Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: SΓ©bastien GouΓ«zel | |
-/ | |
import topology.metric_space.baire | |
import analysis.normed_space.operator_norm | |
import analysis.normed_space.affine_isometry | |
/-! | |
# Banach open mapping theorem | |
This file contains the Banach open mapping theorem, i.e., the fact that a bijective | |
bounded linear map between Banach spaces has a bounded inverse. | |
-/ | |
open function metric set filter finset | |
open_locale classical topological_space big_operators nnreal | |
variables {π : Type*} [nontrivially_normed_field π] | |
{E : Type*} [normed_add_comm_group E] [normed_space π E] | |
{F : Type*} [normed_add_comm_group F] [normed_space π F] | |
(f : E βL[π] F) | |
include π | |
namespace continuous_linear_map | |
/-- A (possibly nonlinear) right inverse to a continuous linear map, which doesn't have to be | |
linear itself but which satisfies a bound `β₯inverse xβ₯ β€ C * β₯xβ₯`. A surjective continuous linear | |
map doesn't always have a continuous linear right inverse, but it always has a nonlinear inverse | |
in this sense, by Banach's open mapping theorem. -/ | |
structure nonlinear_right_inverse := | |
(to_fun : F β E) | |
(nnnorm : ββ₯0) | |
(bound' : β y, β₯to_fun yβ₯ β€ nnnorm * β₯yβ₯) | |
(right_inv' : β y, f (to_fun y) = y) | |
instance : has_coe_to_fun (nonlinear_right_inverse f) (Ξ» _, F β E) := β¨Ξ» fsymm, fsymm.to_funβ© | |
@[simp] lemma nonlinear_right_inverse.right_inv {f : E βL[π] F} (fsymm : nonlinear_right_inverse f) | |
(y : F) : f (fsymm y) = y := | |
fsymm.right_inv' y | |
lemma nonlinear_right_inverse.bound {f : E βL[π] F} (fsymm : nonlinear_right_inverse f) (y : F) : | |
β₯fsymm yβ₯ β€ fsymm.nnnorm * β₯yβ₯ := | |
fsymm.bound' y | |
end continuous_linear_map | |
/-- Given a continuous linear equivalence, the inverse is in particular an instance of | |
`nonlinear_right_inverse` (which turns out to be linear). -/ | |
noncomputable def continuous_linear_equiv.to_nonlinear_right_inverse (f : E βL[π] F) : | |
continuous_linear_map.nonlinear_right_inverse (f : E βL[π] F) := | |
{ to_fun := f.inv_fun, | |
nnnorm := β₯(f.symm : F βL[π] E)β₯β, | |
bound' := Ξ» y, continuous_linear_map.le_op_norm (f.symm : F βL[π] E) _, | |
right_inv' := f.apply_symm_apply } | |
noncomputable instance (f : E βL[π] F) : | |
inhabited (continuous_linear_map.nonlinear_right_inverse (f : E βL[π] F)) := | |
β¨f.to_nonlinear_right_inverseβ© | |
/-! ### Proof of the Banach open mapping theorem -/ | |
variable [complete_space F] | |
namespace continuous_linear_map | |
/-- | |
First step of the proof of the Banach open mapping theorem (using completeness of `F`): | |
by Baire's theorem, there exists a ball in `E` whose image closure has nonempty interior. | |
Rescaling everything, it follows that any `y β F` is arbitrarily well approached by | |
images of elements of norm at most `C * β₯yβ₯`. | |
For further use, we will only need such an element whose image | |
is within distance `β₯yβ₯/2` of `y`, to apply an iterative process. -/ | |
lemma exists_approx_preimage_norm_le (surj : surjective f) : | |
βC β₯ 0, βy, βx, dist (f x) y β€ 1/2 * β₯yβ₯ β§ β₯xβ₯ β€ C * β₯yβ₯ := | |
begin | |
have A : (βn:β, closure (f '' (ball 0 n))) = univ, | |
{ refine subset.antisymm (subset_univ _) (Ξ»y hy, _), | |
rcases surj y with β¨x, hxβ©, | |
rcases exists_nat_gt (β₯xβ₯) with β¨n, hnβ©, | |
refine mem_Union.2 β¨n, subset_closure _β©, | |
refine (mem_image _ _ _).2 β¨x, β¨_, hxβ©β©, | |
rwa [mem_ball, dist_eq_norm, sub_zero] }, | |
have : β (n : β) x, x β interior (closure (f '' (ball 0 n))) := | |
nonempty_interior_of_Union_of_closed (Ξ»n, is_closed_closure) A, | |
simp only [mem_interior_iff_mem_nhds, metric.mem_nhds_iff] at this, | |
rcases this with β¨n, a, Ξ΅, β¨Ξ΅pos, Hβ©β©, | |
rcases normed_field.exists_one_lt_norm π with β¨c, hcβ©, | |
refine β¨(Ξ΅/2)β»ΒΉ * β₯cβ₯ * 2 * n, _, Ξ»y, _β©, | |
{ refine mul_nonneg (mul_nonneg (mul_nonneg _ (norm_nonneg _)) (by norm_num)) _, | |
exacts [inv_nonneg.2 (div_nonneg (le_of_lt Ξ΅pos) (by norm_num)), n.cast_nonneg] }, | |
{ by_cases hy : y = 0, | |
{ use 0, simp [hy] }, | |
{ rcases rescale_to_shell hc (half_pos Ξ΅pos) hy with β¨d, hd, ydlt, leyd, dinvβ©, | |
let Ξ΄ := β₯dβ₯ * β₯yβ₯/4, | |
have Ξ΄pos : 0 < Ξ΄ := | |
div_pos (mul_pos (norm_pos_iff.2 hd) (norm_pos_iff.2 hy)) (by norm_num), | |
have : a + d β’ y β ball a Ξ΅, | |
by simp [dist_eq_norm, lt_of_le_of_lt ydlt.le (half_lt_self Ξ΅pos)], | |
rcases metric.mem_closure_iff.1 (H this) _ Ξ΄pos with β¨zβ, zβim, hββ©, | |
rcases (mem_image _ _ _).1 zβim with β¨xβ, hxβ, xzββ©, | |
rw β xzβ at hβ, | |
rw [mem_ball, dist_eq_norm, sub_zero] at hxβ, | |
have : a β ball a Ξ΅, by { simp, exact Ξ΅pos }, | |
rcases metric.mem_closure_iff.1 (H this) _ Ξ΄pos with β¨zβ, zβim, hββ©, | |
rcases (mem_image _ _ _).1 zβim with β¨xβ, hxβ, xzββ©, | |
rw β xzβ at hβ, | |
rw [mem_ball, dist_eq_norm, sub_zero] at hxβ, | |
let x := xβ - xβ, | |
have I : β₯f x - d β’ yβ₯ β€ 2 * Ξ΄ := calc | |
β₯f x - d β’ yβ₯ = β₯f xβ - (a + d β’ y) - (f xβ - a)β₯ : | |
by { congr' 1, simp only [x, f.map_sub], abel } | |
... β€ β₯f xβ - (a + d β’ y)β₯ + β₯f xβ - aβ₯ : | |
norm_sub_le _ _ | |
... β€ Ξ΄ + Ξ΄ : begin | |
apply add_le_add, | |
{ rw [β dist_eq_norm, dist_comm], exact le_of_lt hβ }, | |
{ rw [β dist_eq_norm, dist_comm], exact le_of_lt hβ } | |
end | |
... = 2 * Ξ΄ : (two_mul _).symm, | |
have J : β₯f (dβ»ΒΉ β’ x) - yβ₯ β€ 1/2 * β₯yβ₯ := calc | |
β₯f (dβ»ΒΉ β’ x) - yβ₯ = β₯dβ»ΒΉ β’ f x - (dβ»ΒΉ * d) β’ yβ₯ : | |
by rwa [f.map_smul _, inv_mul_cancel, one_smul] | |
... = β₯dβ»ΒΉ β’ (f x - d β’ y)β₯ : by rw [mul_smul, smul_sub] | |
... = β₯dβ₯β»ΒΉ * β₯f x - d β’ yβ₯ : by rw [norm_smul, norm_inv] | |
... β€ β₯dβ₯β»ΒΉ * (2 * Ξ΄) : begin | |
apply mul_le_mul_of_nonneg_left I, | |
rw inv_nonneg, | |
exact norm_nonneg _ | |
end | |
... = (β₯dβ₯β»ΒΉ * β₯dβ₯) * β₯yβ₯ /2 : by { simp only [Ξ΄], ring } | |
... = β₯yβ₯/2 : by { rw [inv_mul_cancel, one_mul], simp [norm_eq_zero, hd] } | |
... = (1/2) * β₯yβ₯ : by ring, | |
rw β dist_eq_norm at J, | |
have K : β₯dβ»ΒΉ β’ xβ₯ β€ (Ξ΅ / 2)β»ΒΉ * β₯cβ₯ * 2 * βn * β₯yβ₯ := calc | |
β₯dβ»ΒΉ β’ xβ₯ = β₯dβ₯β»ΒΉ * β₯xβ - xββ₯ : by rw [norm_smul, norm_inv] | |
... β€ ((Ξ΅ / 2)β»ΒΉ * β₯cβ₯ * β₯yβ₯) * (n + n) : begin | |
refine mul_le_mul dinv _ (norm_nonneg _) _, | |
{ exact le_trans (norm_sub_le _ _) (add_le_add (le_of_lt hxβ) (le_of_lt hxβ)) }, | |
{ apply mul_nonneg (mul_nonneg _ (norm_nonneg _)) (norm_nonneg _), | |
exact inv_nonneg.2 (le_of_lt (half_pos Ξ΅pos)) } | |
end | |
... = (Ξ΅ / 2)β»ΒΉ * β₯cβ₯ * 2 * βn * β₯yβ₯ : by ring, | |
exact β¨dβ»ΒΉ β’ x, J, Kβ© } }, | |
end | |
variable [complete_space E] | |
/-- The Banach open mapping theorem: if a bounded linear map between Banach spaces is onto, then | |
any point has a preimage with controlled norm. -/ | |
theorem exists_preimage_norm_le (surj : surjective f) : | |
βC > 0, βy, βx, f x = y β§ β₯xβ₯ β€ C * β₯yβ₯ := | |
begin | |
obtain β¨C, C0, hCβ© := exists_approx_preimage_norm_le f surj, | |
/- Second step of the proof: starting from `y`, we want an exact preimage of `y`. Let `g y` be | |
the approximate preimage of `y` given by the first step, and `h y = y - f(g y)` the part that | |
has no preimage yet. We will iterate this process, taking the approximate preimage of `h y`, | |
leaving only `h^2 y` without preimage yet, and so on. Let `u n` be the approximate preimage | |
of `h^n y`. Then `u` is a converging series, and by design the sum of the series is a | |
preimage of `y`. This uses completeness of `E`. -/ | |
choose g hg using hC, | |
let h := Ξ»y, y - f (g y), | |
have hle : βy, β₯h yβ₯ β€ (1/2) * β₯yβ₯, | |
{ assume y, | |
rw [β dist_eq_norm, dist_comm], | |
exact (hg y).1 }, | |
refine β¨2 * C + 1, by linarith, Ξ»y, _β©, | |
have hnle : βn:β, β₯(h^[n]) yβ₯ β€ (1/2)^n * β₯yβ₯, | |
{ assume n, | |
induction n with n IH, | |
{ simp only [one_div, nat.nat_zero_eq_zero, one_mul, iterate_zero_apply, | |
pow_zero] }, | |
{ rw [iterate_succ'], | |
apply le_trans (hle _) _, | |
rw [pow_succ, mul_assoc], | |
apply mul_le_mul_of_nonneg_left IH, | |
norm_num } }, | |
let u := Ξ»n, g((h^[n]) y), | |
have ule : βn, β₯u nβ₯ β€ (1/2)^n * (C * β₯yβ₯), | |
{ assume n, | |
apply le_trans (hg _).2 _, | |
calc C * β₯(h^[n]) yβ₯ β€ C * ((1/2)^n * β₯yβ₯) : mul_le_mul_of_nonneg_left (hnle n) C0 | |
... = (1 / 2) ^ n * (C * β₯yβ₯) : by ring }, | |
have sNu : summable (Ξ»n, β₯u nβ₯), | |
{ refine summable_of_nonneg_of_le (Ξ»n, norm_nonneg _) ule _, | |
exact summable.mul_right _ (summable_geometric_of_lt_1 (by norm_num) (by norm_num)) }, | |
have su : summable u := summable_of_summable_norm sNu, | |
let x := tsum u, | |
have x_ineq : β₯xβ₯ β€ (2 * C + 1) * β₯yβ₯ := calc | |
β₯xβ₯ β€ β'n, β₯u nβ₯ : norm_tsum_le_tsum_norm sNu | |
... β€ β'n, (1/2)^n * (C * β₯yβ₯) : | |
tsum_le_tsum ule sNu (summable.mul_right _ summable_geometric_two) | |
... = (β'n, (1/2)^n) * (C * β₯yβ₯) : tsum_mul_right | |
... = 2 * C * β₯yβ₯ : by rw [tsum_geometric_two, mul_assoc] | |
... β€ 2 * C * β₯yβ₯ + β₯yβ₯ : le_add_of_nonneg_right (norm_nonneg y) | |
... = (2 * C + 1) * β₯yβ₯ : by ring, | |
have fsumeq : βn:β, f (β i in finset.range n, u i) = y - (h^[n]) y, | |
{ assume n, | |
induction n with n IH, | |
{ simp [f.map_zero] }, | |
{ rw [sum_range_succ, f.map_add, IH, iterate_succ', sub_add] } }, | |
have : tendsto (Ξ»n, β i in finset.range n, u i) at_top (π x) := | |
su.has_sum.tendsto_sum_nat, | |
have Lβ : tendsto (Ξ»n, f (β i in finset.range n, u i)) at_top (π (f x)) := | |
(f.continuous.tendsto _).comp this, | |
simp only [fsumeq] at Lβ, | |
have Lβ : tendsto (Ξ»n, y - (h^[n]) y) at_top (π (y - 0)), | |
{ refine tendsto_const_nhds.sub _, | |
rw tendsto_iff_norm_tendsto_zero, | |
simp only [sub_zero], | |
refine squeeze_zero (Ξ»_, norm_nonneg _) hnle _, | |
rw [β zero_mul β₯yβ₯], | |
refine (tendsto_pow_at_top_nhds_0_of_lt_1 _ _).mul tendsto_const_nhds; norm_num }, | |
have feq : f x = y - 0 := tendsto_nhds_unique Lβ Lβ, | |
rw sub_zero at feq, | |
exact β¨x, feq, x_ineqβ© | |
end | |
/-- The Banach open mapping theorem: a surjective bounded linear map between Banach spaces is | |
open. -/ | |
protected theorem is_open_map (surj : surjective f) : is_open_map f := | |
begin | |
assume s hs, | |
rcases exists_preimage_norm_le f surj with β¨C, Cpos, hCβ©, | |
refine is_open_iff.2 (Ξ»y yfs, _), | |
rcases mem_image_iff_bex.1 yfs with β¨x, xs, fxyβ©, | |
rcases is_open_iff.1 hs x xs with β¨Ξ΅, Ξ΅pos, hΞ΅β©, | |
refine β¨Ξ΅/C, div_pos Ξ΅pos Cpos, Ξ»z hz, _β©, | |
rcases hC (z-y) with β¨w, wim, wnormβ©, | |
have : f (x + w) = z, by { rw [f.map_add, wim, fxy, add_sub_cancel'_right] }, | |
rw β this, | |
have : x + w β ball x Ξ΅ := calc | |
dist (x+w) x = β₯wβ₯ : by { rw dist_eq_norm, simp } | |
... β€ C * β₯z - yβ₯ : wnorm | |
... < C * (Ξ΅/C) : begin | |
apply mul_lt_mul_of_pos_left _ Cpos, | |
rwa [mem_ball, dist_eq_norm] at hz, | |
end | |
... = Ξ΅ : mul_div_cancel' _ (ne_of_gt Cpos), | |
exact set.mem_image_of_mem _ (hΞ΅ this) | |
end | |
protected theorem quotient_map (surj : surjective f) : quotient_map f := | |
(f.is_open_map surj).to_quotient_map f.continuous surj | |
lemma _root_.affine_map.is_open_map {P Q : Type*} | |
[metric_space P] [normed_add_torsor E P] [metric_space Q] [normed_add_torsor F Q] | |
(f : P βα΅[π] Q) (hf : continuous f) (surj : surjective f) : | |
is_open_map f := | |
affine_map.is_open_map_linear_iff.mp $ continuous_linear_map.is_open_map | |
{ cont := affine_map.continuous_linear_iff.mpr hf, .. f.linear } | |
(f.surjective_iff_linear_surjective.mpr surj) | |
/-! ### Applications of the Banach open mapping theorem -/ | |
lemma interior_preimage (hsurj : surjective f) (s : set F) : | |
interior (f β»ΒΉ' s) = f β»ΒΉ' (interior s) := | |
((f.is_open_map hsurj).preimage_interior_eq_interior_preimage f.continuous s).symm | |
lemma closure_preimage (hsurj : surjective f) (s : set F) : | |
closure (f β»ΒΉ' s) = f β»ΒΉ' (closure s) := | |
((f.is_open_map hsurj).preimage_closure_eq_closure_preimage f.continuous s).symm | |
lemma frontier_preimage (hsurj : surjective f) (s : set F) : | |
frontier (f β»ΒΉ' s) = f β»ΒΉ' (frontier s) := | |
((f.is_open_map hsurj).preimage_frontier_eq_frontier_preimage f.continuous s).symm | |
lemma exists_nonlinear_right_inverse_of_surjective (f : E βL[π] F) (hsurj : f.range = β€) : | |
β (fsymm : nonlinear_right_inverse f), 0 < fsymm.nnnorm := | |
begin | |
choose C hC fsymm h using exists_preimage_norm_le _ (linear_map.range_eq_top.mp hsurj), | |
use { to_fun := fsymm, | |
nnnorm := β¨C, hC.lt.leβ©, | |
bound' := Ξ» y, (h y).2, | |
right_inv' := Ξ» y, (h y).1 }, | |
exact hC | |
end | |
/-- A surjective continuous linear map between Banach spaces admits a (possibly nonlinear) | |
controlled right inverse. In general, it is not possible to ensure that such a right inverse | |
is linear (take for instance the map from `E` to `E/F` where `F` is a closed subspace of `E` | |
without a closed complement. Then it doesn't have a continuous linear right inverse.) -/ | |
@[irreducible] noncomputable def nonlinear_right_inverse_of_surjective | |
(f : E βL[π] F) (hsurj : f.range = β€) : nonlinear_right_inverse f := | |
classical.some (exists_nonlinear_right_inverse_of_surjective f hsurj) | |
lemma nonlinear_right_inverse_of_surjective_nnnorm_pos (f : E βL[π] F) (hsurj : f.range = β€) : | |
0 < (nonlinear_right_inverse_of_surjective f hsurj).nnnorm := | |
begin | |
rw nonlinear_right_inverse_of_surjective, | |
exact classical.some_spec (exists_nonlinear_right_inverse_of_surjective f hsurj) | |
end | |
end continuous_linear_map | |
namespace linear_equiv | |
variables [complete_space E] | |
/-- If a bounded linear map is a bijection, then its inverse is also a bounded linear map. -/ | |
@[continuity] | |
theorem continuous_symm (e : E ββ[π] F) (h : continuous e) : | |
continuous e.symm := | |
begin | |
rw continuous_def, | |
intros s hs, | |
rw [β e.image_eq_preimage], | |
rw [β e.coe_coe] at h β’, | |
exact continuous_linear_map.is_open_map β¨βe, hβ© e.surjective s hs | |
end | |
/-- Associating to a linear equivalence between Banach spaces a continuous linear equivalence when | |
the direct map is continuous, thanks to the Banach open mapping theorem that ensures that the | |
inverse map is also continuous. -/ | |
def to_continuous_linear_equiv_of_continuous (e : E ββ[π] F) (h : continuous e) : | |
E βL[π] F := | |
{ continuous_to_fun := h, | |
continuous_inv_fun := e.continuous_symm h, | |
..e } | |
@[simp] lemma coe_fn_to_continuous_linear_equiv_of_continuous (e : E ββ[π] F) (h : continuous e) : | |
β(e.to_continuous_linear_equiv_of_continuous h) = e := rfl | |
@[simp] lemma coe_fn_to_continuous_linear_equiv_of_continuous_symm (e : E ββ[π] F) | |
(h : continuous e) : | |
β(e.to_continuous_linear_equiv_of_continuous h).symm = e.symm := rfl | |
end linear_equiv | |
namespace continuous_linear_equiv | |
variables [complete_space E] | |
/-- Convert a bijective continuous linear map `f : E βL[π] F` from a Banach space to a normed space | |
to a continuous linear equivalence. -/ | |
noncomputable def of_bijective (f : E βL[π] F) (hinj : f.ker = β₯) (hsurj : f.range = β€) : | |
E βL[π] F := | |
(linear_equiv.of_bijective βf (linear_map.ker_eq_bot.mp hinj) (linear_map.range_eq_top.mp hsurj)) | |
.to_continuous_linear_equiv_of_continuous f.continuous | |
@[simp] lemma coe_fn_of_bijective (f : E βL[π] F) (hinj : f.ker = β₯) (hsurj : f.range = β€) : | |
β(of_bijective f hinj hsurj) = f := rfl | |
lemma coe_of_bijective (f : E βL[π] F) (hinj : f.ker = β₯) (hsurj : f.range = β€) : | |
β(of_bijective f hinj hsurj) = f := by { ext, refl } | |
@[simp] lemma of_bijective_symm_apply_apply (f : E βL[π] F) (hinj : f.ker = β₯) | |
(hsurj : f.range = β€) (x : E) : | |
(of_bijective f hinj hsurj).symm (f x) = x := | |
(of_bijective f hinj hsurj).symm_apply_apply x | |
@[simp] lemma of_bijective_apply_symm_apply (f : E βL[π] F) (hinj : f.ker = β₯) | |
(hsurj : f.range = β€) (y : F) : | |
f ((of_bijective f hinj hsurj).symm y) = y := | |
(of_bijective f hinj hsurj).apply_symm_apply y | |
end continuous_linear_equiv | |
namespace continuous_linear_map | |
variables [complete_space E] | |
/-- Intermediate definition used to show | |
`continuous_linear_map.closed_complemented_range_of_is_compl_of_ker_eq_bot`. | |
This is `f.coprod G.subtypeL` as an `continuous_linear_equiv`. -/ | |
noncomputable def coprod_subtypeL_equiv_of_is_compl | |
(f : E βL[π] F) {G : submodule π F} | |
(h : is_compl f.range G) [complete_space G] (hker : f.ker = β₯) : (E Γ G) βL[π] F := | |
continuous_linear_equiv.of_bijective (f.coprod G.subtypeL) | |
(begin | |
rw ker_coprod_of_disjoint_range, | |
{ rw [hker, submodule.ker_subtypeL, submodule.prod_bot] }, | |
{ rw submodule.range_subtypeL, | |
exact h.disjoint } | |
end) | |
(by simp only [range_coprod, h.sup_eq_top, submodule.range_subtypeL]) | |
lemma range_eq_map_coprod_subtypeL_equiv_of_is_compl | |
(f : E βL[π] F) {G : submodule π F} | |
(h : is_compl f.range G) [complete_space G] (hker : f.ker = β₯) : | |
f.range = ((β€ : submodule π E).prod (β₯ : submodule π G)).map | |
(f.coprod_subtypeL_equiv_of_is_compl h hker : E Γ G ββ[π] F) := | |
by rw [coprod_subtypeL_equiv_of_is_compl, _root_.coe_coe, continuous_linear_equiv.coe_of_bijective, | |
coe_coprod, linear_map.coprod_map_prod, submodule.map_bot, sup_bot_eq, submodule.map_top, | |
range] | |
/- TODO: remove the assumption `f.ker = β₯` in the next lemma, by using the map induced by `f` on | |
`E / f.ker`, once we have quotient normed spaces. -/ | |
lemma closed_complemented_range_of_is_compl_of_ker_eq_bot (f : E βL[π] F) (G : submodule π F) | |
(h : is_compl f.range G) (hG : is_closed (G : set F)) (hker : f.ker = β₯) : | |
is_closed (f.range : set F) := | |
begin | |
haveI : complete_space G := hG.complete_space_coe, | |
let g := coprod_subtypeL_equiv_of_is_compl f h hker, | |
rw congr_arg coe (range_eq_map_coprod_subtypeL_equiv_of_is_compl f h hker ), | |
apply g.to_homeomorph.is_closed_image.2, | |
exact is_closed_univ.prod is_closed_singleton, | |
end | |
end continuous_linear_map | |
section closed_graph_thm | |
variables [complete_space E] (g : E ββ[π] F) | |
/-- The **closed graph theorem** : a linear map between two Banach spaces whose graph is closed | |
is continuous. -/ | |
theorem linear_map.continuous_of_is_closed_graph (hg : is_closed (g.graph : set $ E Γ F)) : | |
continuous g := | |
begin | |
letI : complete_space g.graph := complete_space_coe_iff_is_complete.mpr hg.is_complete, | |
let Οβ : E ββ[π] E Γ F := linear_map.id.prod g, | |
have : function.left_inverse prod.fst Οβ := Ξ» x, rfl, | |
let Ο : E ββ[π] g.graph := | |
(linear_equiv.of_left_inverse this).trans | |
(linear_equiv.of_eq _ _ g.graph_eq_range_prod.symm), | |
let Ο : g.graph βL[π] E := Ο.symm.to_continuous_linear_equiv_of_continuous | |
continuous_subtype_coe.fst, | |
exact (continuous_subtype_coe.comp Ο.symm.continuous).snd | |
end | |
/-- A useful form of the **closed graph theorem** : let `f` be a linear map between two Banach | |
spaces. To show that `f` is continuous, it suffices to show that for any convergent sequence | |
`uβ βΆ x`, if `f(uβ) βΆ y` then `y = f(x)`. -/ | |
theorem linear_map.continuous_of_seq_closed_graph | |
(hg : β (u : β β E) x y, tendsto u at_top (π x) β tendsto (g β u) at_top (π y) β y = g x) : | |
continuous g := | |
begin | |
refine g.continuous_of_is_closed_graph (is_seq_closed_iff_is_closed.mp $ is_seq_closed_of_def _), | |
rintros Ο β¨x, yβ© hΟg hΟ, | |
refine hg (prod.fst β Ο) x y ((continuous_fst.tendsto _).comp hΟ) _, | |
have : g β prod.fst β Ο = prod.snd β Ο, | |
{ ext n, | |
exact (hΟg n).symm }, | |
rw this, | |
exact (continuous_snd.tendsto _).comp hΟ | |
end | |
variable {g} | |
namespace continuous_linear_map | |
/-- Upgrade a `linear_map` to a `continuous_linear_map` using the **closed graph theorem**. -/ | |
def of_is_closed_graph (hg : is_closed (g.graph : set $ E Γ F)) : | |
E βL[π] F := | |
{ to_linear_map := g, | |
cont := g.continuous_of_is_closed_graph hg } | |
@[simp] lemma coe_fn_of_is_closed_graph (hg : is_closed (g.graph : set $ E Γ F)) : | |
β(continuous_linear_map.of_is_closed_graph hg) = g := rfl | |
lemma coe_of_is_closed_graph (hg : is_closed (g.graph : set $ E Γ F)) : | |
β(continuous_linear_map.of_is_closed_graph hg) = g := by { ext, refl } | |
/-- Upgrade a `linear_map` to a `continuous_linear_map` using a variation on the | |
**closed graph theorem**. -/ | |
def of_seq_closed_graph | |
(hg : β (u : β β E) x y, tendsto u at_top (π x) β tendsto (g β u) at_top (π y) β y = g x) : | |
E βL[π] F := | |
{ to_linear_map := g, | |
cont := g.continuous_of_seq_closed_graph hg } | |
@[simp] lemma coe_fn_of_seq_closed_graph | |
(hg : β (u : β β E) x y, tendsto u at_top (π x) β tendsto (g β u) at_top (π y) β y = g x) : | |
β(continuous_linear_map.of_seq_closed_graph hg) = g := rfl | |
lemma coe_of_seq_closed_graph | |
(hg : β (u : β β E) x y, tendsto u at_top (π x) β tendsto (g β u) at_top (π y) β y = g x) : | |
β(continuous_linear_map.of_seq_closed_graph hg) = g := by { ext, refl } | |
end continuous_linear_map | |
end closed_graph_thm | |