Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Frédéric Dupuis. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Frédéric Dupuis | |
-/ | |
import topology.algebra.module.character_space | |
import analysis.normed_space.weak_dual | |
import analysis.normed_space.spectrum | |
/-! | |
# Normed algebras | |
This file contains basic facts about normed algebras. | |
## Main results | |
* We show that the character space of a normed algebra is compact using the Banach-Alaoglu theorem. | |
## TODO | |
* Show compactness for topological vector spaces; this requires the TVS version of Banach-Alaoglu. | |
## Tags | |
normed algebra, character space, continuous functional calculus | |
-/ | |
variables {𝕜 : Type*} {A : Type*} | |
namespace weak_dual | |
namespace character_space | |
variables [nontrivially_normed_field 𝕜] [normed_ring A] | |
[normed_algebra 𝕜 A] [complete_space A] [norm_one_class A] | |
lemma norm_one (φ : character_space 𝕜 A) : ∥to_normed_dual (φ : weak_dual 𝕜 A)∥ = 1 := | |
begin | |
refine continuous_linear_map.op_norm_eq_of_bounds zero_le_one (λ a, _) (λ x hx h, _), | |
{ rw [one_mul], | |
exact spectrum.norm_le_norm_of_mem (apply_mem_spectrum φ a) }, | |
{ have : ∥φ 1∥ ≤ x * ∥(1 : A)∥ := h 1, | |
simpa only [norm_one, mul_one, map_one] using this }, | |
end | |
instance [proper_space 𝕜] : compact_space (character_space 𝕜 A) := | |
begin | |
rw [←is_compact_iff_compact_space], | |
have h : character_space 𝕜 A ⊆ to_normed_dual ⁻¹' metric.closed_ball 0 1, | |
{ intros φ hφ, | |
rw [set.mem_preimage, mem_closed_ball_zero_iff], | |
exact (le_of_eq $ norm_one ⟨φ, ⟨hφ.1, hφ.2⟩⟩ : _), }, | |
exact compact_of_is_closed_subset (is_compact_closed_ball 𝕜 0 1) is_closed h, | |
end | |
end character_space | |
end weak_dual | |