl | hij := eq_or_ne i j, | |
{ rw diagonal_apply_eq }, | |
{ rw [diagonal_apply_ne _ hij, nnnorm_zero], | |
exact zero_le _ }, }, | |
{ refine eq.trans_le _ (finset.le_sup (finset.mem_univ i)), | |
rw diagonal_apply_eq } | |
end | |
@[simp] lemma norm_diagonal [decidable_eq n] (v : n → α) : ∥diagonal v∥ = ∥v∥ := | |
congr_arg coe $ nnnorm_diagonal v | |
/-- Note this is safe as an instance as it carries no data. -/ | |
instance [nonempty n] [decidable_eq n] [has_one α] [norm_one_class α] : | |
norm_one_class (matrix n n α) := | |
⟨(norm_diagonal _).trans $ norm_one⟩ | |
end seminormed_add_comm_group | |
/-- Normed group instance (using sup norm of sup norm) for matrices over a normed group. Not | |
declared as an instance because there are several natural choices for defining the norm of a | |
matrix. -/ | |
protected def normed_add_comm_group [normed_add_comm_group α] : | |
normed_add_comm_group (matrix m n α) := | |
pi.normed_add_comm_group | |
section normed_space | |
local attribute [instance] matrix.seminormed_add_comm_group | |
variables [normed_field R] [seminormed_add_comm_group α] [normed_space R α] | |
/-- Normed space instance (using sup norm of sup norm) for matrices over a normed space. Not | |
declared as an instance because there are several natural choices for defining the norm of a | |
matrix. -/ | |
protected def normed_space : normed_space R (matrix m n α) := | |
pi.normed_space | |
end normed_space | |
end linf_linf | |
/-! ### The $L_\infty$ operator norm | |
This section defines the matrix norm $\|A\|_\infty = \operatorname{sup}_i (\sum_j \|A_{ij}\|)$. | |
Note that this is equivalent to the operator norm, considering $A$ as a linear map between two | |
$L^\infty$ spaces. | |
-/ | |
section linfty_op | |
/-- Seminormed group instance (using sup norm of L1 norm) for matrices over a seminormed group. Not | |
declared as an instance because there are several natural choices for defining the norm of a | |
matrix. -/ | |
local attribute [instance] | |
protected def linfty_op_seminormed_add_comm_group [seminormed_add_comm_group α] : | |
seminormed_add_comm_group (matrix m n α) := | |
(by apply_instance : seminormed_add_comm_group (m → pi_Lp 1 (λ j : n, α))) | |
/-- Normed group instance (using sup norm of L1 norm) for matrices over a normed ring. Not | |
declared as an instance because there are several natural choices for defining the norm of a | |
matrix. -/ | |
local attribute [instance] | |
protected def linfty_op_normed_add_comm_group [normed_add_comm_group α] : | |
normed_add_comm_group (matrix m n α) := | |
(by apply_instance : normed_add_comm_group (m → pi_Lp 1 (λ j : n, α))) | |
/-- Normed space instance (using sup norm of L1 norm) for matrices over a normed space. Not | |
declared as an instance because there are several natural choices for defining the norm of a | |
matrix. -/ | |
local attribute [instance] | |
protected def linfty_op_normed_space [normed_field R] [seminormed_add_comm_group α] | |
[normed_space R α] : | |
normed_space R (matrix m n α) := | |
(by apply_instance : normed_space R (m → pi_Lp 1 (λ j : n, α))) | |
section seminormed_add_comm_group | |
variables [seminormed_add_comm_group α] | |
lemma linfty_op_norm_def (A : matrix m n α) : | |
∥A∥ = ((finset.univ : finset m).sup (λ i : m, ∑ j : n, ∥A i j∥₊) : ℝ≥0) := | |
by simp_rw [pi.norm_def, pi_Lp.nnnorm_eq, div_one, nnreal.rpow_one] | |
lemma linfty_op_nnnorm_def (A : matrix m n α) : | |
∥A∥₊ = (finset.univ : finset m).sup (λ i : m, ∑ j : n, ∥A i j∥₊) := | |
subtype.ext $ linfty_op_norm_def A | |
@[simp] lemma linfty_op_nnnorm_col (v : m → α) : | |
∥col v∥₊ = ∥v∥₊ := | |
begin | |
rw [linfty_op_nnnorm_def, pi.nnnorm_def], | |
simp, | |
end | |
@[simp] lemma linfty_op_norm_col (v : m → α) : | |
∥col v∥ = ∥v∥ := | |
congr_arg coe $ linfty_op_nnnorm_col v | |
@[simp] lemma linfty_op_nnnorm_row (v : n → α) : | |
∥row v∥₊ = ∑ i, ∥v i∥₊ := | |
by simp [linfty_op_nnnorm_def] | |
@[simp] lemma linfty_op_norm_row (v : n → α) : | |
∥row v∥ = ∑ i, ∥v i∥ := | |
(congr_arg coe $ linfty_op_nnnorm_row v).trans $ by simp [nnreal.coe_sum] | |
@[simp] | |
lemma linfty_op_nnnorm_diagonal [decidable_eq m] (v : m → α) : | |
∥diagonal v∥₊ = ∥v∥₊ := | |
begin | |
rw [linfty_op_nnnorm_def, pi.nnnorm_def], | |
congr' 1 with i : 1, | |
refine (finset.sum_eq_single_of_mem _ (finset.mem_univ i) $ λ j hj hij, _).trans _, | |
{ rw [diagonal_apply_ne' _ hij, nnnorm_zero] }, | |
{ rw [diagonal_apply_eq] }, | |
end | |
@[simp] | |
lemma linfty_op_norm_diagonal [decidable_eq m] (v : m → α) : | |
∥diagonal v∥ = ∥v∥ := | |
congr_arg coe $ linfty_op_nnnorm_diagonal v | |
end seminormed_add_comm_group | |
section non_unital_semi_normed_ring | |
variables [non_unital_semi_normed_ring α] | |
lemma linfty_op_nnnorm_mul (A : matrix l m α) (B : matrix m n α) : ∥A ⬝ B∥₊ ≤ ∥A∥₊ * ∥B∥₊ := | |
begin | |
simp_rw [linfty_op_nnnorm_def, matrix.mul_apply], | |
calc finset.univ.sup (λ i, ∑ k, ∥∑ j, A i j * B j k∥₊) | |
≤ finset.univ.sup (λ i, ∑ k j, ∥A i j∥₊ * ∥B j k∥₊) : | |
finset.sup_mono_fun $ λ i hi, finset.sum_le_sum $ λ k hk, nnnorm_sum_le_of_le _ $ λ j hj, | |
nnnorm_mul_le _ _ | |
... = finset.univ.sup (λ i, ∑ j, (∥A i j∥₊ * ∑ k, ∥B j k∥₊)) : | |
by simp_rw [@finset.sum_comm _ m n, finset.mul_sum] | |
... ≤ finset.univ.sup (λ i, ∑ j, ∥A i j∥₊ * finset.univ.sup (λ i, ∑ j, ∥B i j∥₊)) : | |
finset.sup_mono_fun $ λ i hi, finset.sum_le_sum $ λ j hj, | |
mul_le_mul_of_nonneg_left (finset.le_sup hj) (zero_le _) | |
... ≤ finset.univ.sup (λ i, ∑ j, ∥A i j∥₊) * finset.univ.sup (λ i, ∑ j, ∥B i j∥₊) : | |
by simp_rw [←finset.sum_mul, ←nnreal.finset_sup_mul], | |
end | |
lemma linfty_op_norm_mul (A : matrix l m α) (B : matrix m n α) : ∥A ⬝ B∥ ≤ ∥A∥ * ∥B∥ := | |
linfty_op_nnnorm_mul _ _ | |
lemma linfty_op_nnnorm_mul_vec (A : matrix l m α) (v : m → α) : ∥A.mul_vec v∥₊ ≤ ∥A∥₊ * ∥v∥₊ := | |
begin | |
rw [←linfty_op_nnnorm_col (A.mul_vec v), ←linfty_op_nnnorm_col v], | |
exact linfty_op_nnnorm_mul A (col v), | |
end | |
lemma linfty_op_norm_mul_vec (A : matrix l m α) (v : m → α) : ∥matrix.mul_vec A v∥ ≤ ∥A∥ * ∥v∥ := | |
linfty_op_nnnorm_mul_vec _ _ | |
end non_unital_semi_normed_ring | |
/-- Seminormed non-unital ring instance (using sup norm of L1 norm) for matrices over a semi normed | |
non-unital ring. Not declared as an instance because there are several natural choices for defining | |
the norm of a matrix. -/ | |
local attribute [instance] | |
protected def linfty_op_non_unital_semi_normed_ring [non_unital_semi_normed_ring α] : | |
non_unital_semi_normed_ring (matrix n n α) := | |
{ norm_mul := linfty_op_norm_mul, | |
.. matrix.linfty_op_seminormed_add_comm_group, | |
.. matrix.non_unital_ring } | |
/-- The `L₁-L∞` norm preserves one on non-empty matrices. Note this is safe as an instance, as it | |
carries no data. -/ | |
instance linfty_op_norm_one_class [semi_normed_ring α] [norm_one_class α] [decidable_eq n] | |
[nonempty n] : norm_one_class (matrix n n α) := | |
{ norm_one := (linfty_op_norm_diagonal _).trans norm_one } | |
/-- Seminormed ring instance (using sup norm of L1 norm) for matrices over a semi normed ring. Not | |
declared as an instance because there are several natural choices for defining the norm of a | |
matrix. -/ | |
local attribute [instance] | |
protected def linfty_op_semi_normed_ring [semi_normed_ring α] [decidable_eq n] : | |
semi_normed_ring (matrix n n α) := | |
{ .. matrix.linfty_op_non_unital_semi_normed_ring, | |
.. matrix.ring } | |
/-- Normed non-unital ring instance (using sup norm of L1 norm) for matrices over a normed | |
non-unital ring. Not declared as an instance because there are several natural choices for defining | |
the norm of a matrix. -/ | |
local attribute [instance] | |
protected def linfty_op_non_unital_normed_ring [non_unital_normed_ring α] : | |
non_unital_normed_ring (matrix n n α) := | |
{ ..matrix.linfty_op_non_unital_semi_normed_ring } | |
/-- Normed ring instance (using sup norm of L1 norm) for matrices over a normed ring. Not | |
declared as an instance because there are several natural choices for defining the norm of a | |
matrix. -/ | |
local attribute [instance] | |
protected def linfty_op_normed_ring [normed_ring α] [decidable_eq n] : | |
normed_ring (matrix n n α) := | |
{ ..matrix.linfty_op_semi_normed_ring } | |
/-- Normed algebra instance (using sup norm of L1 norm) for matrices over a normed algebra. Not | |
declared as an instance because there are several natural choices for defining the norm of a | |
matrix. -/ | |
local attribute [instance] | |
protected def linfty_op_normed_algebra [normed_field R] [semi_normed_ring α] [normed_algebra R α] | |
[decidable_eq n] : | |
normed_algebra R (matrix n n α) := | |
{ ..matrix.linfty_op_normed_space } | |
end linfty_op | |
/-! ### The Frobenius norm | |
This is defined as $\|A\| = \sqrt{\sum_{i,j} \|A_{ij}\|^2}$. | |
When the matrix is over the real or complex numbers, this norm is submultiplicative. | |
-/ | |
section frobenius | |
open_locale matrix big_operators | |
/-- Seminormed group instance (using frobenius norm) for matrices over a seminormed group. Not | |
declared as an instance because there are several natural choices for defining the norm of a | |
matrix. -/ | |
local attribute [instance] | |
def frobenius_seminormed_add_comm_group [seminormed_add_comm_group α] : | |
seminormed_add_comm_group (matrix m n α) := | |
(by apply_instance : seminormed_add_comm_group (pi_Lp 2 (λ i : m, pi_Lp 2 (λ j : n, α)))) | |
/-- Normed group instance (using frobenius norm) for matrices over a normed group. Not | |
declared as an instance because there are several natural choices for defining the norm of a | |
matrix. -/ | |
local attribute [instance] | |
def frobenius_normed_add_comm_group [normed_add_comm_group α] : | |
normed_add_comm_group (matrix m n α) := | |
(by apply_instance : normed_add_comm_group (pi_Lp 2 (λ i : m, pi_Lp 2 (λ j : n, α)))) | |
/-- Normed space instance (using frobenius norm) for matrices over a normed space. Not | |
declared as an instance because there are several natural choices for defining the norm of a | |
matrix. -/ | |
local attribute [instance] | |
def frobenius_normed_space [normed_field R] [seminormed_add_comm_group α] [normed_space R α] : | |
normed_space R (matrix m n α) := | |
(by apply_instance : normed_space R (pi_Lp 2 (λ i : m, pi_Lp 2 (λ j : n, α)))) | |
section seminormed_add_comm_group | |
variables [seminormed_add_comm_group α] [seminormed_add_comm_group β] | |
lemma frobenius_nnnorm_def (A : matrix m n α) : | |
∥A∥₊ = (∑ i j, ∥A i j∥₊ ^ (2 : ℝ)) ^ (1/2 : ℝ) := | |
by simp_rw [pi_Lp.nnnorm_eq, ←nnreal.rpow_mul, div_mul_cancel (1 : ℝ) two_ne_zero, nnreal.rpow_one] | |
lemma frobenius_norm_def (A : matrix m n α) : | |
∥A∥ = (∑ i j, ∥A i j∥ ^ (2 : ℝ)) ^ (1/2 : ℝ) := | |
(congr_arg coe (frobenius_nnnorm_def A)).trans $ by simp [nnreal.coe_sum] | |
@[simp] lemma frobenius_nnnorm_map_eq (A : matrix m n α) (f : α → β) (hf : ∀ a, ∥f a∥₊ = ∥a∥₊) : | |
∥A.map f∥₊ = ∥A∥₊ := | |
by simp_rw [frobenius_nnnorm_def, matrix.map_apply, hf] | |
@[simp] lemma frobenius_norm_map_eq (A : matrix m n α) (f : α → β) (hf : ∀ a, ∥f a∥ = ∥a∥) : | |
∥A.map f∥ = ∥A∥ := | |
(congr_arg (coe : ℝ≥0 → ℝ) $ frobenius_nnnorm_map_eq A f $ λ a, subtype.ext $ hf a : _) | |
@[simp] lemma frobenius_nnnorm_transpose (A : matrix m n α) : ∥Aᵀ∥₊ = ∥A∥₊ := | |
by { rw [frobenius_nnnorm_def, frobenius_nnnorm_def, finset.sum_comm], refl } | |
@[simp] lemma frobenius_norm_transpose (A : matrix m n α) : ∥Aᵀ∥ = ∥A∥ := | |
congr_arg coe $ frobenius_nnnorm_transpose A | |
@[simp] lemma frobenius_nnnorm_conj_transpose [star_add_monoid α] [normed_star_group α] | |
(A : matrix m n α) : ∥Aᴴ∥₊ = ∥A∥₊ := | |
(frobenius_nnnorm_map_eq _ _ nnnorm_star).trans A.frobenius_nnnorm_transpose | |
@[simp] lemma frobenius_norm_conj_transpose [star_add_monoid α] [normed_star_group α] | |
(A : matrix m n α) : ∥Aᴴ∥ = ∥A∥ := | |
congr_arg coe $ frobenius_nnnorm_conj_transpose A | |
instance frobenius_normed_star_group [star_add_monoid α] [normed_star_group α] : | |
normed_star_group (matrix m m α) := | |
⟨frobenius_norm_conj_transpose⟩ | |
@[simp] lemma frobenius_norm_row (v : m → α) : ∥row v∥ = ∥(pi_Lp.equiv 2 _).symm v∥ := | |
by { rw [frobenius_norm_def, fintype.sum_unique], refl } | |
@[simp] lemma frobenius_nnnorm_row (v : m → α) : ∥row v∥₊ = ∥(pi_Lp.equiv 2 _).symm v∥₊ := | |
subtype.ext $ frobenius_norm_row v | |
@[simp] lemma frobenius_norm_col (v : n → α) : ∥col v∥ = ∥(pi_Lp.equiv 2 _).symm v∥ := | |
by { simp_rw [frobenius_norm_def, fintype.sum_unique], refl } | |
@[simp] lemma frobenius_nnnorm_col (v : n → α) : ∥col v∥₊ = ∥(pi_Lp.equiv 2 _).symm v∥₊ := | |
subtype.ext $ frobenius_norm_col v | |
@[simp] lemma frobenius_nnnorm_diagonal [decidable_eq n] (v : n → α) : | |
∥diagonal v∥₊ = ∥(pi_Lp.equiv 2 _).symm v∥₊ := | |
begin | |
simp_rw [frobenius_nnnorm_def, ←finset.sum_product', finset.univ_product_univ, pi_Lp.nnnorm_eq], | |
let s := (finset.univ : finset n).map ⟨λ i : n, (i, i), λ i j h, congr_arg prod.fst h⟩, | |
rw ←finset.sum_subset (finset.subset_univ s) (λ i hi his, _), | |
{ rw finset.sum_map, | |
dsimp, | |
simp_rw diagonal_apply_eq }, | |
{ suffices : i.1 ≠ i.2, | |
{ rw [diagonal_apply_ne _ this, nnnorm_zero, nnreal.zero_rpow two_ne_zero], }, | |
intro h, | |
exact finset.mem_map.not.mp his ⟨i.1, finset.mem_univ _, prod.ext rfl h⟩ } | |
end | |
@[simp] lemma frobenius_norm_diagonal [decidable_eq n] (v : n → α) : | |
∥diagonal v∥ = ∥(pi_Lp.equiv 2 _).symm v∥ := | |
(congr_arg coe $ frobenius_nnnorm_diagonal v : _).trans rfl | |
end seminormed_add_comm_group | |
lemma frobenius_nnnorm_one [decidable_eq n] [seminormed_add_comm_group α] [has_one α] : | |
∥(1 : matrix n n α)∥₊ = nnreal.sqrt (fintype.card n) * ∥(1 : α)∥₊:= | |
begin | |
refine (frobenius_nnnorm_diagonal _).trans _, | |
simp_rw [pi_Lp.nnnorm_equiv_symm_const, nnreal.sqrt_eq_rpow], | |
end | |
section is_R_or_C | |
variables [is_R_or_C α] | |
lemma frobenius_nnnorm_mul (A : matrix l m α) (B : matrix m n α) : ∥A ⬝ B∥₊ ≤ ∥A∥₊ * ∥B∥₊ := | |
begin | |
simp_rw [frobenius_nnnorm_def, matrix.mul_apply], | |
rw [←nnreal.mul_rpow, @finset.sum_comm _ n m, finset.sum_mul_sum, finset.sum_product], | |
refine nnreal.rpow_le_rpow _ one_half_pos.le, | |
refine finset.sum_le_sum (λ i hi, finset.sum_le_sum $ λ j hj, _), | |
rw [← nnreal.rpow_le_rpow_iff one_half_pos, ← nnreal.rpow_mul, | |
mul_div_cancel' (1 : ℝ) two_ne_zero, nnreal.rpow_one, nnreal.mul_rpow], | |
dsimp only, | |
have := @nnnorm_inner_le_nnnorm α _ _ _ | |
((pi_Lp.equiv 2 (λ i, α)).symm (λ j, star (A i j))) | |
((pi_Lp.equiv 2 (λ i, α)).symm (λ k, B k j)), | |
simpa only [pi_Lp.equiv_symm_apply, pi_Lp.inner_apply, | |
is_R_or_C.inner_apply, star_ring_end_apply, pi.nnnorm_def, pi_Lp.nnnorm_eq, | |
star_star, nnnorm_star] using this, | |
end | |
lemma frobenius_norm_mul (A : matrix l m α) (B : matrix m n α) : ∥A ⬝ B∥ ≤ ∥A∥ * ∥B∥ := | |
frobenius_nnnorm_mul A B | |
/-- Normed ring instance (using frobenius norm) for matrices over `ℝ` or `ℂ`. Not | |
declared as an instance because there are several natural choices for defining the norm of a | |
matrix. -/ | |
local attribute [instance] | |
def frobenius_normed_ring [decidable_eq m] : normed_ring (matrix m m α) := | |
{ norm := has_norm.norm, | |
norm_mul := frobenius_norm_mul, | |
..matrix.frobenius_seminormed_add_comm_group } | |
/-- Normed algebra instance (using frobenius norm) for matrices over `ℝ` or `ℂ`. Not | |
declared as an instance because there are several natural choices for defining the norm of a | |
matrix. -/ | |
local attribute [instance] | |
def frobenius_normed_algebra [decidable_eq m] [normed_field R] [normed_algebra R α] : | |
normed_algebra R (matrix m m α) := | |
{ ..matrix.frobenius_normed_space } | |
end is_R_or_C | |
end frobenius | |
end matrix | |