Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Sébastien Gouëzel. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Sébastien Gouëzel | |
-/ | |
import analysis.normed_space.operator_norm | |
import topology.algebra.module.multilinear | |
/-! | |
# Operator norm on the space of continuous multilinear maps | |
When `f` is a continuous multilinear map in finitely many variables, we define its norm `∥f∥` as the | |
smallest number such that `∥f m∥ ≤ ∥f∥ * ∏ i, ∥m i∥` for all `m`. | |
We show that it is indeed a norm, and prove its basic properties. | |
## Main results | |
Let `f` be a multilinear map in finitely many variables. | |
* `exists_bound_of_continuous` asserts that, if `f` is continuous, then there exists `C > 0` | |
with `∥f m∥ ≤ C * ∏ i, ∥m i∥` for all `m`. | |
* `continuous_of_bound`, conversely, asserts that this bound implies continuity. | |
* `mk_continuous` constructs the associated continuous multilinear map. | |
Let `f` be a continuous multilinear map in finitely many variables. | |
* `∥f∥` is its norm, i.e., the smallest number such that `∥f m∥ ≤ ∥f∥ * ∏ i, ∥m i∥` for | |
all `m`. | |
* `le_op_norm f m` asserts the fundamental inequality `∥f m∥ ≤ ∥f∥ * ∏ i, ∥m i∥`. | |
* `norm_image_sub_le f m₁ m₂` gives a control of the difference `f m₁ - f m₂` in terms of | |
`∥f∥` and `∥m₁ - m₂∥`. | |
We also register isomorphisms corresponding to currying or uncurrying variables, transforming a | |
continuous multilinear function `f` in `n+1` variables into a continuous linear function taking | |
values in continuous multilinear functions in `n` variables, and also into a continuous multilinear | |
function in `n` variables taking values in continuous linear functions. These operations are called | |
`f.curry_left` and `f.curry_right` respectively (with inverses `f.uncurry_left` and | |
`f.uncurry_right`). They induce continuous linear equivalences between spaces of | |
continuous multilinear functions in `n+1` variables and spaces of continuous linear functions into | |
continuous multilinear functions in `n` variables (resp. continuous multilinear functions in `n` | |
variables taking values in continuous linear functions), called respectively | |
`continuous_multilinear_curry_left_equiv` and `continuous_multilinear_curry_right_equiv`. | |
## Implementation notes | |
We mostly follow the API (and the proofs) of `operator_norm.lean`, with the additional complexity | |
that we should deal with multilinear maps in several variables. The currying/uncurrying | |
constructions are based on those in `multilinear.lean`. | |
From the mathematical point of view, all the results follow from the results on operator norm in | |
one variable, by applying them to one variable after the other through currying. However, this | |
is only well defined when there is an order on the variables (for instance on `fin n`) although | |
the final result is independent of the order. While everything could be done following this | |
approach, it turns out that direct proofs are easier and more efficient. | |
-/ | |
noncomputable theory | |
open_locale classical big_operators nnreal | |
open finset metric | |
local attribute [instance, priority 1001] | |
add_comm_group.to_add_comm_monoid normed_add_comm_group.to_add_comm_group normed_space.to_module' | |
-- hack to speed up simp when dealing with complicated types | |
local attribute [-instance] unique.subsingleton pi.subsingleton | |
/-! | |
### Type variables | |
We use the following type variables in this file: | |
* `𝕜` : a `nontrivially_normed_field`; | |
* `ι`, `ι'` : finite index types with decidable equality; | |
* `E`, `E₁` : families of normed vector spaces over `𝕜` indexed by `i : ι`; | |
* `E'` : a family of normed vector spaces over `𝕜` indexed by `i' : ι'`; | |
* `Ei` : a family of normed vector spaces over `𝕜` indexed by `i : fin (nat.succ n)`; | |
* `G`, `G'` : normed vector spaces over `𝕜`. | |
-/ | |
universes u v v' wE wE₁ wE' wEi wG wG' | |
variables {𝕜 : Type u} {ι : Type v} {ι' : Type v'} {n : ℕ} | |
{E : ι → Type wE} {E₁ : ι → Type wE₁} {E' : ι' → Type wE'} {Ei : fin n.succ → Type wEi} | |
{G : Type wG} {G' : Type wG'} | |
[decidable_eq ι] [fintype ι] [decidable_eq ι'] [fintype ι'] [nontrivially_normed_field 𝕜] | |
[Π i, normed_add_comm_group (E i)] [Π i, normed_space 𝕜 (E i)] | |
[Π i, normed_add_comm_group (E₁ i)] [Π i, normed_space 𝕜 (E₁ i)] | |
[Π i, normed_add_comm_group (E' i)] [Π i, normed_space 𝕜 (E' i)] | |
[Π i, normed_add_comm_group (Ei i)] [Π i, normed_space 𝕜 (Ei i)] | |
[normed_add_comm_group G] [normed_space 𝕜 G] [normed_add_comm_group G'] [normed_space 𝕜 G'] | |
/-! | |
### Continuity properties of multilinear maps | |
We relate continuity of multilinear maps to the inequality `∥f m∥ ≤ C * ∏ i, ∥m i∥`, in | |
both directions. Along the way, we prove useful bounds on the difference `∥f m₁ - f m₂∥`. | |
-/ | |
namespace multilinear_map | |
variable (f : multilinear_map 𝕜 E G) | |
/-- If a multilinear map in finitely many variables on normed spaces satisfies the inequality | |
`∥f m∥ ≤ C * ∏ i, ∥m i∥` on a shell `ε i / ∥c i∥ < ∥m i∥ < ε i` for some positive numbers `ε i` | |
and elements `c i : 𝕜`, `1 < ∥c i∥`, then it satisfies this inequality for all `m`. -/ | |
lemma bound_of_shell {ε : ι → ℝ} {C : ℝ} (hε : ∀ i, 0 < ε i) {c : ι → 𝕜} (hc : ∀ i, 1 < ∥c i∥) | |
(hf : ∀ m : Π i, E i, (∀ i, ε i / ∥c i∥ ≤ ∥m i∥) → (∀ i, ∥m i∥ < ε i) → ∥f m∥ ≤ C * ∏ i, ∥m i∥) | |
(m : Π i, E i) : ∥f m∥ ≤ C * ∏ i, ∥m i∥ := | |
begin | |
rcases em (∃ i, m i = 0) with ⟨i, hi⟩|hm; [skip, push_neg at hm], | |
{ simp [f.map_coord_zero i hi, prod_eq_zero (mem_univ i), hi] }, | |
choose δ hδ0 hδm_lt hle_δm hδinv using λ i, rescale_to_shell (hc i) (hε i) (hm i), | |
have hδ0 : 0 < ∏ i, ∥δ i∥, from prod_pos (λ i _, norm_pos_iff.2 (hδ0 i)), | |
simpa [map_smul_univ, norm_smul, prod_mul_distrib, mul_left_comm C, mul_le_mul_left hδ0] | |
using hf (λ i, δ i • m i) hle_δm hδm_lt, | |
end | |
/-- If a multilinear map in finitely many variables on normed spaces is continuous, then it | |
satisfies the inequality `∥f m∥ ≤ C * ∏ i, ∥m i∥`, for some `C` which can be chosen to be | |
positive. -/ | |
theorem exists_bound_of_continuous (hf : continuous f) : | |
∃ (C : ℝ), 0 < C ∧ (∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) := | |
begin | |
casesI is_empty_or_nonempty ι, | |
{ refine ⟨∥f 0∥ + 1, add_pos_of_nonneg_of_pos (norm_nonneg _) zero_lt_one, λ m, _⟩, | |
obtain rfl : m = 0, from funext (is_empty.elim ‹_›), | |
simp [univ_eq_empty, zero_le_one] }, | |
obtain ⟨ε : ℝ, ε0 : 0 < ε, hε : ∀ m : Π i, E i, ∥m - 0∥ < ε → ∥f m - f 0∥ < 1⟩ := | |
normed_add_comm_group.tendsto_nhds_nhds.1 (hf.tendsto 0) 1 zero_lt_one, | |
simp only [sub_zero, f.map_zero] at hε, | |
rcases normed_field.exists_one_lt_norm 𝕜 with ⟨c, hc⟩, | |
have : 0 < (∥c∥ / ε) ^ fintype.card ι, from pow_pos (div_pos (zero_lt_one.trans hc) ε0) _, | |
refine ⟨_, this, _⟩, | |
refine f.bound_of_shell (λ _, ε0) (λ _, hc) (λ m hcm hm, _), | |
refine (hε m ((pi_norm_lt_iff ε0).2 hm)).le.trans _, | |
rw [← div_le_iff' this, one_div, ← inv_pow, inv_div, fintype.card, ← prod_const], | |
exact prod_le_prod (λ _ _, div_nonneg ε0.le (norm_nonneg _)) (λ i _, hcm i) | |
end | |
/-- If `f` satisfies a boundedness property around `0`, one can deduce a bound on `f m₁ - f m₂` | |
using the multilinearity. Here, we give a precise but hard to use version. See | |
`norm_image_sub_le_of_bound` for a less precise but more usable version. The bound reads | |
`∥f m - f m'∥ ≤ | |
C * ∥m 1 - m' 1∥ * max ∥m 2∥ ∥m' 2∥ * max ∥m 3∥ ∥m' 3∥ * ... * max ∥m n∥ ∥m' n∥ + ...`, | |
where the other terms in the sum are the same products where `1` is replaced by any `i`. -/ | |
lemma norm_image_sub_le_of_bound' {C : ℝ} (hC : 0 ≤ C) | |
(H : ∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) (m₁ m₂ : Πi, E i) : | |
∥f m₁ - f m₂∥ ≤ | |
C * ∑ i, ∏ j, if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥ := | |
begin | |
have A : ∀(s : finset ι), ∥f m₁ - f (s.piecewise m₂ m₁)∥ | |
≤ C * ∑ i in s, ∏ j, if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥, | |
{ refine finset.induction (by simp) _, | |
assume i s his Hrec, | |
have I : ∥f (s.piecewise m₂ m₁) - f ((insert i s).piecewise m₂ m₁)∥ | |
≤ C * ∏ j, if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥, | |
{ have A : ((insert i s).piecewise m₂ m₁) | |
= function.update (s.piecewise m₂ m₁) i (m₂ i) := s.piecewise_insert _ _ _, | |
have B : s.piecewise m₂ m₁ = function.update (s.piecewise m₂ m₁) i (m₁ i), | |
{ ext j, | |
by_cases h : j = i, | |
{ rw h, simp [his] }, | |
{ simp [h] } }, | |
rw [B, A, ← f.map_sub], | |
apply le_trans (H _) (mul_le_mul_of_nonneg_left _ hC), | |
refine prod_le_prod (λj hj, norm_nonneg _) (λj hj, _), | |
by_cases h : j = i, | |
{ rw h, simp }, | |
{ by_cases h' : j ∈ s; | |
simp [h', h, le_refl] } }, | |
calc ∥f m₁ - f ((insert i s).piecewise m₂ m₁)∥ ≤ | |
∥f m₁ - f (s.piecewise m₂ m₁)∥ + ∥f (s.piecewise m₂ m₁) - f ((insert i s).piecewise m₂ m₁)∥ : | |
by { rw [← dist_eq_norm, ← dist_eq_norm, ← dist_eq_norm], exact dist_triangle _ _ _ } | |
... ≤ (C * ∑ i in s, ∏ j, if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥) | |
+ C * ∏ j, if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥ : | |
add_le_add Hrec I | |
... = C * ∑ i in insert i s, ∏ j, if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥ : | |
by simp [his, add_comm, left_distrib] }, | |
convert A univ, | |
simp | |
end | |
/-- If `f` satisfies a boundedness property around `0`, one can deduce a bound on `f m₁ - f m₂` | |
using the multilinearity. Here, we give a usable but not very precise version. See | |
`norm_image_sub_le_of_bound'` for a more precise but less usable version. The bound is | |
`∥f m - f m'∥ ≤ C * card ι * ∥m - m'∥ * (max ∥m∥ ∥m'∥) ^ (card ι - 1)`. -/ | |
lemma norm_image_sub_le_of_bound {C : ℝ} (hC : 0 ≤ C) | |
(H : ∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) (m₁ m₂ : Πi, E i) : | |
∥f m₁ - f m₂∥ ≤ C * (fintype.card ι) * (max ∥m₁∥ ∥m₂∥) ^ (fintype.card ι - 1) * ∥m₁ - m₂∥ := | |
begin | |
have A : ∀ (i : ι), ∏ j, (if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥) | |
≤ ∥m₁ - m₂∥ * (max ∥m₁∥ ∥m₂∥) ^ (fintype.card ι - 1), | |
{ assume i, | |
calc ∏ j, (if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥) | |
≤ ∏ j : ι, function.update (λ j, max ∥m₁∥ ∥m₂∥) i (∥m₁ - m₂∥) j : | |
begin | |
apply prod_le_prod, | |
{ assume j hj, by_cases h : j = i; simp [h, norm_nonneg] }, | |
{ assume j hj, | |
by_cases h : j = i, | |
{ rw h, simp, exact norm_le_pi_norm (m₁ - m₂) i }, | |
{ simp [h, max_le_max, norm_le_pi_norm (_ : Π i, E i)] } } | |
end | |
... = ∥m₁ - m₂∥ * (max ∥m₁∥ ∥m₂∥) ^ (fintype.card ι - 1) : | |
by { rw prod_update_of_mem (finset.mem_univ _), simp [card_univ_diff] } }, | |
calc | |
∥f m₁ - f m₂∥ | |
≤ C * ∑ i, ∏ j, if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥ : | |
f.norm_image_sub_le_of_bound' hC H m₁ m₂ | |
... ≤ C * ∑ i, ∥m₁ - m₂∥ * (max ∥m₁∥ ∥m₂∥) ^ (fintype.card ι - 1) : | |
mul_le_mul_of_nonneg_left (sum_le_sum (λi hi, A i)) hC | |
... = C * (fintype.card ι) * (max ∥m₁∥ ∥m₂∥) ^ (fintype.card ι - 1) * ∥m₁ - m₂∥ : | |
by { rw [sum_const, card_univ, nsmul_eq_mul], ring } | |
end | |
/-- If a multilinear map satisfies an inequality `∥f m∥ ≤ C * ∏ i, ∥m i∥`, then it is | |
continuous. -/ | |
theorem continuous_of_bound (C : ℝ) (H : ∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) : | |
continuous f := | |
begin | |
let D := max C 1, | |
have D_pos : 0 ≤ D := le_trans zero_le_one (le_max_right _ _), | |
replace H : ∀ m, ∥f m∥ ≤ D * ∏ i, ∥m i∥, | |
{ assume m, | |
apply le_trans (H m) (mul_le_mul_of_nonneg_right (le_max_left _ _) _), | |
exact prod_nonneg (λ(i : ι) hi, norm_nonneg (m i)) }, | |
refine continuous_iff_continuous_at.2 (λm, _), | |
refine continuous_at_of_locally_lipschitz zero_lt_one | |
(D * (fintype.card ι) * (∥m∥ + 1) ^ (fintype.card ι - 1)) (λm' h', _), | |
rw [dist_eq_norm, dist_eq_norm], | |
have : 0 ≤ (max ∥m'∥ ∥m∥), by simp, | |
have : (max ∥m'∥ ∥m∥) ≤ ∥m∥ + 1, | |
by simp [zero_le_one, norm_le_of_mem_closed_ball (le_of_lt h'), -add_comm], | |
calc | |
∥f m' - f m∥ | |
≤ D * (fintype.card ι) * (max ∥m'∥ ∥m∥) ^ (fintype.card ι - 1) * ∥m' - m∥ : | |
f.norm_image_sub_le_of_bound D_pos H m' m | |
... ≤ D * (fintype.card ι) * (∥m∥ + 1) ^ (fintype.card ι - 1) * ∥m' - m∥ : | |
by apply_rules [mul_le_mul_of_nonneg_right, mul_le_mul_of_nonneg_left, mul_nonneg, | |
norm_nonneg, nat.cast_nonneg, pow_le_pow_of_le_left] | |
end | |
/-- Constructing a continuous multilinear map from a multilinear map satisfying a boundedness | |
condition. -/ | |
def mk_continuous (C : ℝ) (H : ∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) : | |
continuous_multilinear_map 𝕜 E G := | |
{ cont := f.continuous_of_bound C H, ..f } | |
@[simp] lemma coe_mk_continuous (C : ℝ) (H : ∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) : | |
⇑(f.mk_continuous C H) = f := | |
rfl | |
/-- Given a multilinear map in `n` variables, if one restricts it to `k` variables putting `z` on | |
the other coordinates, then the resulting restricted function satisfies an inequality | |
`∥f.restr v∥ ≤ C * ∥z∥^(n-k) * Π ∥v i∥` if the original function satisfies `∥f v∥ ≤ C * Π ∥v i∥`. -/ | |
lemma restr_norm_le {k n : ℕ} (f : (multilinear_map 𝕜 (λ i : fin n, G) G' : _)) | |
(s : finset (fin n)) (hk : s.card = k) (z : G) {C : ℝ} | |
(H : ∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) (v : fin k → G) : | |
∥f.restr s hk z v∥ ≤ C * ∥z∥ ^ (n - k) * ∏ i, ∥v i∥ := | |
begin | |
rw [mul_right_comm, mul_assoc], | |
convert H _ using 2, | |
simp only [apply_dite norm, fintype.prod_dite, prod_const (∥z∥), finset.card_univ, | |
fintype.card_of_subtype sᶜ (λ x, mem_compl), card_compl, fintype.card_fin, hk, mk_coe, | |
← (s.order_iso_of_fin hk).symm.bijective.prod_comp (λ x, ∥v x∥)], | |
refl | |
end | |
end multilinear_map | |
/-! | |
### Continuous multilinear maps | |
We define the norm `∥f∥` of a continuous multilinear map `f` in finitely many variables as the | |
smallest number such that `∥f m∥ ≤ ∥f∥ * ∏ i, ∥m i∥` for all `m`. We show that this | |
defines a normed space structure on `continuous_multilinear_map 𝕜 E G`. | |
-/ | |
namespace continuous_multilinear_map | |
variables (c : 𝕜) (f g : continuous_multilinear_map 𝕜 E G) (m : Πi, E i) | |
theorem bound : ∃ (C : ℝ), 0 < C ∧ (∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) := | |
f.to_multilinear_map.exists_bound_of_continuous f.2 | |
open real | |
/-- The operator norm of a continuous multilinear map is the inf of all its bounds. -/ | |
def op_norm := Inf {c | 0 ≤ (c : ℝ) ∧ ∀ m, ∥f m∥ ≤ c * ∏ i, ∥m i∥} | |
instance has_op_norm : has_norm (continuous_multilinear_map 𝕜 E G) := ⟨op_norm⟩ | |
/-- An alias of `continuous_multilinear_map.has_op_norm` with non-dependent types to help typeclass | |
search. -/ | |
instance has_op_norm' : has_norm (continuous_multilinear_map 𝕜 (λ (i : ι), G) G') := | |
continuous_multilinear_map.has_op_norm | |
lemma norm_def : ∥f∥ = Inf {c | 0 ≤ (c : ℝ) ∧ ∀ m, ∥f m∥ ≤ c * ∏ i, ∥m i∥} := rfl | |
-- So that invocations of `le_cInf` make sense: we show that the set of | |
-- bounds is nonempty and bounded below. | |
lemma bounds_nonempty {f : continuous_multilinear_map 𝕜 E G} : | |
∃ c, c ∈ {c | 0 ≤ c ∧ ∀ m, ∥f m∥ ≤ c * ∏ i, ∥m i∥} := | |
let ⟨M, hMp, hMb⟩ := f.bound in ⟨M, le_of_lt hMp, hMb⟩ | |
lemma bounds_bdd_below {f : continuous_multilinear_map 𝕜 E G} : | |
bdd_below {c | 0 ≤ c ∧ ∀ m, ∥f m∥ ≤ c * ∏ i, ∥m i∥} := | |
⟨0, λ _ ⟨hn, _⟩, hn⟩ | |
lemma op_norm_nonneg : 0 ≤ ∥f∥ := | |
le_cInf bounds_nonempty (λ _ ⟨hx, _⟩, hx) | |
/-- The fundamental property of the operator norm of a continuous multilinear map: | |
`∥f m∥` is bounded by `∥f∥` times the product of the `∥m i∥`. -/ | |
theorem le_op_norm : ∥f m∥ ≤ ∥f∥ * ∏ i, ∥m i∥ := | |
begin | |
have A : 0 ≤ ∏ i, ∥m i∥ := prod_nonneg (λj hj, norm_nonneg _), | |
cases A.eq_or_lt with h hlt, | |
{ rcases prod_eq_zero_iff.1 h.symm with ⟨i, _, hi⟩, | |
rw norm_eq_zero at hi, | |
have : f m = 0 := f.map_coord_zero i hi, | |
rw [this, norm_zero], | |
exact mul_nonneg (op_norm_nonneg f) A }, | |
{ rw [← div_le_iff hlt], | |
apply le_cInf bounds_nonempty, | |
rintro c ⟨_, hc⟩, rw [div_le_iff hlt], apply hc } | |
end | |
theorem le_of_op_norm_le {C : ℝ} (h : ∥f∥ ≤ C) : ∥f m∥ ≤ C * ∏ i, ∥m i∥ := | |
(f.le_op_norm m).trans $ mul_le_mul_of_nonneg_right h (prod_nonneg $ λ i _, norm_nonneg (m i)) | |
lemma ratio_le_op_norm : ∥f m∥ / ∏ i, ∥m i∥ ≤ ∥f∥ := | |
div_le_of_nonneg_of_le_mul (prod_nonneg $ λ i _, norm_nonneg _) (op_norm_nonneg _) (f.le_op_norm m) | |
/-- The image of the unit ball under a continuous multilinear map is bounded. -/ | |
lemma unit_le_op_norm (h : ∥m∥ ≤ 1) : ∥f m∥ ≤ ∥f∥ := | |
calc | |
∥f m∥ ≤ ∥f∥ * ∏ i, ∥m i∥ : f.le_op_norm m | |
... ≤ ∥f∥ * ∏ i : ι, 1 : | |
mul_le_mul_of_nonneg_left (prod_le_prod (λi hi, norm_nonneg _) | |
(λi hi, le_trans (norm_le_pi_norm (_ : Π i, E i) _) h)) (op_norm_nonneg f) | |
... = ∥f∥ : by simp | |
/-- If one controls the norm of every `f x`, then one controls the norm of `f`. -/ | |
lemma op_norm_le_bound {M : ℝ} (hMp: 0 ≤ M) (hM : ∀ m, ∥f m∥ ≤ M * ∏ i, ∥m i∥) : | |
∥f∥ ≤ M := | |
cInf_le bounds_bdd_below ⟨hMp, hM⟩ | |
/-- The operator norm satisfies the triangle inequality. -/ | |
theorem op_norm_add_le : ∥f + g∥ ≤ ∥f∥ + ∥g∥ := | |
cInf_le bounds_bdd_below | |
⟨add_nonneg (op_norm_nonneg _) (op_norm_nonneg _), λ x, by { rw add_mul, | |
exact norm_add_le_of_le (le_op_norm _ _) (le_op_norm _ _) }⟩ | |
/-- A continuous linear map is zero iff its norm vanishes. -/ | |
theorem op_norm_zero_iff : ∥f∥ = 0 ↔ f = 0 := | |
begin | |
split, | |
{ assume h, | |
ext m, | |
simpa [h] using f.le_op_norm m }, | |
{ rintro rfl, | |
apply le_antisymm (op_norm_le_bound 0 le_rfl (λm, _)) (op_norm_nonneg _), | |
simp } | |
end | |
section | |
variables {𝕜' : Type*} [normed_field 𝕜'] [normed_space 𝕜' G] [smul_comm_class 𝕜 𝕜' G] | |
lemma op_norm_smul_le (c : 𝕜') : ∥c • f∥ ≤ ∥c∥ * ∥f∥ := | |
(c • f).op_norm_le_bound | |
(mul_nonneg (norm_nonneg _) (op_norm_nonneg _)) | |
begin | |
intro m, | |
erw [norm_smul, mul_assoc], | |
exact mul_le_mul_of_nonneg_left (le_op_norm _ _) (norm_nonneg _) | |
end | |
lemma op_norm_neg : ∥-f∥ = ∥f∥ := by { rw norm_def, apply congr_arg, ext, simp } | |
/-- Continuous multilinear maps themselves form a normed space with respect to | |
the operator norm. -/ | |
instance normed_add_comm_group : normed_add_comm_group (continuous_multilinear_map 𝕜 E G) := | |
normed_add_comm_group.of_core _ ⟨op_norm_zero_iff, op_norm_add_le, op_norm_neg⟩ | |
/-- An alias of `continuous_multilinear_map.normed_add_comm_group` with non-dependent types to help | |
typeclass search. -/ | |
instance normed_add_comm_group' : | |
normed_add_comm_group (continuous_multilinear_map 𝕜 (λ i : ι, G) G') := | |
continuous_multilinear_map.normed_add_comm_group | |
instance normed_space : normed_space 𝕜' (continuous_multilinear_map 𝕜 E G) := | |
⟨λ c f, f.op_norm_smul_le c⟩ | |
/-- An alias of `continuous_multilinear_map.normed_space` with non-dependent types to help typeclass | |
search. -/ | |
instance normed_space' : normed_space 𝕜' (continuous_multilinear_map 𝕜 (λ i : ι, G') G) := | |
continuous_multilinear_map.normed_space | |
theorem le_op_norm_mul_prod_of_le {b : ι → ℝ} (hm : ∀ i, ∥m i∥ ≤ b i) : ∥f m∥ ≤ ∥f∥ * ∏ i, b i := | |
(f.le_op_norm m).trans $ mul_le_mul_of_nonneg_left | |
(prod_le_prod (λ _ _, norm_nonneg _) (λ i _, hm i)) (norm_nonneg f) | |
theorem le_op_norm_mul_pow_card_of_le {b : ℝ} (hm : ∀ i, ∥m i∥ ≤ b) : | |
∥f m∥ ≤ ∥f∥ * b ^ fintype.card ι := | |
by simpa only [prod_const] using f.le_op_norm_mul_prod_of_le m hm | |
theorem le_op_norm_mul_pow_of_le {Ei : fin n → Type*} [Π i, normed_add_comm_group (Ei i)] | |
[Π i, normed_space 𝕜 (Ei i)] (f : continuous_multilinear_map 𝕜 Ei G) (m : Π i, Ei i) | |
{b : ℝ} (hm : ∥m∥ ≤ b) : | |
∥f m∥ ≤ ∥f∥ * b ^ n := | |
by simpa only [fintype.card_fin] | |
using f.le_op_norm_mul_pow_card_of_le m (λ i, (norm_le_pi_norm m i).trans hm) | |
/-- The fundamental property of the operator norm of a continuous multilinear map: | |
`∥f m∥` is bounded by `∥f∥` times the product of the `∥m i∥`, `nnnorm` version. -/ | |
theorem le_op_nnnorm : ∥f m∥₊ ≤ ∥f∥₊ * ∏ i, ∥m i∥₊ := | |
nnreal.coe_le_coe.1 $ by { push_cast, exact f.le_op_norm m } | |
theorem le_of_op_nnnorm_le {C : ℝ≥0} (h : ∥f∥₊ ≤ C) : ∥f m∥₊ ≤ C * ∏ i, ∥m i∥₊ := | |
(f.le_op_nnnorm m).trans $ mul_le_mul' h le_rfl | |
lemma op_norm_prod (f : continuous_multilinear_map 𝕜 E G) (g : continuous_multilinear_map 𝕜 E G') : | |
∥f.prod g∥ = max (∥f∥) (∥g∥) := | |
le_antisymm | |
(op_norm_le_bound _ (norm_nonneg (f, g)) (λ m, | |
have H : 0 ≤ ∏ i, ∥m i∥, from prod_nonneg $ λ _ _, norm_nonneg _, | |
by simpa only [prod_apply, prod.norm_def, max_mul_of_nonneg, H] | |
using max_le_max (f.le_op_norm m) (g.le_op_norm m))) $ | |
max_le | |
(f.op_norm_le_bound (norm_nonneg _) $ λ m, (le_max_left _ _).trans ((f.prod g).le_op_norm _)) | |
(g.op_norm_le_bound (norm_nonneg _) $ λ m, (le_max_right _ _).trans ((f.prod g).le_op_norm _)) | |
lemma norm_pi {ι' : Type v'} [fintype ι'] {E' : ι' → Type wE'} [Π i', normed_add_comm_group (E' i')] | |
[Π i', normed_space 𝕜 (E' i')] (f : Π i', continuous_multilinear_map 𝕜 E (E' i')) : | |
∥pi f∥ = ∥f∥ := | |
begin | |
apply le_antisymm, | |
{ refine (op_norm_le_bound _ (norm_nonneg f) (λ m, _)), | |
dsimp, | |
rw pi_norm_le_iff, | |
exacts [λ i, (f i).le_of_op_norm_le m (norm_le_pi_norm f i), | |
mul_nonneg (norm_nonneg f) (prod_nonneg $ λ _ _, norm_nonneg _)] }, | |
{ refine (pi_norm_le_iff (norm_nonneg _)).2 (λ i, _), | |
refine (op_norm_le_bound _ (norm_nonneg _) (λ m, _)), | |
refine le_trans _ ((pi f).le_op_norm m), | |
convert norm_le_pi_norm (λ j, f j m) i } | |
end | |
section | |
variables (𝕜 E E' G G') | |
/-- `continuous_multilinear_map.prod` as a `linear_isometry_equiv`. -/ | |
def prodL : | |
(continuous_multilinear_map 𝕜 E G) × (continuous_multilinear_map 𝕜 E G') ≃ₗᵢ[𝕜] | |
continuous_multilinear_map 𝕜 E (G × G') := | |
{ to_fun := λ f, f.1.prod f.2, | |
inv_fun := λ f, ((continuous_linear_map.fst 𝕜 G G').comp_continuous_multilinear_map f, | |
(continuous_linear_map.snd 𝕜 G G').comp_continuous_multilinear_map f), | |
map_add' := λ f g, rfl, | |
map_smul' := λ c f, rfl, | |
left_inv := λ f, by ext; refl, | |
right_inv := λ f, by ext; refl, | |
norm_map' := λ f, op_norm_prod f.1 f.2 } | |
/-- `continuous_multilinear_map.pi` as a `linear_isometry_equiv`. -/ | |
def piₗᵢ {ι' : Type v'} [fintype ι'] {E' : ι' → Type wE'} [Π i', normed_add_comm_group (E' i')] | |
[Π i', normed_space 𝕜 (E' i')] : | |
@linear_isometry_equiv 𝕜 𝕜 _ _ (ring_hom.id 𝕜) _ _ _ | |
(Π i', continuous_multilinear_map 𝕜 E (E' i')) (continuous_multilinear_map 𝕜 E (Π i, E' i)) _ _ | |
(@pi.module ι' _ 𝕜 _ _ (λ i', infer_instance)) _ := | |
{ to_linear_equiv := | |
-- note: `pi_linear_equiv` does not unify correctly here, presumably due to issues with dependent | |
-- typeclass arguments. | |
{ map_add' := λ f g, rfl, | |
map_smul' := λ c f, rfl, | |
.. pi_equiv, }, | |
norm_map' := norm_pi } | |
end | |
end | |
section restrict_scalars | |
variables {𝕜' : Type*} [nontrivially_normed_field 𝕜'] [normed_algebra 𝕜' 𝕜] | |
variables [normed_space 𝕜' G] [is_scalar_tower 𝕜' 𝕜 G] | |
variables [Π i, normed_space 𝕜' (E i)] [∀ i, is_scalar_tower 𝕜' 𝕜 (E i)] | |
@[simp] lemma norm_restrict_scalars : ∥f.restrict_scalars 𝕜'∥ = ∥f∥ := | |
by simp only [norm_def, coe_restrict_scalars] | |
variable (𝕜') | |
/-- `continuous_multilinear_map.restrict_scalars` as a `continuous_multilinear_map`. -/ | |
def restrict_scalars_linear : | |
continuous_multilinear_map 𝕜 E G →L[𝕜'] continuous_multilinear_map 𝕜' E G := | |
linear_map.mk_continuous | |
{ to_fun := restrict_scalars 𝕜', | |
map_add' := λ m₁ m₂, rfl, | |
map_smul' := λ c m, rfl } 1 $ λ f, by simp | |
variable {𝕜'} | |
lemma continuous_restrict_scalars : | |
continuous (restrict_scalars 𝕜' : continuous_multilinear_map 𝕜 E G → | |
continuous_multilinear_map 𝕜' E G) := | |
(restrict_scalars_linear 𝕜').continuous | |
end restrict_scalars | |
/-- The difference `f m₁ - f m₂` is controlled in terms of `∥f∥` and `∥m₁ - m₂∥`, precise version. | |
For a less precise but more usable version, see `norm_image_sub_le`. The bound reads | |
`∥f m - f m'∥ ≤ | |
∥f∥ * ∥m 1 - m' 1∥ * max ∥m 2∥ ∥m' 2∥ * max ∥m 3∥ ∥m' 3∥ * ... * max ∥m n∥ ∥m' n∥ + ...`, | |
where the other terms in the sum are the same products where `1` is replaced by any `i`.-/ | |
lemma norm_image_sub_le' (m₁ m₂ : Πi, E i) : | |
∥f m₁ - f m₂∥ ≤ | |
∥f∥ * ∑ i, ∏ j, if j = i then ∥m₁ i - m₂ i∥ else max ∥m₁ j∥ ∥m₂ j∥ := | |
f.to_multilinear_map.norm_image_sub_le_of_bound' (norm_nonneg _) f.le_op_norm _ _ | |
/-- The difference `f m₁ - f m₂` is controlled in terms of `∥f∥` and `∥m₁ - m₂∥`, less precise | |
version. For a more precise but less usable version, see `norm_image_sub_le'`. | |
The bound is `∥f m - f m'∥ ≤ ∥f∥ * card ι * ∥m - m'∥ * (max ∥m∥ ∥m'∥) ^ (card ι - 1)`.-/ | |
lemma norm_image_sub_le (m₁ m₂ : Πi, E i) : | |
∥f m₁ - f m₂∥ ≤ ∥f∥ * (fintype.card ι) * (max ∥m₁∥ ∥m₂∥) ^ (fintype.card ι - 1) * ∥m₁ - m₂∥ := | |
f.to_multilinear_map.norm_image_sub_le_of_bound (norm_nonneg _) f.le_op_norm _ _ | |
/-- Applying a multilinear map to a vector is continuous in both coordinates. -/ | |
lemma continuous_eval : | |
continuous (λ p : continuous_multilinear_map 𝕜 E G × Π i, E i, p.1 p.2) := | |
begin | |
apply continuous_iff_continuous_at.2 (λp, _), | |
apply continuous_at_of_locally_lipschitz zero_lt_one | |
((∥p∥ + 1) * (fintype.card ι) * (∥p∥ + 1) ^ (fintype.card ι - 1) + ∏ i, ∥p.2 i∥) | |
(λq hq, _), | |
have : 0 ≤ (max ∥q.2∥ ∥p.2∥), by simp, | |
have : 0 ≤ ∥p∥ + 1 := zero_le_one.trans ((le_add_iff_nonneg_left 1).2 $ norm_nonneg p), | |
have A : ∥q∥ ≤ ∥p∥ + 1 := norm_le_of_mem_closed_ball hq.le, | |
have : (max ∥q.2∥ ∥p.2∥) ≤ ∥p∥ + 1 := | |
(max_le_max (norm_snd_le q) (norm_snd_le p)).trans (by simp [A, -add_comm, zero_le_one]), | |
have : ∀ (i : ι), i ∈ univ → 0 ≤ ∥p.2 i∥ := λ i hi, norm_nonneg _, | |
calc dist (q.1 q.2) (p.1 p.2) | |
≤ dist (q.1 q.2) (q.1 p.2) + dist (q.1 p.2) (p.1 p.2) : dist_triangle _ _ _ | |
... = ∥q.1 q.2 - q.1 p.2∥ + ∥q.1 p.2 - p.1 p.2∥ : by rw [dist_eq_norm, dist_eq_norm] | |
... ≤ ∥q.1∥ * (fintype.card ι) * (max ∥q.2∥ ∥p.2∥) ^ (fintype.card ι - 1) * ∥q.2 - p.2∥ | |
+ ∥q.1 - p.1∥ * ∏ i, ∥p.2 i∥ : | |
add_le_add (norm_image_sub_le _ _ _) ((q.1 - p.1).le_op_norm p.2) | |
... ≤ (∥p∥ + 1) * (fintype.card ι) * (∥p∥ + 1) ^ (fintype.card ι - 1) * ∥q - p∥ | |
+ ∥q - p∥ * ∏ i, ∥p.2 i∥ : | |
by apply_rules [add_le_add, mul_le_mul, le_refl, le_trans (norm_fst_le q) A, nat.cast_nonneg, | |
mul_nonneg, pow_le_pow_of_le_left, pow_nonneg, norm_snd_le (q - p), norm_nonneg, | |
norm_fst_le (q - p), prod_nonneg] | |
... = ((∥p∥ + 1) * (fintype.card ι) * (∥p∥ + 1) ^ (fintype.card ι - 1) | |
+ (∏ i, ∥p.2 i∥)) * dist q p : by { rw dist_eq_norm, ring } | |
end | |
lemma continuous_eval_left (m : Π i, E i) : | |
continuous (λ p : continuous_multilinear_map 𝕜 E G, p m) := | |
continuous_eval.comp (continuous_id.prod_mk continuous_const) | |
lemma has_sum_eval | |
{α : Type*} {p : α → continuous_multilinear_map 𝕜 E G} {q : continuous_multilinear_map 𝕜 E G} | |
(h : has_sum p q) (m : Π i, E i) : has_sum (λ a, p a m) (q m) := | |
begin | |
dsimp [has_sum] at h ⊢, | |
convert ((continuous_eval_left m).tendsto _).comp h, | |
ext s, | |
simp | |
end | |
lemma tsum_eval {α : Type*} {p : α → continuous_multilinear_map 𝕜 E G} (hp : summable p) | |
(m : Π i, E i) : (∑' a, p a) m = ∑' a, p a m := | |
(has_sum_eval hp.has_sum m).tsum_eq.symm | |
open_locale topological_space | |
open filter | |
/-- If the target space is complete, the space of continuous multilinear maps with its norm is also | |
complete. The proof is essentially the same as for the space of continuous linear maps (modulo the | |
addition of `finset.prod` where needed. The duplication could be avoided by deducing the linear | |
case from the multilinear case via a currying isomorphism. However, this would mess up imports, | |
and it is more satisfactory to have the simplest case as a standalone proof. -/ | |
instance [complete_space G] : complete_space (continuous_multilinear_map 𝕜 E G) := | |
begin | |
have nonneg : ∀ (v : Π i, E i), 0 ≤ ∏ i, ∥v i∥ := | |
λ v, finset.prod_nonneg (λ i hi, norm_nonneg _), | |
-- We show that every Cauchy sequence converges. | |
refine metric.complete_of_cauchy_seq_tendsto (λ f hf, _), | |
-- We now expand out the definition of a Cauchy sequence, | |
rcases cauchy_seq_iff_le_tendsto_0.1 hf with ⟨b, b0, b_bound, b_lim⟩, | |
-- and establish that the evaluation at any point `v : Π i, E i` is Cauchy. | |
have cau : ∀ v, cauchy_seq (λ n, f n v), | |
{ assume v, | |
apply cauchy_seq_iff_le_tendsto_0.2 ⟨λ n, b n * ∏ i, ∥v i∥, λ n, _, _, _⟩, | |
{ exact mul_nonneg (b0 n) (nonneg v) }, | |
{ assume n m N hn hm, | |
rw dist_eq_norm, | |
apply le_trans ((f n - f m).le_op_norm v) _, | |
exact mul_le_mul_of_nonneg_right (b_bound n m N hn hm) (nonneg v) }, | |
{ simpa using b_lim.mul tendsto_const_nhds } }, | |
-- We assemble the limits points of those Cauchy sequences | |
-- (which exist as `G` is complete) | |
-- into a function which we call `F`. | |
choose F hF using λv, cauchy_seq_tendsto_of_complete (cau v), | |
-- Next, we show that this `F` is multilinear, | |
let Fmult : multilinear_map 𝕜 E G := | |
{ to_fun := F, | |
map_add' := λ v i x y, begin | |
have A := hF (function.update v i (x + y)), | |
have B := (hF (function.update v i x)).add (hF (function.update v i y)), | |
simp at A B, | |
exact tendsto_nhds_unique A B | |
end, | |
map_smul' := λ v i c x, begin | |
have A := hF (function.update v i (c • x)), | |
have B := filter.tendsto.smul (@tendsto_const_nhds _ ℕ _ c _) (hF (function.update v i x)), | |
simp at A B, | |
exact tendsto_nhds_unique A B | |
end }, | |
-- and that `F` has norm at most `(b 0 + ∥f 0∥)`. | |
have Fnorm : ∀ v, ∥F v∥ ≤ (b 0 + ∥f 0∥) * ∏ i, ∥v i∥, | |
{ assume v, | |
have A : ∀ n, ∥f n v∥ ≤ (b 0 + ∥f 0∥) * ∏ i, ∥v i∥, | |
{ assume n, | |
apply le_trans ((f n).le_op_norm _) _, | |
apply mul_le_mul_of_nonneg_right _ (nonneg v), | |
calc ∥f n∥ = ∥(f n - f 0) + f 0∥ : by { congr' 1, abel } | |
... ≤ ∥f n - f 0∥ + ∥f 0∥ : norm_add_le _ _ | |
... ≤ b 0 + ∥f 0∥ : begin | |
apply add_le_add_right, | |
simpa [dist_eq_norm] using b_bound n 0 0 (zero_le _) (zero_le _) | |
end }, | |
exact le_of_tendsto (hF v).norm (eventually_of_forall A) }, | |
-- Thus `F` is continuous, and we propose that as the limit point of our original Cauchy sequence. | |
let Fcont := Fmult.mk_continuous _ Fnorm, | |
use Fcont, | |
-- Our last task is to establish convergence to `F` in norm. | |
have : ∀ n, ∥f n - Fcont∥ ≤ b n, | |
{ assume n, | |
apply op_norm_le_bound _ (b0 n) (λ v, _), | |
have A : ∀ᶠ m in at_top, ∥(f n - f m) v∥ ≤ b n * ∏ i, ∥v i∥, | |
{ refine eventually_at_top.2 ⟨n, λ m hm, _⟩, | |
apply le_trans ((f n - f m).le_op_norm _) _, | |
exact mul_le_mul_of_nonneg_right (b_bound n m n le_rfl hm) (nonneg v) }, | |
have B : tendsto (λ m, ∥(f n - f m) v∥) at_top (𝓝 (∥(f n - Fcont) v∥)) := | |
tendsto.norm (tendsto_const_nhds.sub (hF v)), | |
exact le_of_tendsto B A }, | |
erw tendsto_iff_norm_tendsto_zero, | |
exact squeeze_zero (λ n, norm_nonneg _) this b_lim, | |
end | |
end continuous_multilinear_map | |
/-- If a continuous multilinear map is constructed from a multilinear map via the constructor | |
`mk_continuous`, then its norm is bounded by the bound given to the constructor if it is | |
nonnegative. -/ | |
lemma multilinear_map.mk_continuous_norm_le (f : multilinear_map 𝕜 E G) {C : ℝ} (hC : 0 ≤ C) | |
(H : ∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) : ∥f.mk_continuous C H∥ ≤ C := | |
continuous_multilinear_map.op_norm_le_bound _ hC (λm, H m) | |
/-- If a continuous multilinear map is constructed from a multilinear map via the constructor | |
`mk_continuous`, then its norm is bounded by the bound given to the constructor if it is | |
nonnegative. -/ | |
lemma multilinear_map.mk_continuous_norm_le' (f : multilinear_map 𝕜 E G) {C : ℝ} | |
(H : ∀ m, ∥f m∥ ≤ C * ∏ i, ∥m i∥) : ∥f.mk_continuous C H∥ ≤ max C 0 := | |
continuous_multilinear_map.op_norm_le_bound _ (le_max_right _ _) $ | |
λ m, (H m).trans $ mul_le_mul_of_nonneg_right (le_max_left _ _) | |
(prod_nonneg $ λ _ _, norm_nonneg _) | |
namespace continuous_multilinear_map | |
/-- Given a continuous multilinear map `f` on `n` variables (parameterized by `fin n`) and a subset | |
`s` of `k` of these variables, one gets a new continuous multilinear map on `fin k` by varying | |
these variables, and fixing the other ones equal to a given value `z`. It is denoted by | |
`f.restr s hk z`, where `hk` is a proof that the cardinality of `s` is `k`. The implicit | |
identification between `fin k` and `s` that we use is the canonical (increasing) bijection. -/ | |
def restr {k n : ℕ} (f : (G [×n]→L[𝕜] G' : _)) (s : finset (fin n)) (hk : s.card = k) (z : G) : | |
G [×k]→L[𝕜] G' := | |
(f.to_multilinear_map.restr s hk z).mk_continuous | |
(∥f∥ * ∥z∥^(n-k)) $ λ v, multilinear_map.restr_norm_le _ _ _ _ f.le_op_norm _ | |
lemma norm_restr {k n : ℕ} (f : G [×n]→L[𝕜] G') (s : finset (fin n)) (hk : s.card = k) (z : G) : | |
∥f.restr s hk z∥ ≤ ∥f∥ * ∥z∥ ^ (n - k) := | |
begin | |
apply multilinear_map.mk_continuous_norm_le, | |
exact mul_nonneg (norm_nonneg _) (pow_nonneg (norm_nonneg _) _) | |
end | |
section | |
variables {𝕜 ι} {A : Type*} [normed_comm_ring A] [normed_algebra 𝕜 A] | |
@[simp] | |
lemma norm_mk_pi_algebra_le [nonempty ι] : | |
∥continuous_multilinear_map.mk_pi_algebra 𝕜 ι A∥ ≤ 1 := | |
begin | |
have := λ f, @op_norm_le_bound 𝕜 ι (λ i, A) A _ _ _ _ _ _ _ f _ zero_le_one, | |
refine this _ _, | |
intros m, | |
simp only [continuous_multilinear_map.mk_pi_algebra_apply, one_mul], | |
exact norm_prod_le' _ univ_nonempty _, | |
end | |
lemma norm_mk_pi_algebra_of_empty [is_empty ι] : | |
∥continuous_multilinear_map.mk_pi_algebra 𝕜 ι A∥ = ∥(1 : A)∥ := | |
begin | |
apply le_antisymm, | |
{ have := λ f, @op_norm_le_bound 𝕜 ι (λ i, A) A _ _ _ _ _ _ _ f _ (norm_nonneg (1 : A)), | |
refine this _ _, | |
simp, }, | |
{ convert ratio_le_op_norm _ (λ _, (1 : A)), | |
simp [eq_empty_of_is_empty (univ : finset ι)], }, | |
end | |
@[simp] lemma norm_mk_pi_algebra [norm_one_class A] : | |
∥continuous_multilinear_map.mk_pi_algebra 𝕜 ι A∥ = 1 := | |
begin | |
casesI is_empty_or_nonempty ι, | |
{ simp [norm_mk_pi_algebra_of_empty] }, | |
{ refine le_antisymm norm_mk_pi_algebra_le _, | |
convert ratio_le_op_norm _ (λ _, 1); [skip, apply_instance], | |
simp }, | |
end | |
end | |
section | |
variables {𝕜 n} {A : Type*} [normed_ring A] [normed_algebra 𝕜 A] | |
lemma norm_mk_pi_algebra_fin_succ_le : | |
∥continuous_multilinear_map.mk_pi_algebra_fin 𝕜 n.succ A∥ ≤ 1 := | |
begin | |
have := λ f, @op_norm_le_bound 𝕜 (fin n.succ) (λ i, A) A _ _ _ _ _ _ _ f _ zero_le_one, | |
refine this _ _, | |
intros m, | |
simp only [continuous_multilinear_map.mk_pi_algebra_fin_apply, one_mul, list.of_fn_eq_map, | |
fin.univ_def, finset.fin_range, finset.prod, multiset.coe_map, multiset.coe_prod], | |
refine (list.norm_prod_le' _).trans_eq _, | |
{ rw [ne.def, list.map_eq_nil, list.fin_range_eq_nil], | |
exact nat.succ_ne_zero _, }, | |
rw list.map_map, | |
end | |
lemma norm_mk_pi_algebra_fin_le_of_pos (hn : 0 < n) : | |
∥continuous_multilinear_map.mk_pi_algebra_fin 𝕜 n A∥ ≤ 1 := | |
begin | |
obtain ⟨n, rfl⟩ := nat.exists_eq_succ_of_ne_zero hn.ne', | |
exact norm_mk_pi_algebra_fin_succ_le | |
end | |
lemma norm_mk_pi_algebra_fin_zero : | |
∥continuous_multilinear_map.mk_pi_algebra_fin 𝕜 0 A∥ = ∥(1 : A)∥ := | |
begin | |
refine le_antisymm _ _, | |
{ have := λ f, @op_norm_le_bound 𝕜 (fin 0) (λ i, A) A _ _ _ _ _ _ _ f _ (norm_nonneg (1 : A)), | |
refine this _ _, | |
simp, }, | |
{ convert ratio_le_op_norm _ (λ _, (1 : A)), | |
simp } | |
end | |
@[simp] lemma norm_mk_pi_algebra_fin [norm_one_class A] : | |
∥continuous_multilinear_map.mk_pi_algebra_fin 𝕜 n A∥ = 1 := | |
begin | |
cases n, | |
{ simp [norm_mk_pi_algebra_fin_zero] }, | |
{ refine le_antisymm norm_mk_pi_algebra_fin_succ_le _, | |
convert ratio_le_op_norm _ (λ _, 1); [skip, apply_instance], | |
simp } | |
end | |
end | |
variables (𝕜 ι) | |
/-- The canonical continuous multilinear map on `𝕜^ι`, associating to `m` the product of all the | |
`m i` (multiplied by a fixed reference element `z` in the target module) -/ | |
protected def mk_pi_field (z : G) : continuous_multilinear_map 𝕜 (λ(i : ι), 𝕜) G := | |
multilinear_map.mk_continuous | |
(multilinear_map.mk_pi_ring 𝕜 ι z) (∥z∥) | |
(λ m, by simp only [multilinear_map.mk_pi_ring_apply, norm_smul, norm_prod, | |
mul_comm]) | |
variables {𝕜 ι} | |
@[simp] lemma mk_pi_field_apply (z : G) (m : ι → 𝕜) : | |
(continuous_multilinear_map.mk_pi_field 𝕜 ι z : (ι → 𝕜) → G) m = (∏ i, m i) • z := rfl | |
lemma mk_pi_field_apply_one_eq_self (f : continuous_multilinear_map 𝕜 (λ(i : ι), 𝕜) G) : | |
continuous_multilinear_map.mk_pi_field 𝕜 ι (f (λi, 1)) = f := | |
to_multilinear_map_inj f.to_multilinear_map.mk_pi_ring_apply_one_eq_self | |
@[simp] lemma norm_mk_pi_field (z : G) : ∥continuous_multilinear_map.mk_pi_field 𝕜 ι z∥ = ∥z∥ := | |
(multilinear_map.mk_continuous_norm_le _ (norm_nonneg z) _).antisymm $ | |
by simpa using (continuous_multilinear_map.mk_pi_field 𝕜 ι z).le_op_norm (λ _, 1) | |
variables (𝕜 ι G) | |
/-- Continuous multilinear maps on `𝕜^n` with values in `G` are in bijection with `G`, as such a | |
continuous multilinear map is completely determined by its value on the constant vector made of | |
ones. We register this bijection as a linear isometry in | |
`continuous_multilinear_map.pi_field_equiv`. -/ | |
protected def pi_field_equiv : G ≃ₗᵢ[𝕜] (continuous_multilinear_map 𝕜 (λ(i : ι), 𝕜) G) := | |
{ to_fun := λ z, continuous_multilinear_map.mk_pi_field 𝕜 ι z, | |
inv_fun := λ f, f (λi, 1), | |
map_add' := λ z z', by { ext m, simp [smul_add] }, | |
map_smul' := λ c z, by { ext m, simp [smul_smul, mul_comm] }, | |
left_inv := λ z, by simp, | |
right_inv := λ f, f.mk_pi_field_apply_one_eq_self, | |
norm_map' := norm_mk_pi_field } | |
end continuous_multilinear_map | |
namespace continuous_linear_map | |
lemma norm_comp_continuous_multilinear_map_le (g : G →L[𝕜] G') | |
(f : continuous_multilinear_map 𝕜 E G) : | |
∥g.comp_continuous_multilinear_map f∥ ≤ ∥g∥ * ∥f∥ := | |
continuous_multilinear_map.op_norm_le_bound _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) $ λ m, | |
calc ∥g (f m)∥ ≤ ∥g∥ * (∥f∥ * ∏ i, ∥m i∥) : g.le_op_norm_of_le $ f.le_op_norm _ | |
... = _ : (mul_assoc _ _ _).symm | |
variables (𝕜 E G G') | |
/-- `continuous_linear_map.comp_continuous_multilinear_map` as a bundled continuous bilinear map. -/ | |
def comp_continuous_multilinear_mapL : | |
(G →L[𝕜] G') →L[𝕜] continuous_multilinear_map 𝕜 E G →L[𝕜] continuous_multilinear_map 𝕜 E G' := | |
linear_map.mk_continuous₂ | |
(linear_map.mk₂ 𝕜 comp_continuous_multilinear_map (λ f₁ f₂ g, rfl) (λ c f g, rfl) | |
(λ f g₁ g₂, by { ext1, apply f.map_add }) (λ c f g, by { ext1, simp })) | |
1 $ λ f g, by { rw one_mul, exact f.norm_comp_continuous_multilinear_map_le g } | |
variables {𝕜 E G G'} | |
/-- Flip arguments in `f : G →L[𝕜] continuous_multilinear_map 𝕜 E G'` to get | |
`continuous_multilinear_map 𝕜 E (G →L[𝕜] G')` -/ | |
def flip_multilinear (f : G →L[𝕜] continuous_multilinear_map 𝕜 E G') : | |
continuous_multilinear_map 𝕜 E (G →L[𝕜] G') := | |
multilinear_map.mk_continuous | |
{ to_fun := λ m, linear_map.mk_continuous | |
{ to_fun := λ x, f x m, | |
map_add' := λ x y, by simp only [map_add, continuous_multilinear_map.add_apply], | |
map_smul' := λ c x, by simp only [continuous_multilinear_map.smul_apply, map_smul, | |
ring_hom.id_apply] } | |
(∥f∥ * ∏ i, ∥m i∥) $ λ x, | |
by { rw mul_right_comm, exact (f x).le_of_op_norm_le _ (f.le_op_norm x) }, | |
map_add' := λ m i x y, | |
by { ext1, simp only [add_apply, continuous_multilinear_map.map_add, linear_map.coe_mk, | |
linear_map.mk_continuous_apply]}, | |
map_smul' := λ m i c x, | |
by { ext1, simp only [coe_smul', continuous_multilinear_map.map_smul, linear_map.coe_mk, | |
linear_map.mk_continuous_apply, pi.smul_apply]} } | |
∥f∥ $ λ m, | |
linear_map.mk_continuous_norm_le _ | |
(mul_nonneg (norm_nonneg f) (prod_nonneg $ λ i hi, norm_nonneg (m i))) _ | |
end continuous_linear_map | |
open continuous_multilinear_map | |
namespace multilinear_map | |
/-- Given a map `f : G →ₗ[𝕜] multilinear_map 𝕜 E G'` and an estimate | |
`H : ∀ x m, ∥f x m∥ ≤ C * ∥x∥ * ∏ i, ∥m i∥`, construct a continuous linear | |
map from `G` to `continuous_multilinear_map 𝕜 E G'`. | |
In order to lift, e.g., a map `f : (multilinear_map 𝕜 E G) →ₗ[𝕜] multilinear_map 𝕜 E' G'` | |
to a map `(continuous_multilinear_map 𝕜 E G) →L[𝕜] continuous_multilinear_map 𝕜 E' G'`, | |
one can apply this construction to `f.comp continuous_multilinear_map.to_multilinear_map_linear` | |
which is a linear map from `continuous_multilinear_map 𝕜 E G` to `multilinear_map 𝕜 E' G'`. -/ | |
def mk_continuous_linear (f : G →ₗ[𝕜] multilinear_map 𝕜 E G') (C : ℝ) | |
(H : ∀ x m, ∥f x m∥ ≤ C * ∥x∥ * ∏ i, ∥m i∥) : | |
G →L[𝕜] continuous_multilinear_map 𝕜 E G' := | |
linear_map.mk_continuous | |
{ to_fun := λ x, (f x).mk_continuous (C * ∥x∥) $ H x, | |
map_add' := λ x y, by { ext1, simp }, | |
map_smul' := λ c x, by { ext1, simp } } | |
(max C 0) $ λ x, ((f x).mk_continuous_norm_le' _).trans_eq $ | |
by rw [max_mul_of_nonneg _ _ (norm_nonneg x), zero_mul] | |
lemma mk_continuous_linear_norm_le' (f : G →ₗ[𝕜] multilinear_map 𝕜 E G') (C : ℝ) | |
(H : ∀ x m, ∥f x m∥ ≤ C * ∥x∥ * ∏ i, ∥m i∥) : | |
∥mk_continuous_linear f C H∥ ≤ max C 0 := | |
begin | |
dunfold mk_continuous_linear, | |
exact linear_map.mk_continuous_norm_le _ (le_max_right _ _) _ | |
end | |
lemma mk_continuous_linear_norm_le (f : G →ₗ[𝕜] multilinear_map 𝕜 E G') {C : ℝ} (hC : 0 ≤ C) | |
(H : ∀ x m, ∥f x m∥ ≤ C * ∥x∥ * ∏ i, ∥m i∥) : | |
∥mk_continuous_linear f C H∥ ≤ C := | |
(mk_continuous_linear_norm_le' f C H).trans_eq (max_eq_left hC) | |
/-- Given a map `f : multilinear_map 𝕜 E (multilinear_map 𝕜 E' G)` and an estimate | |
`H : ∀ m m', ∥f m m'∥ ≤ C * ∏ i, ∥m i∥ * ∏ i, ∥m' i∥`, upgrade all `multilinear_map`s in the type to | |
`continuous_multilinear_map`s. -/ | |
def mk_continuous_multilinear (f : multilinear_map 𝕜 E (multilinear_map 𝕜 E' G)) (C : ℝ) | |
(H : ∀ m₁ m₂, ∥f m₁ m₂∥ ≤ C * (∏ i, ∥m₁ i∥) * ∏ i, ∥m₂ i∥) : | |
continuous_multilinear_map 𝕜 E (continuous_multilinear_map 𝕜 E' G) := | |
mk_continuous | |
{ to_fun := λ m, mk_continuous (f m) (C * ∏ i, ∥m i∥) $ H m, | |
map_add' := λ m i x y, by { ext1, simp }, | |
map_smul' := λ m i c x, by { ext1, simp } } | |
(max C 0) $ λ m, ((f m).mk_continuous_norm_le' _).trans_eq $ | |
by { rw [max_mul_of_nonneg, zero_mul], exact prod_nonneg (λ _ _, norm_nonneg _) } | |
@[simp] lemma mk_continuous_multilinear_apply (f : multilinear_map 𝕜 E (multilinear_map 𝕜 E' G)) | |
{C : ℝ} (H : ∀ m₁ m₂, ∥f m₁ m₂∥ ≤ C * (∏ i, ∥m₁ i∥) * ∏ i, ∥m₂ i∥) (m : Π i, E i) : | |
⇑(mk_continuous_multilinear f C H m) = f m := | |
rfl | |
lemma mk_continuous_multilinear_norm_le' (f : multilinear_map 𝕜 E (multilinear_map 𝕜 E' G)) (C : ℝ) | |
(H : ∀ m₁ m₂, ∥f m₁ m₂∥ ≤ C * (∏ i, ∥m₁ i∥) * ∏ i, ∥m₂ i∥) : | |
∥mk_continuous_multilinear f C H∥ ≤ max C 0 := | |
begin | |
dunfold mk_continuous_multilinear, | |
exact mk_continuous_norm_le _ (le_max_right _ _) _ | |
end | |
lemma mk_continuous_multilinear_norm_le (f : multilinear_map 𝕜 E (multilinear_map 𝕜 E' G)) {C : ℝ} | |
(hC : 0 ≤ C) (H : ∀ m₁ m₂, ∥f m₁ m₂∥ ≤ C * (∏ i, ∥m₁ i∥) * ∏ i, ∥m₂ i∥) : | |
∥mk_continuous_multilinear f C H∥ ≤ C := | |
(mk_continuous_multilinear_norm_le' f C H).trans_eq (max_eq_left hC) | |
end multilinear_map | |
namespace continuous_multilinear_map | |
lemma norm_comp_continuous_linear_le (g : continuous_multilinear_map 𝕜 E₁ G) | |
(f : Π i, E i →L[𝕜] E₁ i) : | |
∥g.comp_continuous_linear_map f∥ ≤ ∥g∥ * ∏ i, ∥f i∥ := | |
op_norm_le_bound _ (mul_nonneg (norm_nonneg _) $ prod_nonneg $ λ i hi, norm_nonneg _) $ λ m, | |
calc ∥g (λ i, f i (m i))∥ ≤ ∥g∥ * ∏ i, ∥f i (m i)∥ : g.le_op_norm _ | |
... ≤ ∥g∥ * ∏ i, (∥f i∥ * ∥m i∥) : | |
mul_le_mul_of_nonneg_left | |
(prod_le_prod (λ _ _, norm_nonneg _) (λ i hi, (f i).le_op_norm (m i))) (norm_nonneg g) | |
... = (∥g∥ * ∏ i, ∥f i∥) * ∏ i, ∥m i∥ : by rw [prod_mul_distrib, mul_assoc] | |
/-- `continuous_multilinear_map.comp_continuous_linear_map` as a bundled continuous linear map. | |
This implementation fixes `f : Π i, E i →L[𝕜] E₁ i`. | |
TODO: Actually, the map is multilinear in `f` but an attempt to formalize this failed because of | |
issues with class instances. -/ | |
def comp_continuous_linear_mapL (f : Π i, E i →L[𝕜] E₁ i) : | |
continuous_multilinear_map 𝕜 E₁ G →L[𝕜] continuous_multilinear_map 𝕜 E G := | |
linear_map.mk_continuous | |
{ to_fun := λ g, g.comp_continuous_linear_map f, | |
map_add' := λ g₁ g₂, rfl, | |
map_smul' := λ c g, rfl } | |
(∏ i, ∥f i∥) $ λ g, (norm_comp_continuous_linear_le _ _).trans_eq (mul_comm _ _) | |
@[simp] lemma comp_continuous_linear_mapL_apply (g : continuous_multilinear_map 𝕜 E₁ G) | |
(f : Π i, E i →L[𝕜] E₁ i) : | |
comp_continuous_linear_mapL f g = g.comp_continuous_linear_map f := | |
rfl | |
lemma norm_comp_continuous_linear_mapL_le (f : Π i, E i →L[𝕜] E₁ i) : | |
∥@comp_continuous_linear_mapL 𝕜 ι E E₁ G _ _ _ _ _ _ _ _ _ f∥ ≤ (∏ i, ∥f i∥) := | |
linear_map.mk_continuous_norm_le _ (prod_nonneg $ λ i _, norm_nonneg _) _ | |
end continuous_multilinear_map | |
section currying | |
/-! | |
### Currying | |
We associate to a continuous multilinear map in `n+1` variables (i.e., based on `fin n.succ`) two | |
curried functions, named `f.curry_left` (which is a continuous linear map on `E 0` taking values | |
in continuous multilinear maps in `n` variables) and `f.curry_right` (which is a continuous | |
multilinear map in `n` variables taking values in continuous linear maps on `E (last n)`). | |
The inverse operations are called `uncurry_left` and `uncurry_right`. | |
We also register continuous linear equiv versions of these correspondences, in | |
`continuous_multilinear_curry_left_equiv` and `continuous_multilinear_curry_right_equiv`. | |
-/ | |
open fin function | |
lemma continuous_linear_map.norm_map_tail_le | |
(f : Ei 0 →L[𝕜] (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.succ) G)) (m : Πi, Ei i) : | |
∥f (m 0) (tail m)∥ ≤ ∥f∥ * ∏ i, ∥m i∥ := | |
calc | |
∥f (m 0) (tail m)∥ ≤ ∥f (m 0)∥ * ∏ i, ∥(tail m) i∥ : (f (m 0)).le_op_norm _ | |
... ≤ (∥f∥ * ∥m 0∥) * ∏ i, ∥(tail m) i∥ : | |
mul_le_mul_of_nonneg_right (f.le_op_norm _) (prod_nonneg (λi hi, norm_nonneg _)) | |
... = ∥f∥ * (∥m 0∥ * ∏ i, ∥(tail m) i∥) : by ring | |
... = ∥f∥ * ∏ i, ∥m i∥ : by { rw prod_univ_succ, refl } | |
lemma continuous_multilinear_map.norm_map_init_le | |
(f : continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.cast_succ) (Ei (last n) →L[𝕜] G)) | |
(m : Πi, Ei i) : | |
∥f (init m) (m (last n))∥ ≤ ∥f∥ * ∏ i, ∥m i∥ := | |
calc | |
∥f (init m) (m (last n))∥ ≤ ∥f (init m)∥ * ∥m (last n)∥ : (f (init m)).le_op_norm _ | |
... ≤ (∥f∥ * (∏ i, ∥(init m) i∥)) * ∥m (last n)∥ : | |
mul_le_mul_of_nonneg_right (f.le_op_norm _) (norm_nonneg _) | |
... = ∥f∥ * ((∏ i, ∥(init m) i∥) * ∥m (last n)∥) : mul_assoc _ _ _ | |
... = ∥f∥ * ∏ i, ∥m i∥ : by { rw prod_univ_cast_succ, refl } | |
lemma continuous_multilinear_map.norm_map_cons_le | |
(f : continuous_multilinear_map 𝕜 Ei G) (x : Ei 0) (m : Π(i : fin n), Ei i.succ) : | |
∥f (cons x m)∥ ≤ ∥f∥ * ∥x∥ * ∏ i, ∥m i∥ := | |
calc | |
∥f (cons x m)∥ ≤ ∥f∥ * ∏ i, ∥cons x m i∥ : f.le_op_norm _ | |
... = (∥f∥ * ∥x∥) * ∏ i, ∥m i∥ : by { rw prod_univ_succ, simp [mul_assoc] } | |
lemma continuous_multilinear_map.norm_map_snoc_le | |
(f : continuous_multilinear_map 𝕜 Ei G) (m : Π(i : fin n), Ei i.cast_succ) (x : Ei (last n)) : | |
∥f (snoc m x)∥ ≤ ∥f∥ * (∏ i, ∥m i∥) * ∥x∥ := | |
calc | |
∥f (snoc m x)∥ ≤ ∥f∥ * ∏ i, ∥snoc m x i∥ : f.le_op_norm _ | |
... = ∥f∥ * (∏ i, ∥m i∥) * ∥x∥ : by { rw prod_univ_cast_succ, simp [mul_assoc] } | |
/-! #### Left currying -/ | |
/-- Given a continuous linear map `f` from `E 0` to continuous multilinear maps on `n` variables, | |
construct the corresponding continuous multilinear map on `n+1` variables obtained by concatenating | |
the variables, given by `m ↦ f (m 0) (tail m)`-/ | |
def continuous_linear_map.uncurry_left | |
(f : Ei 0 →L[𝕜] (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.succ) G)) : | |
continuous_multilinear_map 𝕜 Ei G := | |
(@linear_map.uncurry_left 𝕜 n Ei G _ _ _ _ _ | |
(continuous_multilinear_map.to_multilinear_map_linear.comp f.to_linear_map)).mk_continuous | |
(∥f∥) (λm, continuous_linear_map.norm_map_tail_le f m) | |
@[simp] lemma continuous_linear_map.uncurry_left_apply | |
(f : Ei 0 →L[𝕜] (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.succ) G)) (m : Πi, Ei i) : | |
f.uncurry_left m = f (m 0) (tail m) := rfl | |
/-- Given a continuous multilinear map `f` in `n+1` variables, split the first variable to obtain | |
a continuous linear map into continuous multilinear maps in `n` variables, given by | |
`x ↦ (m ↦ f (cons x m))`. -/ | |
def continuous_multilinear_map.curry_left | |
(f : continuous_multilinear_map 𝕜 Ei G) : | |
Ei 0 →L[𝕜] (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.succ) G) := | |
linear_map.mk_continuous | |
{ -- define a linear map into `n` continuous multilinear maps from an `n+1` continuous multilinear | |
-- map | |
to_fun := λx, (f.to_multilinear_map.curry_left x).mk_continuous | |
(∥f∥ * ∥x∥) (f.norm_map_cons_le x), | |
map_add' := λx y, by { ext m, exact f.cons_add m x y }, | |
map_smul' := λc x, by { ext m, exact f.cons_smul m c x } } | |
-- then register its continuity thanks to its boundedness properties. | |
(∥f∥) (λx, multilinear_map.mk_continuous_norm_le _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) _) | |
@[simp] lemma continuous_multilinear_map.curry_left_apply | |
(f : continuous_multilinear_map 𝕜 Ei G) (x : Ei 0) (m : Π(i : fin n), Ei i.succ) : | |
f.curry_left x m = f (cons x m) := rfl | |
@[simp] lemma continuous_linear_map.curry_uncurry_left | |
(f : Ei 0 →L[𝕜] (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.succ) G)) : | |
f.uncurry_left.curry_left = f := | |
begin | |
ext m x, | |
simp only [tail_cons, continuous_linear_map.uncurry_left_apply, | |
continuous_multilinear_map.curry_left_apply], | |
rw cons_zero | |
end | |
@[simp] lemma continuous_multilinear_map.uncurry_curry_left | |
(f : continuous_multilinear_map 𝕜 Ei G) : f.curry_left.uncurry_left = f := | |
continuous_multilinear_map.to_multilinear_map_inj $ f.to_multilinear_map.uncurry_curry_left | |
variables (𝕜 Ei G) | |
/-- The space of continuous multilinear maps on `Π(i : fin (n+1)), E i` is canonically isomorphic to | |
the space of continuous linear maps from `E 0` to the space of continuous multilinear maps on | |
`Π(i : fin n), E i.succ `, by separating the first variable. We register this isomorphism in | |
`continuous_multilinear_curry_left_equiv 𝕜 E E₂`. The algebraic version (without topology) is given | |
in `multilinear_curry_left_equiv 𝕜 E E₂`. | |
The direct and inverse maps are given by `f.uncurry_left` and `f.curry_left`. Use these | |
unless you need the full framework of linear isometric equivs. -/ | |
def continuous_multilinear_curry_left_equiv : | |
(Ei 0 →L[𝕜] (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.succ) G)) ≃ₗᵢ[𝕜] | |
(continuous_multilinear_map 𝕜 Ei G) := | |
linear_isometry_equiv.of_bounds | |
{ to_fun := continuous_linear_map.uncurry_left, | |
map_add' := λf₁ f₂, by { ext m, refl }, | |
map_smul' := λc f, by { ext m, refl }, | |
inv_fun := continuous_multilinear_map.curry_left, | |
left_inv := continuous_linear_map.curry_uncurry_left, | |
right_inv := continuous_multilinear_map.uncurry_curry_left } | |
(λ f, multilinear_map.mk_continuous_norm_le _ (norm_nonneg f) _) | |
(λ f, linear_map.mk_continuous_norm_le _ (norm_nonneg f) _) | |
variables {𝕜 Ei G} | |
@[simp] lemma continuous_multilinear_curry_left_equiv_apply | |
(f : Ei 0 →L[𝕜] (continuous_multilinear_map 𝕜 (λ i : fin n, Ei i.succ) G)) (v : Π i, Ei i) : | |
continuous_multilinear_curry_left_equiv 𝕜 Ei G f v = f (v 0) (tail v) := rfl | |
@[simp] lemma continuous_multilinear_curry_left_equiv_symm_apply | |
(f : continuous_multilinear_map 𝕜 Ei G) (x : Ei 0) (v : Π i : fin n, Ei i.succ) : | |
(continuous_multilinear_curry_left_equiv 𝕜 Ei G).symm f x v = f (cons x v) := rfl | |
@[simp] lemma continuous_multilinear_map.curry_left_norm | |
(f : continuous_multilinear_map 𝕜 Ei G) : ∥f.curry_left∥ = ∥f∥ := | |
(continuous_multilinear_curry_left_equiv 𝕜 Ei G).symm.norm_map f | |
@[simp] lemma continuous_linear_map.uncurry_left_norm | |
(f : Ei 0 →L[𝕜] (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.succ) G)) : | |
∥f.uncurry_left∥ = ∥f∥ := | |
(continuous_multilinear_curry_left_equiv 𝕜 Ei G).norm_map f | |
/-! #### Right currying -/ | |
/-- Given a continuous linear map `f` from continuous multilinear maps on `n` variables to | |
continuous linear maps on `E 0`, construct the corresponding continuous multilinear map on `n+1` | |
variables obtained by concatenating the variables, given by `m ↦ f (init m) (m (last n))`. -/ | |
def continuous_multilinear_map.uncurry_right | |
(f : continuous_multilinear_map 𝕜 (λ i : fin n, Ei i.cast_succ) (Ei (last n) →L[𝕜] G)) : | |
continuous_multilinear_map 𝕜 Ei G := | |
let f' : multilinear_map 𝕜 (λ(i : fin n), Ei i.cast_succ) (Ei (last n) →ₗ[𝕜] G) := | |
{ to_fun := λ m, (f m).to_linear_map, | |
map_add' := λ m i x y, by simp, | |
map_smul' := λ m i c x, by simp } in | |
(@multilinear_map.uncurry_right 𝕜 n Ei G _ _ _ _ _ f').mk_continuous | |
(∥f∥) (λm, f.norm_map_init_le m) | |
@[simp] lemma continuous_multilinear_map.uncurry_right_apply | |
(f : continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.cast_succ) (Ei (last n) →L[𝕜] G)) | |
(m : Πi, Ei i) : | |
f.uncurry_right m = f (init m) (m (last n)) := rfl | |
/-- Given a continuous multilinear map `f` in `n+1` variables, split the last variable to obtain | |
a continuous multilinear map in `n` variables into continuous linear maps, given by | |
`m ↦ (x ↦ f (snoc m x))`. -/ | |
def continuous_multilinear_map.curry_right | |
(f : continuous_multilinear_map 𝕜 Ei G) : | |
continuous_multilinear_map 𝕜 (λ i : fin n, Ei i.cast_succ) (Ei (last n) →L[𝕜] G) := | |
let f' : multilinear_map 𝕜 (λ(i : fin n), Ei i.cast_succ) (Ei (last n) →L[𝕜] G) := | |
{ to_fun := λm, (f.to_multilinear_map.curry_right m).mk_continuous | |
(∥f∥ * ∏ i, ∥m i∥) $ λx, f.norm_map_snoc_le m x, | |
map_add' := λ m i x y, by { simp, refl }, | |
map_smul' := λ m i c x, by { simp, refl } } in | |
f'.mk_continuous (∥f∥) (λm, linear_map.mk_continuous_norm_le _ | |
(mul_nonneg (norm_nonneg _) (prod_nonneg (λj hj, norm_nonneg _))) _) | |
@[simp] lemma continuous_multilinear_map.curry_right_apply | |
(f : continuous_multilinear_map 𝕜 Ei G) (m : Π i : fin n, Ei i.cast_succ) (x : Ei (last n)) : | |
f.curry_right m x = f (snoc m x) := rfl | |
@[simp] lemma continuous_multilinear_map.curry_uncurry_right | |
(f : continuous_multilinear_map 𝕜 (λ i : fin n, Ei i.cast_succ) (Ei (last n) →L[𝕜] G)) : | |
f.uncurry_right.curry_right = f := | |
begin | |
ext m x, | |
simp only [snoc_last, continuous_multilinear_map.curry_right_apply, | |
continuous_multilinear_map.uncurry_right_apply], | |
rw init_snoc | |
end | |
@[simp] lemma continuous_multilinear_map.uncurry_curry_right | |
(f : continuous_multilinear_map 𝕜 Ei G) : f.curry_right.uncurry_right = f := | |
by { ext m, simp } | |
variables (𝕜 Ei G) | |
/-- | |
The space of continuous multilinear maps on `Π(i : fin (n+1)), Ei i` is canonically isomorphic to | |
the space of continuous multilinear maps on `Π(i : fin n), Ei i.cast_succ` with values in the space | |
of continuous linear maps on `Ei (last n)`, by separating the last variable. We register this | |
isomorphism as a continuous linear equiv in `continuous_multilinear_curry_right_equiv 𝕜 Ei G`. | |
The algebraic version (without topology) is given in `multilinear_curry_right_equiv 𝕜 Ei G`. | |
The direct and inverse maps are given by `f.uncurry_right` and `f.curry_right`. Use these | |
unless you need the full framework of linear isometric equivs. | |
-/ | |
def continuous_multilinear_curry_right_equiv : | |
(continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.cast_succ) (Ei (last n) →L[𝕜] G)) ≃ₗᵢ[𝕜] | |
(continuous_multilinear_map 𝕜 Ei G) := | |
linear_isometry_equiv.of_bounds | |
{ to_fun := continuous_multilinear_map.uncurry_right, | |
map_add' := λf₁ f₂, by { ext m, refl }, | |
map_smul' := λc f, by { ext m, refl }, | |
inv_fun := continuous_multilinear_map.curry_right, | |
left_inv := continuous_multilinear_map.curry_uncurry_right, | |
right_inv := continuous_multilinear_map.uncurry_curry_right } | |
(λ f, multilinear_map.mk_continuous_norm_le _ (norm_nonneg f) _) | |
(λ f, multilinear_map.mk_continuous_norm_le _ (norm_nonneg f) _) | |
variables (n G') | |
/-- The space of continuous multilinear maps on `Π(i : fin (n+1)), G` is canonically isomorphic to | |
the space of continuous multilinear maps on `Π(i : fin n), G` with values in the space | |
of continuous linear maps on `G`, by separating the last variable. We register this | |
isomorphism as a continuous linear equiv in `continuous_multilinear_curry_right_equiv' 𝕜 n G G'`. | |
For a version allowing dependent types, see `continuous_multilinear_curry_right_equiv`. When there | |
are no dependent types, use the primed version as it helps Lean a lot for unification. | |
The direct and inverse maps are given by `f.uncurry_right` and `f.curry_right`. Use these | |
unless you need the full framework of linear isometric equivs. -/ | |
def continuous_multilinear_curry_right_equiv' : | |
(G [×n]→L[𝕜] (G →L[𝕜] G')) ≃ₗᵢ[𝕜] (G [×n.succ]→L[𝕜] G') := | |
continuous_multilinear_curry_right_equiv 𝕜 (λ (i : fin n.succ), G) G' | |
variables {n 𝕜 G Ei G'} | |
@[simp] lemma continuous_multilinear_curry_right_equiv_apply | |
(f : (continuous_multilinear_map 𝕜 (λ(i : fin n), Ei i.cast_succ) (Ei (last n) →L[𝕜] G))) | |
(v : Π i, Ei i) : | |
(continuous_multilinear_curry_right_equiv 𝕜 Ei G) f v = f (init v) (v (last n)) := rfl | |
@[simp] lemma continuous_multilinear_curry_right_equiv_symm_apply | |
(f : continuous_multilinear_map 𝕜 Ei G) | |
(v : Π (i : fin n), Ei i.cast_succ) (x : Ei (last n)) : | |
(continuous_multilinear_curry_right_equiv 𝕜 Ei G).symm f v x = f (snoc v x) := rfl | |
@[simp] lemma continuous_multilinear_curry_right_equiv_apply' | |
(f : G [×n]→L[𝕜] (G →L[𝕜] G')) (v : fin (n + 1) → G) : | |
continuous_multilinear_curry_right_equiv' 𝕜 n G G' f v = f (init v) (v (last n)) := rfl | |
@[simp] lemma continuous_multilinear_curry_right_equiv_symm_apply' | |
(f : G [×n.succ]→L[𝕜] G') (v : fin n → G) (x : G) : | |
(continuous_multilinear_curry_right_equiv' 𝕜 n G G').symm f v x = f (snoc v x) := rfl | |
@[simp] lemma continuous_multilinear_map.curry_right_norm | |
(f : continuous_multilinear_map 𝕜 Ei G) : ∥f.curry_right∥ = ∥f∥ := | |
(continuous_multilinear_curry_right_equiv 𝕜 Ei G).symm.norm_map f | |
@[simp] lemma continuous_multilinear_map.uncurry_right_norm | |
(f : continuous_multilinear_map 𝕜 (λ i : fin n, Ei i.cast_succ) (Ei (last n) →L[𝕜] G)) : | |
∥f.uncurry_right∥ = ∥f∥ := | |
(continuous_multilinear_curry_right_equiv 𝕜 Ei G).norm_map f | |
/-! | |
#### Currying with `0` variables | |
The space of multilinear maps with `0` variables is trivial: such a multilinear map is just an | |
arbitrary constant (note that multilinear maps in `0` variables need not map `0` to `0`!). | |
Therefore, the space of continuous multilinear maps on `(fin 0) → G` with values in `E₂` is | |
isomorphic (and even isometric) to `E₂`. As this is the zeroth step in the construction of iterated | |
derivatives, we register this isomorphism. -/ | |
section | |
local attribute [instance] unique.subsingleton | |
variables {𝕜 G G'} | |
/-- Associating to a continuous multilinear map in `0` variables the unique value it takes. -/ | |
def continuous_multilinear_map.uncurry0 | |
(f : continuous_multilinear_map 𝕜 (λ (i : fin 0), G) G') : G' := f 0 | |
variables (𝕜 G) | |
/-- Associating to an element `x` of a vector space `E₂` the continuous multilinear map in `0` | |
variables taking the (unique) value `x` -/ | |
def continuous_multilinear_map.curry0 (x : G') : G [×0]→L[𝕜] G' := | |
{ to_fun := λm, x, | |
map_add' := λ m i, fin.elim0 i, | |
map_smul' := λ m i, fin.elim0 i, | |
cont := continuous_const } | |
variable {G} | |
@[simp] lemma continuous_multilinear_map.curry0_apply (x : G') (m : (fin 0) → G) : | |
continuous_multilinear_map.curry0 𝕜 G x m = x := rfl | |
variable {𝕜} | |
@[simp] lemma continuous_multilinear_map.uncurry0_apply (f : G [×0]→L[𝕜] G') : | |
f.uncurry0 = f 0 := rfl | |
@[simp] lemma continuous_multilinear_map.apply_zero_curry0 (f : G [×0]→L[𝕜] G') {x : fin 0 → G} : | |
continuous_multilinear_map.curry0 𝕜 G (f x) = f := | |
by { ext m, simp [(subsingleton.elim _ _ : x = m)] } | |
lemma continuous_multilinear_map.uncurry0_curry0 (f : G [×0]→L[𝕜] G') : | |
continuous_multilinear_map.curry0 𝕜 G (f.uncurry0) = f := | |
by simp | |
variables (𝕜 G) | |
@[simp] lemma continuous_multilinear_map.curry0_uncurry0 (x : G') : | |
(continuous_multilinear_map.curry0 𝕜 G x).uncurry0 = x := rfl | |
@[simp] lemma continuous_multilinear_map.curry0_norm (x : G') : | |
∥continuous_multilinear_map.curry0 𝕜 G x∥ = ∥x∥ := | |
begin | |
apply le_antisymm, | |
{ exact continuous_multilinear_map.op_norm_le_bound _ (norm_nonneg _) (λm, by simp) }, | |
{ simpa using (continuous_multilinear_map.curry0 𝕜 G x).le_op_norm 0 } | |
end | |
variables {𝕜 G} | |
@[simp] lemma continuous_multilinear_map.fin0_apply_norm (f : G [×0]→L[𝕜] G') {x : fin 0 → G} : | |
∥f x∥ = ∥f∥ := | |
begin | |
obtain rfl : x = 0 := subsingleton.elim _ _, | |
refine le_antisymm (by simpa using f.le_op_norm 0) _, | |
have : ∥continuous_multilinear_map.curry0 𝕜 G (f.uncurry0)∥ ≤ ∥f.uncurry0∥ := | |
continuous_multilinear_map.op_norm_le_bound _ (norm_nonneg _) (λm, | |
by simp [-continuous_multilinear_map.apply_zero_curry0]), | |
simpa | |
end | |
lemma continuous_multilinear_map.uncurry0_norm (f : G [×0]→L[𝕜] G') : ∥f.uncurry0∥ = ∥f∥ := | |
by simp | |
variables (𝕜 G G') | |
/-- The continuous linear isomorphism between elements of a normed space, and continuous multilinear | |
maps in `0` variables with values in this normed space. | |
The direct and inverse maps are `uncurry0` and `curry0`. Use these unless you need the full | |
framework of linear isometric equivs. -/ | |
def continuous_multilinear_curry_fin0 : (G [×0]→L[𝕜] G') ≃ₗᵢ[𝕜] G' := | |
{ to_fun := λf, continuous_multilinear_map.uncurry0 f, | |
inv_fun := λf, continuous_multilinear_map.curry0 𝕜 G f, | |
map_add' := λf g, rfl, | |
map_smul' := λc f, rfl, | |
left_inv := continuous_multilinear_map.uncurry0_curry0, | |
right_inv := continuous_multilinear_map.curry0_uncurry0 𝕜 G, | |
norm_map' := continuous_multilinear_map.uncurry0_norm } | |
variables {𝕜 G G'} | |
@[simp] lemma continuous_multilinear_curry_fin0_apply (f : G [×0]→L[𝕜] G') : | |
continuous_multilinear_curry_fin0 𝕜 G G' f = f 0 := rfl | |
@[simp] lemma continuous_multilinear_curry_fin0_symm_apply (x : G') (v : (fin 0) → G) : | |
(continuous_multilinear_curry_fin0 𝕜 G G').symm x v = x := rfl | |
end | |
/-! #### With 1 variable -/ | |
variables (𝕜 G G') | |
/-- Continuous multilinear maps from `G^1` to `G'` are isomorphic with continuous linear maps from | |
`G` to `G'`. -/ | |
def continuous_multilinear_curry_fin1 : (G [×1]→L[𝕜] G') ≃ₗᵢ[𝕜] (G →L[𝕜] G') := | |
(continuous_multilinear_curry_right_equiv 𝕜 (λ (i : fin 1), G) G').symm.trans | |
(continuous_multilinear_curry_fin0 𝕜 G (G →L[𝕜] G')) | |
variables {𝕜 G G'} | |
@[simp] lemma continuous_multilinear_curry_fin1_apply (f : G [×1]→L[𝕜] G') (x : G) : | |
continuous_multilinear_curry_fin1 𝕜 G G' f x = f (fin.snoc 0 x) := rfl | |
@[simp] lemma continuous_multilinear_curry_fin1_symm_apply | |
(f : G →L[𝕜] G') (v : (fin 1) → G) : | |
(continuous_multilinear_curry_fin1 𝕜 G G').symm f v = f (v 0) := rfl | |
namespace continuous_multilinear_map | |
variables (𝕜 G G') | |
/-- An equivalence of the index set defines a linear isometric equivalence between the spaces | |
of multilinear maps. -/ | |
def dom_dom_congr (σ : ι ≃ ι') : | |
continuous_multilinear_map 𝕜 (λ _ : ι, G) G' ≃ₗᵢ[𝕜] | |
continuous_multilinear_map 𝕜 (λ _ : ι', G) G' := | |
linear_isometry_equiv.of_bounds | |
{ to_fun := λ f, (multilinear_map.dom_dom_congr σ f.to_multilinear_map).mk_continuous ∥f∥ $ | |
λ m, (f.le_op_norm (λ i, m (σ i))).trans_eq $ by rw [← σ.prod_comp], | |
inv_fun := λ f, (multilinear_map.dom_dom_congr σ.symm f.to_multilinear_map).mk_continuous ∥f∥ $ | |
λ m, (f.le_op_norm (λ i, m (σ.symm i))).trans_eq $ by rw [← σ.symm.prod_comp], | |
left_inv := λ f, ext $ λ m, congr_arg f $ by simp only [σ.symm_apply_apply], | |
right_inv := λ f, ext $ λ m, congr_arg f $ by simp only [σ.apply_symm_apply], | |
map_add' := λ f g, rfl, | |
map_smul' := λ c f, rfl } | |
(λ f, multilinear_map.mk_continuous_norm_le _ (norm_nonneg f) _) | |
(λ f, multilinear_map.mk_continuous_norm_le _ (norm_nonneg f) _) | |
variables {𝕜 G G'} | |
section | |
variable [decidable_eq (ι ⊕ ι')] | |
/-- A continuous multilinear map with variables indexed by `ι ⊕ ι'` defines a continuous multilinear | |
map with variables indexed by `ι` taking values in the space of continuous multilinear maps with | |
variables indexed by `ι'`. -/ | |
def curry_sum (f : continuous_multilinear_map 𝕜 (λ x : ι ⊕ ι', G) G') : | |
continuous_multilinear_map 𝕜 (λ x : ι, G) (continuous_multilinear_map 𝕜 (λ x : ι', G) G') := | |
multilinear_map.mk_continuous_multilinear (multilinear_map.curry_sum f.to_multilinear_map) (∥f∥) $ | |
λ m m', by simpa [fintype.prod_sum_type, mul_assoc] using f.le_op_norm (sum.elim m m') | |
@[simp] lemma curry_sum_apply (f : continuous_multilinear_map 𝕜 (λ x : ι ⊕ ι', G) G') | |
(m : ι → G) (m' : ι' → G) : | |
f.curry_sum m m' = f (sum.elim m m') := | |
rfl | |
/-- A continuous multilinear map with variables indexed by `ι` taking values in the space of | |
continuous multilinear maps with variables indexed by `ι'` defines a continuous multilinear map with | |
variables indexed by `ι ⊕ ι'`. -/ | |
def uncurry_sum | |
(f : continuous_multilinear_map 𝕜 (λ x : ι, G) (continuous_multilinear_map 𝕜 (λ x : ι', G) G')) : | |
continuous_multilinear_map 𝕜 (λ x : ι ⊕ ι', G) G' := | |
multilinear_map.mk_continuous | |
(to_multilinear_map_linear.comp_multilinear_map f.to_multilinear_map).uncurry_sum (∥f∥) $ λ m, | |
by simpa [fintype.prod_sum_type, mul_assoc] | |
using (f (m ∘ sum.inl)).le_of_op_norm_le (m ∘ sum.inr) (f.le_op_norm _) | |
@[simp] lemma uncurry_sum_apply | |
(f : continuous_multilinear_map 𝕜 (λ x : ι, G) (continuous_multilinear_map 𝕜 (λ x : ι', G) G')) | |
(m : ι ⊕ ι' → G) : | |
f.uncurry_sum m = f (m ∘ sum.inl) (m ∘ sum.inr) := | |
rfl | |
variables (𝕜 ι ι' G G') | |
/-- Linear isometric equivalence between the space of continuous multilinear maps with variables | |
indexed by `ι ⊕ ι'` and the space of continuous multilinear maps with variables indexed by `ι` | |
taking values in the space of continuous multilinear maps with variables indexed by `ι'`. | |
The forward and inverse functions are `continuous_multilinear_map.curry_sum` | |
and `continuous_multilinear_map.uncurry_sum`. Use this definition only if you need | |
some properties of `linear_isometry_equiv`. -/ | |
def curry_sum_equiv : continuous_multilinear_map 𝕜 (λ x : ι ⊕ ι', G) G' ≃ₗᵢ[𝕜] | |
continuous_multilinear_map 𝕜 (λ x : ι, G) (continuous_multilinear_map 𝕜 (λ x : ι', G) G') := | |
linear_isometry_equiv.of_bounds | |
{ to_fun := curry_sum, | |
inv_fun := uncurry_sum, | |
map_add' := λ f g, by { ext, refl }, | |
map_smul' := λ c f, by { ext, refl }, | |
left_inv := λ f, by { ext m, exact congr_arg f (sum.elim_comp_inl_inr m) }, | |
right_inv := λ f, by { ext m₁ m₂, change f _ _ = f _ _, | |
rw [sum.elim_comp_inl, sum.elim_comp_inr] } } | |
(λ f, multilinear_map.mk_continuous_multilinear_norm_le _ (norm_nonneg f) _) | |
(λ f, multilinear_map.mk_continuous_norm_le _ (norm_nonneg f) _) | |
end | |
section | |
variables (𝕜 G G') {k l : ℕ} {s : finset (fin n)} | |
/-- If `s : finset (fin n)` is a finite set of cardinality `k` and its complement has cardinality | |
`l`, then the space of continuous multilinear maps `G [×n]→L[𝕜] G'` of `n` variables is isomorphic | |
to the space of continuous multilinear maps `G [×k]→L[𝕜] G [×l]→L[𝕜] G'` of `k` variables taking | |
values in the space of continuous multilinear maps of `l` variables. -/ | |
def curry_fin_finset {k l n : ℕ} {s : finset (fin n)} | |
(hk : s.card = k) (hl : sᶜ.card = l) : | |
(G [×n]→L[𝕜] G') ≃ₗᵢ[𝕜] (G [×k]→L[𝕜] G [×l]→L[𝕜] G') := | |
(dom_dom_congr 𝕜 G G' (fin_sum_equiv_of_finset hk hl).symm).trans | |
(curry_sum_equiv 𝕜 (fin k) (fin l) G G') | |
variables {𝕜 G G'} | |
@[simp] lemma curry_fin_finset_apply (hk : s.card = k) (hl : sᶜ.card = l) | |
(f : G [×n]→L[𝕜] G') (mk : fin k → G) (ml : fin l → G) : | |
curry_fin_finset 𝕜 G G' hk hl f mk ml = | |
f (λ i, sum.elim mk ml ((fin_sum_equiv_of_finset hk hl).symm i)) := | |
rfl | |
@[simp] lemma curry_fin_finset_symm_apply (hk : s.card = k) (hl : sᶜ.card = l) | |
(f : G [×k]→L[𝕜] G [×l]→L[𝕜] G') (m : fin n → G) : | |
(curry_fin_finset 𝕜 G G' hk hl).symm f m = | |
f (λ i, m $ fin_sum_equiv_of_finset hk hl (sum.inl i)) | |
(λ i, m $ fin_sum_equiv_of_finset hk hl (sum.inr i)) := | |
rfl | |
@[simp] lemma curry_fin_finset_symm_apply_piecewise_const (hk : s.card = k) (hl : sᶜ.card = l) | |
(f : G [×k]→L[𝕜] G [×l]→L[𝕜] G') (x y : G) : | |
(curry_fin_finset 𝕜 G G' hk hl).symm f (s.piecewise (λ _, x) (λ _, y)) = f (λ _, x) (λ _, y) := | |
multilinear_map.curry_fin_finset_symm_apply_piecewise_const hk hl _ x y | |
@[simp] lemma curry_fin_finset_symm_apply_const (hk : s.card = k) (hl : sᶜ.card = l) | |
(f : G [×k]→L[𝕜] G [×l]→L[𝕜] G') (x : G) : | |
(curry_fin_finset 𝕜 G G' hk hl).symm f (λ _, x) = f (λ _, x) (λ _, x) := | |
rfl | |
@[simp] lemma curry_fin_finset_apply_const (hk : s.card = k) (hl : sᶜ.card = l) | |
(f : G [×n]→L[𝕜] G') (x y : G) : | |
curry_fin_finset 𝕜 G G' hk hl f (λ _, x) (λ _, y) = f (s.piecewise (λ _, x) (λ _, y)) := | |
begin | |
refine (curry_fin_finset_symm_apply_piecewise_const hk hl _ _ _).symm.trans _, -- `rw` fails | |
rw linear_isometry_equiv.symm_apply_apply | |
end | |
end | |
end continuous_multilinear_map | |
end currying | |