Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
21.4 kB
/-
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: SΓ©bastien GouΓ«zel
-/
import topology.metric_space.baire
import analysis.normed_space.operator_norm
import analysis.normed_space.affine_isometry
/-!
# Banach open mapping theorem
This file contains the Banach open mapping theorem, i.e., the fact that a bijective
bounded linear map between Banach spaces has a bounded inverse.
-/
open function metric set filter finset
open_locale classical topological_space big_operators nnreal
variables {π•œ : Type*} [nontrivially_normed_field π•œ]
{E : Type*} [normed_add_comm_group E] [normed_space π•œ E]
{F : Type*} [normed_add_comm_group F] [normed_space π•œ F]
(f : E β†’L[π•œ] F)
include π•œ
namespace continuous_linear_map
/-- A (possibly nonlinear) right inverse to a continuous linear map, which doesn't have to be
linear itself but which satisfies a bound `βˆ₯inverse xβˆ₯ ≀ C * βˆ₯xβˆ₯`. A surjective continuous linear
map doesn't always have a continuous linear right inverse, but it always has a nonlinear inverse
in this sense, by Banach's open mapping theorem. -/
structure nonlinear_right_inverse :=
(to_fun : F β†’ E)
(nnnorm : ℝβ‰₯0)
(bound' : βˆ€ y, βˆ₯to_fun yβˆ₯ ≀ nnnorm * βˆ₯yβˆ₯)
(right_inv' : βˆ€ y, f (to_fun y) = y)
instance : has_coe_to_fun (nonlinear_right_inverse f) (Ξ» _, F β†’ E) := ⟨λ fsymm, fsymm.to_fun⟩
@[simp] lemma nonlinear_right_inverse.right_inv {f : E β†’L[π•œ] F} (fsymm : nonlinear_right_inverse f)
(y : F) : f (fsymm y) = y :=
fsymm.right_inv' y
lemma nonlinear_right_inverse.bound {f : E β†’L[π•œ] F} (fsymm : nonlinear_right_inverse f) (y : F) :
βˆ₯fsymm yβˆ₯ ≀ fsymm.nnnorm * βˆ₯yβˆ₯ :=
fsymm.bound' y
end continuous_linear_map
/-- Given a continuous linear equivalence, the inverse is in particular an instance of
`nonlinear_right_inverse` (which turns out to be linear). -/
noncomputable def continuous_linear_equiv.to_nonlinear_right_inverse (f : E ≃L[π•œ] F) :
continuous_linear_map.nonlinear_right_inverse (f : E β†’L[π•œ] F) :=
{ to_fun := f.inv_fun,
nnnorm := βˆ₯(f.symm : F β†’L[π•œ] E)βˆ₯β‚Š,
bound' := Ξ» y, continuous_linear_map.le_op_norm (f.symm : F β†’L[π•œ] E) _,
right_inv' := f.apply_symm_apply }
noncomputable instance (f : E ≃L[π•œ] F) :
inhabited (continuous_linear_map.nonlinear_right_inverse (f : E β†’L[π•œ] F)) :=
⟨f.to_nonlinear_right_inverse⟩
/-! ### Proof of the Banach open mapping theorem -/
variable [complete_space F]
namespace continuous_linear_map
/--
First step of the proof of the Banach open mapping theorem (using completeness of `F`):
by Baire's theorem, there exists a ball in `E` whose image closure has nonempty interior.
Rescaling everything, it follows that any `y ∈ F` is arbitrarily well approached by
images of elements of norm at most `C * βˆ₯yβˆ₯`.
For further use, we will only need such an element whose image
is within distance `βˆ₯yβˆ₯/2` of `y`, to apply an iterative process. -/
lemma exists_approx_preimage_norm_le (surj : surjective f) :
βˆƒC β‰₯ 0, βˆ€y, βˆƒx, dist (f x) y ≀ 1/2 * βˆ₯yβˆ₯ ∧ βˆ₯xβˆ₯ ≀ C * βˆ₯yβˆ₯ :=
begin
have A : (⋃n:β„•, closure (f '' (ball 0 n))) = univ,
{ refine subset.antisymm (subset_univ _) (Ξ»y hy, _),
rcases surj y with ⟨x, hx⟩,
rcases exists_nat_gt (βˆ₯xβˆ₯) with ⟨n, hn⟩,
refine mem_Union.2 ⟨n, subset_closure _⟩,
refine (mem_image _ _ _).2 ⟨x, ⟨_, hx⟩⟩,
rwa [mem_ball, dist_eq_norm, sub_zero] },
have : βˆƒ (n : β„•) x, x ∈ interior (closure (f '' (ball 0 n))) :=
nonempty_interior_of_Union_of_closed (Ξ»n, is_closed_closure) A,
simp only [mem_interior_iff_mem_nhds, metric.mem_nhds_iff] at this,
rcases this with ⟨n, a, Ρ, ⟨Ρpos, H⟩⟩,
rcases normed_field.exists_one_lt_norm π•œ with ⟨c, hc⟩,
refine ⟨(Ξ΅/2)⁻¹ * βˆ₯cβˆ₯ * 2 * n, _, Ξ»y, _⟩,
{ refine mul_nonneg (mul_nonneg (mul_nonneg _ (norm_nonneg _)) (by norm_num)) _,
exacts [inv_nonneg.2 (div_nonneg (le_of_lt Ξ΅pos) (by norm_num)), n.cast_nonneg] },
{ by_cases hy : y = 0,
{ use 0, simp [hy] },
{ rcases rescale_to_shell hc (half_pos Ρpos) hy with ⟨d, hd, ydlt, leyd, dinv⟩,
let Ξ΄ := βˆ₯dβˆ₯ * βˆ₯yβˆ₯/4,
have Ξ΄pos : 0 < Ξ΄ :=
div_pos (mul_pos (norm_pos_iff.2 hd) (norm_pos_iff.2 hy)) (by norm_num),
have : a + d β€’ y ∈ ball a Ξ΅,
by simp [dist_eq_norm, lt_of_le_of_lt ydlt.le (half_lt_self Ξ΅pos)],
rcases metric.mem_closure_iff.1 (H this) _ Ξ΄pos with ⟨z₁, z₁im, hβ‚βŸ©,
rcases (mem_image _ _ _).1 z₁im with ⟨x₁, hx₁, xzβ‚βŸ©,
rw ← xz₁ at h₁,
rw [mem_ball, dist_eq_norm, sub_zero] at hx₁,
have : a ∈ ball a Ρ, by { simp, exact Ρpos },
rcases metric.mem_closure_iff.1 (H this) _ Ξ΄pos with ⟨zβ‚‚, zβ‚‚im, hβ‚‚βŸ©,
rcases (mem_image _ _ _).1 zβ‚‚im with ⟨xβ‚‚, hxβ‚‚, xzβ‚‚βŸ©,
rw ← xzβ‚‚ at hβ‚‚,
rw [mem_ball, dist_eq_norm, sub_zero] at hxβ‚‚,
let x := x₁ - xβ‚‚,
have I : βˆ₯f x - d β€’ yβˆ₯ ≀ 2 * Ξ΄ := calc
βˆ₯f x - d β€’ yβˆ₯ = βˆ₯f x₁ - (a + d β€’ y) - (f xβ‚‚ - a)βˆ₯ :
by { congr' 1, simp only [x, f.map_sub], abel }
... ≀ βˆ₯f x₁ - (a + d β€’ y)βˆ₯ + βˆ₯f xβ‚‚ - aβˆ₯ :
norm_sub_le _ _
... ≀ Ξ΄ + Ξ΄ : begin
apply add_le_add,
{ rw [← dist_eq_norm, dist_comm], exact le_of_lt h₁ },
{ rw [← dist_eq_norm, dist_comm], exact le_of_lt hβ‚‚ }
end
... = 2 * Ξ΄ : (two_mul _).symm,
have J : βˆ₯f (d⁻¹ β€’ x) - yβˆ₯ ≀ 1/2 * βˆ₯yβˆ₯ := calc
βˆ₯f (d⁻¹ β€’ x) - yβˆ₯ = βˆ₯d⁻¹ β€’ f x - (d⁻¹ * d) β€’ yβˆ₯ :
by rwa [f.map_smul _, inv_mul_cancel, one_smul]
... = βˆ₯d⁻¹ β€’ (f x - d β€’ y)βˆ₯ : by rw [mul_smul, smul_sub]
... = βˆ₯dβˆ₯⁻¹ * βˆ₯f x - d β€’ yβˆ₯ : by rw [norm_smul, norm_inv]
... ≀ βˆ₯dβˆ₯⁻¹ * (2 * Ξ΄) : begin
apply mul_le_mul_of_nonneg_left I,
rw inv_nonneg,
exact norm_nonneg _
end
... = (βˆ₯dβˆ₯⁻¹ * βˆ₯dβˆ₯) * βˆ₯yβˆ₯ /2 : by { simp only [Ξ΄], ring }
... = βˆ₯yβˆ₯/2 : by { rw [inv_mul_cancel, one_mul], simp [norm_eq_zero, hd] }
... = (1/2) * βˆ₯yβˆ₯ : by ring,
rw ← dist_eq_norm at J,
have K : βˆ₯d⁻¹ β€’ xβˆ₯ ≀ (Ξ΅ / 2)⁻¹ * βˆ₯cβˆ₯ * 2 * ↑n * βˆ₯yβˆ₯ := calc
βˆ₯d⁻¹ β€’ xβˆ₯ = βˆ₯dβˆ₯⁻¹ * βˆ₯x₁ - xβ‚‚βˆ₯ : by rw [norm_smul, norm_inv]
... ≀ ((Ξ΅ / 2)⁻¹ * βˆ₯cβˆ₯ * βˆ₯yβˆ₯) * (n + n) : begin
refine mul_le_mul dinv _ (norm_nonneg _) _,
{ exact le_trans (norm_sub_le _ _) (add_le_add (le_of_lt hx₁) (le_of_lt hxβ‚‚)) },
{ apply mul_nonneg (mul_nonneg _ (norm_nonneg _)) (norm_nonneg _),
exact inv_nonneg.2 (le_of_lt (half_pos Ξ΅pos)) }
end
... = (Ξ΅ / 2)⁻¹ * βˆ₯cβˆ₯ * 2 * ↑n * βˆ₯yβˆ₯ : by ring,
exact ⟨d⁻¹ β€’ x, J, K⟩ } },
end
variable [complete_space E]
/-- The Banach open mapping theorem: if a bounded linear map between Banach spaces is onto, then
any point has a preimage with controlled norm. -/
theorem exists_preimage_norm_le (surj : surjective f) :
βˆƒC > 0, βˆ€y, βˆƒx, f x = y ∧ βˆ₯xβˆ₯ ≀ C * βˆ₯yβˆ₯ :=
begin
obtain ⟨C, C0, hC⟩ := exists_approx_preimage_norm_le f surj,
/- Second step of the proof: starting from `y`, we want an exact preimage of `y`. Let `g y` be
the approximate preimage of `y` given by the first step, and `h y = y - f(g y)` the part that
has no preimage yet. We will iterate this process, taking the approximate preimage of `h y`,
leaving only `h^2 y` without preimage yet, and so on. Let `u n` be the approximate preimage
of `h^n y`. Then `u` is a converging series, and by design the sum of the series is a
preimage of `y`. This uses completeness of `E`. -/
choose g hg using hC,
let h := Ξ»y, y - f (g y),
have hle : βˆ€y, βˆ₯h yβˆ₯ ≀ (1/2) * βˆ₯yβˆ₯,
{ assume y,
rw [← dist_eq_norm, dist_comm],
exact (hg y).1 },
refine ⟨2 * C + 1, by linarith, λy, _⟩,
have hnle : βˆ€n:β„•, βˆ₯(h^[n]) yβˆ₯ ≀ (1/2)^n * βˆ₯yβˆ₯,
{ assume n,
induction n with n IH,
{ simp only [one_div, nat.nat_zero_eq_zero, one_mul, iterate_zero_apply,
pow_zero] },
{ rw [iterate_succ'],
apply le_trans (hle _) _,
rw [pow_succ, mul_assoc],
apply mul_le_mul_of_nonneg_left IH,
norm_num } },
let u := Ξ»n, g((h^[n]) y),
have ule : βˆ€n, βˆ₯u nβˆ₯ ≀ (1/2)^n * (C * βˆ₯yβˆ₯),
{ assume n,
apply le_trans (hg _).2 _,
calc C * βˆ₯(h^[n]) yβˆ₯ ≀ C * ((1/2)^n * βˆ₯yβˆ₯) : mul_le_mul_of_nonneg_left (hnle n) C0
... = (1 / 2) ^ n * (C * βˆ₯yβˆ₯) : by ring },
have sNu : summable (Ξ»n, βˆ₯u nβˆ₯),
{ refine summable_of_nonneg_of_le (Ξ»n, norm_nonneg _) ule _,
exact summable.mul_right _ (summable_geometric_of_lt_1 (by norm_num) (by norm_num)) },
have su : summable u := summable_of_summable_norm sNu,
let x := tsum u,
have x_ineq : βˆ₯xβˆ₯ ≀ (2 * C + 1) * βˆ₯yβˆ₯ := calc
βˆ₯xβˆ₯ ≀ βˆ‘'n, βˆ₯u nβˆ₯ : norm_tsum_le_tsum_norm sNu
... ≀ βˆ‘'n, (1/2)^n * (C * βˆ₯yβˆ₯) :
tsum_le_tsum ule sNu (summable.mul_right _ summable_geometric_two)
... = (βˆ‘'n, (1/2)^n) * (C * βˆ₯yβˆ₯) : tsum_mul_right
... = 2 * C * βˆ₯yβˆ₯ : by rw [tsum_geometric_two, mul_assoc]
... ≀ 2 * C * βˆ₯yβˆ₯ + βˆ₯yβˆ₯ : le_add_of_nonneg_right (norm_nonneg y)
... = (2 * C + 1) * βˆ₯yβˆ₯ : by ring,
have fsumeq : βˆ€n:β„•, f (βˆ‘ i in finset.range n, u i) = y - (h^[n]) y,
{ assume n,
induction n with n IH,
{ simp [f.map_zero] },
{ rw [sum_range_succ, f.map_add, IH, iterate_succ', sub_add] } },
have : tendsto (Ξ»n, βˆ‘ i in finset.range n, u i) at_top (𝓝 x) :=
su.has_sum.tendsto_sum_nat,
have L₁ : tendsto (Ξ»n, f (βˆ‘ i in finset.range n, u i)) at_top (𝓝 (f x)) :=
(f.continuous.tendsto _).comp this,
simp only [fsumeq] at L₁,
have Lβ‚‚ : tendsto (Ξ»n, y - (h^[n]) y) at_top (𝓝 (y - 0)),
{ refine tendsto_const_nhds.sub _,
rw tendsto_iff_norm_tendsto_zero,
simp only [sub_zero],
refine squeeze_zero (Ξ»_, norm_nonneg _) hnle _,
rw [← zero_mul βˆ₯yβˆ₯],
refine (tendsto_pow_at_top_nhds_0_of_lt_1 _ _).mul tendsto_const_nhds; norm_num },
have feq : f x = y - 0 := tendsto_nhds_unique L₁ Lβ‚‚,
rw sub_zero at feq,
exact ⟨x, feq, x_ineq⟩
end
/-- The Banach open mapping theorem: a surjective bounded linear map between Banach spaces is
open. -/
protected theorem is_open_map (surj : surjective f) : is_open_map f :=
begin
assume s hs,
rcases exists_preimage_norm_le f surj with ⟨C, Cpos, hC⟩,
refine is_open_iff.2 (Ξ»y yfs, _),
rcases mem_image_iff_bex.1 yfs with ⟨x, xs, fxy⟩,
rcases is_open_iff.1 hs x xs with ⟨Ρ, Ρpos, hΡ⟩,
refine ⟨Ρ/C, div_pos Ρpos Cpos, λz hz, _⟩,
rcases hC (z-y) with ⟨w, wim, wnorm⟩,
have : f (x + w) = z, by { rw [f.map_add, wim, fxy, add_sub_cancel'_right] },
rw ← this,
have : x + w ∈ ball x Ρ := calc
dist (x+w) x = βˆ₯wβˆ₯ : by { rw dist_eq_norm, simp }
... ≀ C * βˆ₯z - yβˆ₯ : wnorm
... < C * (Ξ΅/C) : begin
apply mul_lt_mul_of_pos_left _ Cpos,
rwa [mem_ball, dist_eq_norm] at hz,
end
... = Ξ΅ : mul_div_cancel' _ (ne_of_gt Cpos),
exact set.mem_image_of_mem _ (hΞ΅ this)
end
protected theorem quotient_map (surj : surjective f) : quotient_map f :=
(f.is_open_map surj).to_quotient_map f.continuous surj
lemma _root_.affine_map.is_open_map {P Q : Type*}
[metric_space P] [normed_add_torsor E P] [metric_space Q] [normed_add_torsor F Q]
(f : P →ᡃ[π•œ] Q) (hf : continuous f) (surj : surjective f) :
is_open_map f :=
affine_map.is_open_map_linear_iff.mp $ continuous_linear_map.is_open_map
{ cont := affine_map.continuous_linear_iff.mpr hf, .. f.linear }
(f.surjective_iff_linear_surjective.mpr surj)
/-! ### Applications of the Banach open mapping theorem -/
lemma interior_preimage (hsurj : surjective f) (s : set F) :
interior (f ⁻¹' s) = f ⁻¹' (interior s) :=
((f.is_open_map hsurj).preimage_interior_eq_interior_preimage f.continuous s).symm
lemma closure_preimage (hsurj : surjective f) (s : set F) :
closure (f ⁻¹' s) = f ⁻¹' (closure s) :=
((f.is_open_map hsurj).preimage_closure_eq_closure_preimage f.continuous s).symm
lemma frontier_preimage (hsurj : surjective f) (s : set F) :
frontier (f ⁻¹' s) = f ⁻¹' (frontier s) :=
((f.is_open_map hsurj).preimage_frontier_eq_frontier_preimage f.continuous s).symm
lemma exists_nonlinear_right_inverse_of_surjective (f : E β†’L[π•œ] F) (hsurj : f.range = ⊀) :
βˆƒ (fsymm : nonlinear_right_inverse f), 0 < fsymm.nnnorm :=
begin
choose C hC fsymm h using exists_preimage_norm_le _ (linear_map.range_eq_top.mp hsurj),
use { to_fun := fsymm,
nnnorm := ⟨C, hC.lt.le⟩,
bound' := Ξ» y, (h y).2,
right_inv' := Ξ» y, (h y).1 },
exact hC
end
/-- A surjective continuous linear map between Banach spaces admits a (possibly nonlinear)
controlled right inverse. In general, it is not possible to ensure that such a right inverse
is linear (take for instance the map from `E` to `E/F` where `F` is a closed subspace of `E`
without a closed complement. Then it doesn't have a continuous linear right inverse.) -/
@[irreducible] noncomputable def nonlinear_right_inverse_of_surjective
(f : E β†’L[π•œ] F) (hsurj : f.range = ⊀) : nonlinear_right_inverse f :=
classical.some (exists_nonlinear_right_inverse_of_surjective f hsurj)
lemma nonlinear_right_inverse_of_surjective_nnnorm_pos (f : E β†’L[π•œ] F) (hsurj : f.range = ⊀) :
0 < (nonlinear_right_inverse_of_surjective f hsurj).nnnorm :=
begin
rw nonlinear_right_inverse_of_surjective,
exact classical.some_spec (exists_nonlinear_right_inverse_of_surjective f hsurj)
end
end continuous_linear_map
namespace linear_equiv
variables [complete_space E]
/-- If a bounded linear map is a bijection, then its inverse is also a bounded linear map. -/
@[continuity]
theorem continuous_symm (e : E ≃ₗ[π•œ] F) (h : continuous e) :
continuous e.symm :=
begin
rw continuous_def,
intros s hs,
rw [← e.image_eq_preimage],
rw [← e.coe_coe] at h ⊒,
exact continuous_linear_map.is_open_map βŸ¨β†‘e, h⟩ e.surjective s hs
end
/-- Associating to a linear equivalence between Banach spaces a continuous linear equivalence when
the direct map is continuous, thanks to the Banach open mapping theorem that ensures that the
inverse map is also continuous. -/
def to_continuous_linear_equiv_of_continuous (e : E ≃ₗ[π•œ] F) (h : continuous e) :
E ≃L[π•œ] F :=
{ continuous_to_fun := h,
continuous_inv_fun := e.continuous_symm h,
..e }
@[simp] lemma coe_fn_to_continuous_linear_equiv_of_continuous (e : E ≃ₗ[π•œ] F) (h : continuous e) :
⇑(e.to_continuous_linear_equiv_of_continuous h) = e := rfl
@[simp] lemma coe_fn_to_continuous_linear_equiv_of_continuous_symm (e : E ≃ₗ[π•œ] F)
(h : continuous e) :
⇑(e.to_continuous_linear_equiv_of_continuous h).symm = e.symm := rfl
end linear_equiv
namespace continuous_linear_equiv
variables [complete_space E]
/-- Convert a bijective continuous linear map `f : E β†’L[π•œ] F` from a Banach space to a normed space
to a continuous linear equivalence. -/
noncomputable def of_bijective (f : E β†’L[π•œ] F) (hinj : f.ker = βŠ₯) (hsurj : f.range = ⊀) :
E ≃L[π•œ] F :=
(linear_equiv.of_bijective ↑f (linear_map.ker_eq_bot.mp hinj) (linear_map.range_eq_top.mp hsurj))
.to_continuous_linear_equiv_of_continuous f.continuous
@[simp] lemma coe_fn_of_bijective (f : E β†’L[π•œ] F) (hinj : f.ker = βŠ₯) (hsurj : f.range = ⊀) :
⇑(of_bijective f hinj hsurj) = f := rfl
lemma coe_of_bijective (f : E β†’L[π•œ] F) (hinj : f.ker = βŠ₯) (hsurj : f.range = ⊀) :
↑(of_bijective f hinj hsurj) = f := by { ext, refl }
@[simp] lemma of_bijective_symm_apply_apply (f : E β†’L[π•œ] F) (hinj : f.ker = βŠ₯)
(hsurj : f.range = ⊀) (x : E) :
(of_bijective f hinj hsurj).symm (f x) = x :=
(of_bijective f hinj hsurj).symm_apply_apply x
@[simp] lemma of_bijective_apply_symm_apply (f : E β†’L[π•œ] F) (hinj : f.ker = βŠ₯)
(hsurj : f.range = ⊀) (y : F) :
f ((of_bijective f hinj hsurj).symm y) = y :=
(of_bijective f hinj hsurj).apply_symm_apply y
end continuous_linear_equiv
namespace continuous_linear_map
variables [complete_space E]
/-- Intermediate definition used to show
`continuous_linear_map.closed_complemented_range_of_is_compl_of_ker_eq_bot`.
This is `f.coprod G.subtypeL` as an `continuous_linear_equiv`. -/
noncomputable def coprod_subtypeL_equiv_of_is_compl
(f : E β†’L[π•œ] F) {G : submodule π•œ F}
(h : is_compl f.range G) [complete_space G] (hker : f.ker = βŠ₯) : (E Γ— G) ≃L[π•œ] F :=
continuous_linear_equiv.of_bijective (f.coprod G.subtypeL)
(begin
rw ker_coprod_of_disjoint_range,
{ rw [hker, submodule.ker_subtypeL, submodule.prod_bot] },
{ rw submodule.range_subtypeL,
exact h.disjoint }
end)
(by simp only [range_coprod, h.sup_eq_top, submodule.range_subtypeL])
lemma range_eq_map_coprod_subtypeL_equiv_of_is_compl
(f : E β†’L[π•œ] F) {G : submodule π•œ F}
(h : is_compl f.range G) [complete_space G] (hker : f.ker = βŠ₯) :
f.range = ((⊀ : submodule π•œ E).prod (βŠ₯ : submodule π•œ G)).map
(f.coprod_subtypeL_equiv_of_is_compl h hker : E Γ— G β†’β‚—[π•œ] F) :=
by rw [coprod_subtypeL_equiv_of_is_compl, _root_.coe_coe, continuous_linear_equiv.coe_of_bijective,
coe_coprod, linear_map.coprod_map_prod, submodule.map_bot, sup_bot_eq, submodule.map_top,
range]
/- TODO: remove the assumption `f.ker = βŠ₯` in the next lemma, by using the map induced by `f` on
`E / f.ker`, once we have quotient normed spaces. -/
lemma closed_complemented_range_of_is_compl_of_ker_eq_bot (f : E β†’L[π•œ] F) (G : submodule π•œ F)
(h : is_compl f.range G) (hG : is_closed (G : set F)) (hker : f.ker = βŠ₯) :
is_closed (f.range : set F) :=
begin
haveI : complete_space G := hG.complete_space_coe,
let g := coprod_subtypeL_equiv_of_is_compl f h hker,
rw congr_arg coe (range_eq_map_coprod_subtypeL_equiv_of_is_compl f h hker ),
apply g.to_homeomorph.is_closed_image.2,
exact is_closed_univ.prod is_closed_singleton,
end
end continuous_linear_map
section closed_graph_thm
variables [complete_space E] (g : E β†’β‚—[π•œ] F)
/-- The **closed graph theorem** : a linear map between two Banach spaces whose graph is closed
is continuous. -/
theorem linear_map.continuous_of_is_closed_graph (hg : is_closed (g.graph : set $ E Γ— F)) :
continuous g :=
begin
letI : complete_space g.graph := complete_space_coe_iff_is_complete.mpr hg.is_complete,
let Ο†β‚€ : E β†’β‚—[π•œ] E Γ— F := linear_map.id.prod g,
have : function.left_inverse prod.fst Ο†β‚€ := Ξ» x, rfl,
let Ο† : E ≃ₗ[π•œ] g.graph :=
(linear_equiv.of_left_inverse this).trans
(linear_equiv.of_eq _ _ g.graph_eq_range_prod.symm),
let ψ : g.graph ≃L[π•œ] E := Ο†.symm.to_continuous_linear_equiv_of_continuous
continuous_subtype_coe.fst,
exact (continuous_subtype_coe.comp ψ.symm.continuous).snd
end
/-- A useful form of the **closed graph theorem** : let `f` be a linear map between two Banach
spaces. To show that `f` is continuous, it suffices to show that for any convergent sequence
`uβ‚™ ⟢ x`, if `f(uβ‚™) ⟢ y` then `y = f(x)`. -/
theorem linear_map.continuous_of_seq_closed_graph
(hg : βˆ€ (u : β„• β†’ E) x y, tendsto u at_top (𝓝 x) β†’ tendsto (g ∘ u) at_top (𝓝 y) β†’ y = g x) :
continuous g :=
begin
refine g.continuous_of_is_closed_graph (is_seq_closed_iff_is_closed.mp $ is_seq_closed_of_def _),
rintros Ο† ⟨x, y⟩ hΟ†g hΟ†,
refine hg (prod.fst ∘ Ο†) x y ((continuous_fst.tendsto _).comp hΟ†) _,
have : g ∘ prod.fst ∘ Ο† = prod.snd ∘ Ο†,
{ ext n,
exact (hφg n).symm },
rw this,
exact (continuous_snd.tendsto _).comp hφ
end
variable {g}
namespace continuous_linear_map
/-- Upgrade a `linear_map` to a `continuous_linear_map` using the **closed graph theorem**. -/
def of_is_closed_graph (hg : is_closed (g.graph : set $ E Γ— F)) :
E β†’L[π•œ] F :=
{ to_linear_map := g,
cont := g.continuous_of_is_closed_graph hg }
@[simp] lemma coe_fn_of_is_closed_graph (hg : is_closed (g.graph : set $ E Γ— F)) :
⇑(continuous_linear_map.of_is_closed_graph hg) = g := rfl
lemma coe_of_is_closed_graph (hg : is_closed (g.graph : set $ E Γ— F)) :
↑(continuous_linear_map.of_is_closed_graph hg) = g := by { ext, refl }
/-- Upgrade a `linear_map` to a `continuous_linear_map` using a variation on the
**closed graph theorem**. -/
def of_seq_closed_graph
(hg : βˆ€ (u : β„• β†’ E) x y, tendsto u at_top (𝓝 x) β†’ tendsto (g ∘ u) at_top (𝓝 y) β†’ y = g x) :
E β†’L[π•œ] F :=
{ to_linear_map := g,
cont := g.continuous_of_seq_closed_graph hg }
@[simp] lemma coe_fn_of_seq_closed_graph
(hg : βˆ€ (u : β„• β†’ E) x y, tendsto u at_top (𝓝 x) β†’ tendsto (g ∘ u) at_top (𝓝 y) β†’ y = g x) :
⇑(continuous_linear_map.of_seq_closed_graph hg) = g := rfl
lemma coe_of_seq_closed_graph
(hg : βˆ€ (u : β„• β†’ E) x y, tendsto u at_top (𝓝 x) β†’ tendsto (g ∘ u) at_top (𝓝 y) β†’ y = g x) :
↑(continuous_linear_map.of_seq_closed_graph hg) = g := by { ext, refl }
end continuous_linear_map
end closed_graph_thm