Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Yury Kudryashov. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yury Kudryashov | |
-/ | |
import analysis.normed_space.banach | |
import analysis.normed_space.finite_dimension | |
/-! | |
# Complemented subspaces of normed vector spaces | |
A submodule `p` of a topological module `E` over `R` is called *complemented* if there exists | |
a continuous linear projection `f : E ββ[R] p`, `β x : p, f x = x`. We prove that for | |
a closed subspace of a normed space this condition is equivalent to existence of a closed | |
subspace `q` such that `p β q = β₯`, `p β q = β€`. We also prove that a subspace of finite codimension | |
is always a complemented subspace. | |
## Tags | |
complemented subspace, normed vector space | |
-/ | |
variables {π E F G : Type*} [nontrivially_normed_field π] [normed_add_comm_group E] | |
[normed_space π E] [normed_add_comm_group F] [normed_space π F] [normed_add_comm_group G] | |
[normed_space π G] | |
noncomputable theory | |
namespace continuous_linear_map | |
section | |
variables [complete_space π] | |
lemma ker_closed_complemented_of_finite_dimensional_range (f : E βL[π] F) | |
[finite_dimensional π f.range] : | |
f.ker.closed_complemented := | |
begin | |
set f' : E βL[π] f.range := f.cod_restrict _ (f : E ββ[π] F).mem_range_self, | |
rcases f'.exists_right_inverse_of_surjective (f : E ββ[π] F).range_range_restrict with β¨g, hgβ©, | |
simpa only [ker_cod_restrict] using f'.closed_complemented_ker_of_right_inverse g (ext_iff.1 hg) | |
end | |
end | |
variables [complete_space E] [complete_space (F Γ G)] | |
/-- If `f : E βL[R] F` and `g : E βL[R] G` are two surjective linear maps and | |
their kernels are complement of each other, then `x β¦ (f x, g x)` defines | |
a linear equivalence `E βL[R] F Γ G`. -/ | |
def equiv_prod_of_surjective_of_is_compl (f : E βL[π] F) (g : E βL[π] G) (hf : f.range = β€) | |
(hg : g.range = β€) (hfg : is_compl f.ker g.ker) : | |
E βL[π] F Γ G := | |
((f : E ββ[π] F).equiv_prod_of_surjective_of_is_compl βg hf hg | |
hfg).to_continuous_linear_equiv_of_continuous (f.continuous.prod_mk g.continuous) | |
@[simp] lemma coe_equiv_prod_of_surjective_of_is_compl {f : E βL[π] F} {g : E βL[π] G} | |
(hf : f.range = β€) (hg : g.range = β€) (hfg : is_compl f.ker g.ker) : | |
(equiv_prod_of_surjective_of_is_compl f g hf hg hfg : E ββ[π] F Γ G) = f.prod g := | |
rfl | |
@[simp] lemma equiv_prod_of_surjective_of_is_compl_to_linear_equiv {f : E βL[π] F} {g : E βL[π] G} | |
(hf : f.range = β€) (hg : g.range = β€) (hfg : is_compl f.ker g.ker) : | |
(equiv_prod_of_surjective_of_is_compl f g hf hg hfg).to_linear_equiv = | |
linear_map.equiv_prod_of_surjective_of_is_compl f g hf hg hfg := | |
rfl | |
@[simp] lemma equiv_prod_of_surjective_of_is_compl_apply {f : E βL[π] F} {g : E βL[π] G} | |
(hf : f.range = β€) (hg : g.range = β€) (hfg : is_compl f.ker g.ker) (x : E): | |
equiv_prod_of_surjective_of_is_compl f g hf hg hfg x = (f x, g x) := | |
rfl | |
end continuous_linear_map | |
namespace subspace | |
variables [complete_space E] (p q : subspace π E) | |
/-- If `q` is a closed complement of a closed subspace `p`, then `p Γ q` is continuously | |
isomorphic to `E`. -/ | |
def prod_equiv_of_closed_compl (h : is_compl p q) (hp : is_closed (p : set E)) | |
(hq : is_closed (q : set E)) : (p Γ q) βL[π] E := | |
begin | |
haveI := hp.complete_space_coe, haveI := hq.complete_space_coe, | |
refine (p.prod_equiv_of_is_compl q h).to_continuous_linear_equiv_of_continuous _, | |
exact (p.subtypeL.coprod q.subtypeL).continuous | |
end | |
/-- Projection to a closed submodule along a closed complement. -/ | |
def linear_proj_of_closed_compl (h : is_compl p q) (hp : is_closed (p : set E)) | |
(hq : is_closed (q : set E)) : | |
E βL[π] p := | |
(continuous_linear_map.fst π p q) βL β(prod_equiv_of_closed_compl p q h hp hq).symm | |
variables {p q} | |
@[simp] lemma coe_prod_equiv_of_closed_compl (h : is_compl p q) (hp : is_closed (p : set E)) | |
(hq : is_closed (q : set E)) : | |
β(p.prod_equiv_of_closed_compl q h hp hq) = p.prod_equiv_of_is_compl q h := rfl | |
@[simp] lemma coe_prod_equiv_of_closed_compl_symm (h : is_compl p q) (hp : is_closed (p : set E)) | |
(hq : is_closed (q : set E)) : | |
β(p.prod_equiv_of_closed_compl q h hp hq).symm = (p.prod_equiv_of_is_compl q h).symm := rfl | |
@[simp] lemma coe_continuous_linear_proj_of_closed_compl (h : is_compl p q) | |
(hp : is_closed (p : set E)) (hq : is_closed (q : set E)) : | |
(p.linear_proj_of_closed_compl q h hp hq : E ββ[π] p) = p.linear_proj_of_is_compl q h := rfl | |
@[simp] lemma coe_continuous_linear_proj_of_closed_compl' (h : is_compl p q) | |
(hp : is_closed (p : set E)) (hq : is_closed (q : set E)) : | |
β(p.linear_proj_of_closed_compl q h hp hq) = p.linear_proj_of_is_compl q h := rfl | |
lemma closed_complemented_of_closed_compl (h : is_compl p q) (hp : is_closed (p : set E)) | |
(hq : is_closed (q : set E)) : p.closed_complemented := | |
β¨p.linear_proj_of_closed_compl q h hp hq, submodule.linear_proj_of_is_compl_apply_left hβ© | |
lemma closed_complemented_iff_has_closed_compl : p.closed_complemented β | |
is_closed (p : set E) β§ β (q : subspace π E) (hq : is_closed (q : set E)), is_compl p q := | |
β¨Ξ» h, β¨h.is_closed, h.has_closed_complementβ©, | |
Ξ» β¨hp, β¨q, hq, hpqβ©β©, closed_complemented_of_closed_compl hpq hp hqβ© | |
lemma closed_complemented_of_quotient_finite_dimensional [complete_space π] | |
[finite_dimensional π (E β§Έ p)] (hp : is_closed (p : set E)) : | |
p.closed_complemented := | |
begin | |
obtain β¨q, hqβ© : β q, is_compl p q := p.exists_is_compl, | |
haveI : finite_dimensional π q := (p.quotient_equiv_of_is_compl q hq).finite_dimensional, | |
exact closed_complemented_of_closed_compl hq hp q.closed_of_finite_dimensional | |
end | |
end subspace | |