Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
6.72 kB
/-
Copyright (c) 2020 Ruben Van de Velde. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ruben Van de Velde
-/
import algebra.algebra.restrict_scalars
import data.complex.is_R_or_C
/-!
# Extending a continuous `ℝ`-linear map to a continuous `π•œ`-linear map
In this file we provide a way to extend a continuous `ℝ`-linear map to a continuous `π•œ`-linear map
in a way that bounds the norm by the norm of the original map, when `π•œ` is either `ℝ` (the
extension is trivial) or `β„‚`. We formulate the extension uniformly, by assuming `is_R_or_C π•œ`.
We motivate the form of the extension as follows. Note that `fc : F β†’β‚—[π•œ] π•œ` is determined fully by
`Re fc`: for all `x : F`, `fc (I β€’ x) = I * fc x`, so `Im (fc x) = -Re (fc (I β€’ x))`. Therefore,
given an `fr : F β†’β‚—[ℝ] ℝ`, we define `fc x = fr x - fr (I β€’ x) * I`.
## Main definitions
* `linear_map.extend_to_π•œ`
* `continuous_linear_map.extend_to_π•œ`
## Implementation details
For convenience, the main definitions above operate in terms of `restrict_scalars ℝ π•œ F`.
Alternate forms which operate on `[is_scalar_tower ℝ π•œ F]` instead are provided with a primed name.
-/
open is_R_or_C
variables {π•œ : Type*} [is_R_or_C π•œ] {F : Type*} [seminormed_add_comm_group F] [normed_space π•œ F]
local notation `absπ•œ` := @is_R_or_C.abs π•œ _
/-- Extend `fr : F β†’β‚—[ℝ] ℝ` to `F β†’β‚—[π•œ] π•œ` in a way that will also be continuous and have its norm
bounded by `βˆ₯frβˆ₯` if `fr` is continuous. -/
noncomputable def linear_map.extend_to_π•œ'
[module ℝ F] [is_scalar_tower ℝ π•œ F] (fr : F β†’β‚—[ℝ] ℝ) : F β†’β‚—[π•œ] π•œ :=
begin
let fc : F β†’ π•œ := Ξ» x, (fr x : π•œ) - (I : π•œ) * (fr ((I : π•œ) β€’ x)),
have add : βˆ€ x y : F, fc (x + y) = fc x + fc y,
{ assume x y,
simp only [fc],
simp only [smul_add, linear_map.map_add, of_real_add],
rw mul_add,
abel, },
have A : βˆ€ (c : ℝ) (x : F), (fr ((c : π•œ) β€’ x) : π•œ) = (c : π•œ) * (fr x : π•œ),
{ assume c x,
rw [← of_real_mul],
congr' 1,
rw [is_R_or_C.of_real_alg, smul_assoc, fr.map_smul, algebra.id.smul_eq_mul, one_smul] },
have smul_ℝ : βˆ€ (c : ℝ) (x : F), fc ((c : π•œ) β€’ x) = (c : π•œ) * fc x,
{ assume c x,
simp only [fc, A],
rw A c x,
rw [smul_smul, mul_comm I (c : π•œ), ← smul_smul, A, mul_sub],
ring },
have smul_I : βˆ€ x : F, fc ((I : π•œ) β€’ x) = (I : π•œ) * fc x,
{ assume x,
simp only [fc],
cases @I_mul_I_ax π•œ _ with h h, { simp [h] },
rw [mul_sub, ← mul_assoc, smul_smul, h],
simp only [neg_mul, linear_map.map_neg, one_mul, one_smul,
mul_neg, of_real_neg, neg_smul, sub_neg_eq_add, add_comm] },
have smul_π•œ : βˆ€ (c : π•œ) (x : F), fc (c β€’ x) = c β€’ fc x,
{ assume c x,
rw [← re_add_im c, add_smul, add_smul, add, smul_ℝ, ← smul_smul, smul_ℝ, smul_I, ← mul_assoc],
refl },
exact { to_fun := fc, map_add' := add, map_smul' := smul_π•œ }
end
lemma linear_map.extend_to_π•œ'_apply [module ℝ F] [is_scalar_tower ℝ π•œ F]
(fr : F β†’β‚—[ℝ] ℝ) (x : F) :
fr.extend_to_π•œ' x = (fr x : π•œ) - (I : π•œ) * fr ((I : π•œ) β€’ x) := rfl
/-- The norm of the extension is bounded by `βˆ₯frβˆ₯`. -/
lemma norm_bound [normed_space ℝ F] [is_scalar_tower ℝ π•œ F] (fr : F β†’L[ℝ] ℝ) (x : F) :
βˆ₯(fr.to_linear_map.extend_to_π•œ' x : π•œ)βˆ₯ ≀ βˆ₯frβˆ₯ * βˆ₯xβˆ₯ :=
begin
let lm : F β†’β‚—[π•œ] π•œ := fr.to_linear_map.extend_to_π•œ',
-- We aim to find a `t : π•œ` such that
-- * `lm (t β€’ x) = fr (t β€’ x)` (so `lm (t β€’ x) = t * lm x ∈ ℝ`)
-- * `βˆ₯lm xβˆ₯ = βˆ₯lm (t β€’ x)βˆ₯` (so `t.abs` must be 1)
-- If `lm x β‰  0`, `(lm x)⁻¹` satisfies the first requirement, and after normalizing, it
-- satisfies the second.
-- (If `lm x = 0`, the goal is trivial.)
classical,
by_cases h : lm x = 0,
{ rw [h, norm_zero],
apply mul_nonneg; exact norm_nonneg _ },
let fx := (lm x)⁻¹,
let t := fx / (absπ•œ fx : π•œ),
have ht : absπ•œ t = 1, by field_simp [abs_of_real, of_real_inv, is_R_or_C.abs_inv,
is_R_or_C.abs_div, is_R_or_C.abs_abs, h],
have h1 : (fr (t β€’ x) : π•œ) = lm (t β€’ x),
{ apply ext,
{ simp only [lm, of_real_re, linear_map.extend_to_π•œ'_apply, mul_re, I_re, of_real_im, zero_mul,
add_monoid_hom.map_sub, sub_zero, mul_zero],
refl },
{ symmetry,
calc im (lm (t β€’ x))
= im (t * lm x) : by rw [lm.map_smul, smul_eq_mul]
... = im ((lm x)⁻¹ / (absπ•œ (lm x)⁻¹) * lm x) : rfl
... = im (1 / (absπ•œ (lm x)⁻¹ : π•œ)) : by rw [div_mul_eq_mul_div, inv_mul_cancel h]
... = 0 : by rw [← of_real_one, ← of_real_div, of_real_im]
... = im (fr (t β€’ x) : π•œ) : by rw [of_real_im] } },
calc βˆ₯lm xβˆ₯ = absπ•œ t * βˆ₯lm xβˆ₯ : by rw [ht, one_mul]
... = βˆ₯t * lm xβˆ₯ : by rw [← norm_eq_abs, norm_mul]
... = βˆ₯lm (t β€’ x)βˆ₯ : by rw [←smul_eq_mul, lm.map_smul]
... = βˆ₯(fr (t β€’ x) : π•œ)βˆ₯ : by rw h1
... = βˆ₯fr (t β€’ x)βˆ₯ : by rw [norm_eq_abs, abs_of_real, norm_eq_abs, abs_to_real]
... ≀ βˆ₯frβˆ₯ * βˆ₯t β€’ xβˆ₯ : continuous_linear_map.le_op_norm _ _
... = βˆ₯frβˆ₯ * (βˆ₯tβˆ₯ * βˆ₯xβˆ₯) : by rw norm_smul
... ≀ βˆ₯frβˆ₯ * βˆ₯xβˆ₯ : by rw [norm_eq_abs, ht, one_mul]
end
/-- Extend `fr : F β†’L[ℝ] ℝ` to `F β†’L[π•œ] π•œ`. -/
noncomputable def continuous_linear_map.extend_to_π•œ' [normed_space ℝ F] [is_scalar_tower ℝ π•œ F]
(fr : F β†’L[ℝ] ℝ) :
F β†’L[π•œ] π•œ :=
linear_map.mk_continuous _ (βˆ₯frβˆ₯) (norm_bound _)
lemma continuous_linear_map.extend_to_π•œ'_apply [normed_space ℝ F] [is_scalar_tower ℝ π•œ F]
(fr : F β†’L[ℝ] ℝ) (x : F) :
fr.extend_to_π•œ' x = (fr x : π•œ) - (I : π•œ) * fr ((I : π•œ) β€’ x) := rfl
/-- Extend `fr : restrict_scalars ℝ π•œ F β†’β‚—[ℝ] ℝ` to `F β†’β‚—[π•œ] π•œ`. -/
noncomputable def linear_map.extend_to_π•œ (fr : (restrict_scalars ℝ π•œ F) β†’β‚—[ℝ] ℝ) : F β†’β‚—[π•œ] π•œ :=
fr.extend_to_π•œ'
lemma linear_map.extend_to_π•œ_apply (fr : (restrict_scalars ℝ π•œ F) β†’β‚—[ℝ] ℝ) (x : F) :
fr.extend_to_π•œ x = (fr x : π•œ) - (I : π•œ) * fr ((I : π•œ) β€’ x : _) := rfl
/-- Extend `fr : restrict_scalars ℝ π•œ F β†’L[ℝ] ℝ` to `F β†’L[π•œ] π•œ`. -/
noncomputable def continuous_linear_map.extend_to_π•œ (fr : (restrict_scalars ℝ π•œ F) β†’L[ℝ] ℝ) :
F β†’L[π•œ] π•œ :=
fr.extend_to_π•œ'
lemma continuous_linear_map.extend_to_π•œ_apply (fr : (restrict_scalars ℝ π•œ F) β†’L[ℝ] ℝ) (x : F) :
fr.extend_to_π•œ x = (fr x : π•œ) - (I : π•œ) * fr ((I : π•œ) β€’ x : _) := rfl