Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
1.74 kB
/-
Copyright (c) 2022 Frédéric Dupuis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Frédéric Dupuis
-/
import topology.algebra.module.character_space
import analysis.normed_space.weak_dual
import analysis.normed_space.spectrum
/-!
# Normed algebras
This file contains basic facts about normed algebras.
## Main results
* We show that the character space of a normed algebra is compact using the Banach-Alaoglu theorem.
## TODO
* Show compactness for topological vector spaces; this requires the TVS version of Banach-Alaoglu.
## Tags
normed algebra, character space, continuous functional calculus
-/
variables {𝕜 : Type*} {A : Type*}
namespace weak_dual
namespace character_space
variables [nontrivially_normed_field 𝕜] [normed_ring A]
[normed_algebra 𝕜 A] [complete_space A] [norm_one_class A]
lemma norm_one (φ : character_space 𝕜 A) : ∥to_normed_dual (φ : weak_dual 𝕜 A)∥ = 1 :=
begin
refine continuous_linear_map.op_norm_eq_of_bounds zero_le_one (λ a, _) (λ x hx h, _),
{ rw [one_mul],
exact spectrum.norm_le_norm_of_mem (apply_mem_spectrum φ a) },
{ have : ∥φ 1∥ ≤ x * ∥(1 : A)∥ := h 1,
simpa only [norm_one, mul_one, map_one] using this },
end
instance [proper_space 𝕜] : compact_space (character_space 𝕜 A) :=
begin
rw [←is_compact_iff_compact_space],
have h : character_space 𝕜 A ⊆ to_normed_dual ⁻¹' metric.closed_ball 0 1,
{ intros φ hφ,
rw [set.mem_preimage, mem_closed_ball_zero_iff],
exact (le_of_eq $ norm_one ⟨φ, ⟨hφ.1, hφ.2⟩⟩ : _), },
exact compact_of_is_closed_subset (is_compact_closed_ball 𝕜 0 1) is_closed h,
end
end character_space
end weak_dual