Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
5.77 kB
/-
Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import analysis.normed_space.banach
import analysis.normed_space.finite_dimension
/-!
# Complemented subspaces of normed vector spaces
A submodule `p` of a topological module `E` over `R` is called *complemented* if there exists
a continuous linear projection `f : E β†’β‚—[R] p`, `βˆ€ x : p, f x = x`. We prove that for
a closed subspace of a normed space this condition is equivalent to existence of a closed
subspace `q` such that `p βŠ“ q = βŠ₯`, `p βŠ” q = ⊀`. We also prove that a subspace of finite codimension
is always a complemented subspace.
## Tags
complemented subspace, normed vector space
-/
variables {π•œ E F G : Type*} [nontrivially_normed_field π•œ] [normed_add_comm_group E]
[normed_space π•œ E] [normed_add_comm_group F] [normed_space π•œ F] [normed_add_comm_group G]
[normed_space π•œ G]
noncomputable theory
namespace continuous_linear_map
section
variables [complete_space π•œ]
lemma ker_closed_complemented_of_finite_dimensional_range (f : E β†’L[π•œ] F)
[finite_dimensional π•œ f.range] :
f.ker.closed_complemented :=
begin
set f' : E β†’L[π•œ] f.range := f.cod_restrict _ (f : E β†’β‚—[π•œ] F).mem_range_self,
rcases f'.exists_right_inverse_of_surjective (f : E β†’β‚—[π•œ] F).range_range_restrict with ⟨g, hg⟩,
simpa only [ker_cod_restrict] using f'.closed_complemented_ker_of_right_inverse g (ext_iff.1 hg)
end
end
variables [complete_space E] [complete_space (F Γ— G)]
/-- If `f : E β†’L[R] F` and `g : E β†’L[R] G` are two surjective linear maps and
their kernels are complement of each other, then `x ↦ (f x, g x)` defines
a linear equivalence `E ≃L[R] F Γ— G`. -/
def equiv_prod_of_surjective_of_is_compl (f : E β†’L[π•œ] F) (g : E β†’L[π•œ] G) (hf : f.range = ⊀)
(hg : g.range = ⊀) (hfg : is_compl f.ker g.ker) :
E ≃L[π•œ] F Γ— G :=
((f : E β†’β‚—[π•œ] F).equiv_prod_of_surjective_of_is_compl ↑g hf hg
hfg).to_continuous_linear_equiv_of_continuous (f.continuous.prod_mk g.continuous)
@[simp] lemma coe_equiv_prod_of_surjective_of_is_compl {f : E β†’L[π•œ] F} {g : E β†’L[π•œ] G}
(hf : f.range = ⊀) (hg : g.range = ⊀) (hfg : is_compl f.ker g.ker) :
(equiv_prod_of_surjective_of_is_compl f g hf hg hfg : E β†’β‚—[π•œ] F Γ— G) = f.prod g :=
rfl
@[simp] lemma equiv_prod_of_surjective_of_is_compl_to_linear_equiv {f : E β†’L[π•œ] F} {g : E β†’L[π•œ] G}
(hf : f.range = ⊀) (hg : g.range = ⊀) (hfg : is_compl f.ker g.ker) :
(equiv_prod_of_surjective_of_is_compl f g hf hg hfg).to_linear_equiv =
linear_map.equiv_prod_of_surjective_of_is_compl f g hf hg hfg :=
rfl
@[simp] lemma equiv_prod_of_surjective_of_is_compl_apply {f : E β†’L[π•œ] F} {g : E β†’L[π•œ] G}
(hf : f.range = ⊀) (hg : g.range = ⊀) (hfg : is_compl f.ker g.ker) (x : E):
equiv_prod_of_surjective_of_is_compl f g hf hg hfg x = (f x, g x) :=
rfl
end continuous_linear_map
namespace subspace
variables [complete_space E] (p q : subspace π•œ E)
/-- If `q` is a closed complement of a closed subspace `p`, then `p Γ— q` is continuously
isomorphic to `E`. -/
def prod_equiv_of_closed_compl (h : is_compl p q) (hp : is_closed (p : set E))
(hq : is_closed (q : set E)) : (p Γ— q) ≃L[π•œ] E :=
begin
haveI := hp.complete_space_coe, haveI := hq.complete_space_coe,
refine (p.prod_equiv_of_is_compl q h).to_continuous_linear_equiv_of_continuous _,
exact (p.subtypeL.coprod q.subtypeL).continuous
end
/-- Projection to a closed submodule along a closed complement. -/
def linear_proj_of_closed_compl (h : is_compl p q) (hp : is_closed (p : set E))
(hq : is_closed (q : set E)) :
E β†’L[π•œ] p :=
(continuous_linear_map.fst π•œ p q) ∘L ↑(prod_equiv_of_closed_compl p q h hp hq).symm
variables {p q}
@[simp] lemma coe_prod_equiv_of_closed_compl (h : is_compl p q) (hp : is_closed (p : set E))
(hq : is_closed (q : set E)) :
⇑(p.prod_equiv_of_closed_compl q h hp hq) = p.prod_equiv_of_is_compl q h := rfl
@[simp] lemma coe_prod_equiv_of_closed_compl_symm (h : is_compl p q) (hp : is_closed (p : set E))
(hq : is_closed (q : set E)) :
⇑(p.prod_equiv_of_closed_compl q h hp hq).symm = (p.prod_equiv_of_is_compl q h).symm := rfl
@[simp] lemma coe_continuous_linear_proj_of_closed_compl (h : is_compl p q)
(hp : is_closed (p : set E)) (hq : is_closed (q : set E)) :
(p.linear_proj_of_closed_compl q h hp hq : E β†’β‚—[π•œ] p) = p.linear_proj_of_is_compl q h := rfl
@[simp] lemma coe_continuous_linear_proj_of_closed_compl' (h : is_compl p q)
(hp : is_closed (p : set E)) (hq : is_closed (q : set E)) :
⇑(p.linear_proj_of_closed_compl q h hp hq) = p.linear_proj_of_is_compl q h := rfl
lemma closed_complemented_of_closed_compl (h : is_compl p q) (hp : is_closed (p : set E))
(hq : is_closed (q : set E)) : p.closed_complemented :=
⟨p.linear_proj_of_closed_compl q h hp hq, submodule.linear_proj_of_is_compl_apply_left h⟩
lemma closed_complemented_iff_has_closed_compl : p.closed_complemented ↔
is_closed (p : set E) ∧ βˆƒ (q : subspace π•œ E) (hq : is_closed (q : set E)), is_compl p q :=
⟨λ h, ⟨h.is_closed, h.has_closed_complement⟩,
λ ⟨hp, ⟨q, hq, hpq⟩⟩, closed_complemented_of_closed_compl hpq hp hq⟩
lemma closed_complemented_of_quotient_finite_dimensional [complete_space π•œ]
[finite_dimensional π•œ (E β§Έ p)] (hp : is_closed (p : set E)) :
p.closed_complemented :=
begin
obtain ⟨q, hq⟩ : βˆƒ q, is_compl p q := p.exists_is_compl,
haveI : finite_dimensional π•œ q := (p.quotient_equiv_of_is_compl q hq).finite_dimensional,
exact closed_complemented_of_closed_compl hq hp q.closed_of_finite_dimensional
end
end subspace