Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
16.4 kB
/-
Copyright (c) 2021 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel, Yaël Dillies
-/
import analysis.normed.group.pointwise
import analysis.normed_space.basic
/-!
# Properties of pointwise scalar multiplication of sets in normed spaces.
We explore the relationships between scalar multiplication of sets in vector spaces, and the norm.
Notably, we express arbitrary balls as rescaling of other balls, and we show that the
multiplication of bounded sets remain bounded.
-/
open metric set
open_locale pointwise topological_space
variables {𝕜 E : Type*} [normed_field 𝕜]
section seminormed_add_comm_group
variables [seminormed_add_comm_group E] [normed_space 𝕜 E]
theorem smul_ball {c : 𝕜} (hc : c0) (x : E) (r : ℝ) :
c • ball x r = ball (c • x) (∥c∥ * r) :=
begin
ext y,
rw mem_smul_set_iff_inv_smul_mem₀ hc,
conv_lhs { rw ←inv_smul_smul₀ hc x },
simp [← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hc), mul_comm _ r, dist_smul],
end
lemma smul_unit_ball {c : 𝕜} (hc : c0) : c • ball (0 : E) (1 : ℝ) = ball (0 : E) (∥c∥) :=
by rw [smul_ball hc, smul_zero, mul_one]
theorem smul_sphere' {c : 𝕜} (hc : c0) (x : E) (r : ℝ) :
c • sphere x r = sphere (c • x) (∥c∥ * r) :=
begin
ext y,
rw mem_smul_set_iff_inv_smul_mem₀ hc,
conv_lhs { rw ←inv_smul_smul₀ hc x },
simp only [mem_sphere, dist_smul, norm_inv, ← div_eq_inv_mul,
div_eq_iff (norm_pos_iff.2 hc).ne', mul_comm r],
end
theorem smul_closed_ball' {c : 𝕜} (hc : c0) (x : E) (r : ℝ) :
c • closed_ball x r = closed_ball (c • x) (∥c∥ * r) :=
by simp only [← ball_union_sphere, set.smul_set_union, smul_ball hc, smul_sphere' hc]
lemma metric.bounded.smul {s : set E} (hs : bounded s) (c : 𝕜) :
bounded (c • s) :=
begin
obtain ⟨R, hR⟩ : ∃ (R : ℝ), ∀ x ∈ s, ∥x∥ ≤ R := hs.exists_norm_le,
refine (bounded_iff_exists_norm_le).2 ⟨∥c∥ * R, _⟩,
assume z hz,
obtain ⟨y, ys, rfl⟩ : ∃ (y : E), y ∈ s ∧ c • y = z := mem_smul_set.1 hz,
calc ∥c • y∥ = ∥c∥ * ∥y∥ : norm_smul _ _
... ≤ ∥c∥ * R : mul_le_mul_of_nonneg_left (hR y ys) (norm_nonneg _)
end
/-- If `s` is a bounded set, then for small enough `r`, the set `{x} + r • s` is contained in any
fixed neighborhood of `x`. -/
lemma eventually_singleton_add_smul_subset
{x : E} {s : set E} (hs : bounded s) {u : set E} (hu : u ∈ 𝓝 x) :
∀ᶠ r in 𝓝 (0 : 𝕜), {x} + r • s ⊆ u :=
begin
obtain ⟨ε, εpos, hε⟩ : ∃ ε (hε : 0 < ε), closed_ball x ε ⊆ u :=
nhds_basis_closed_ball.mem_iff.1 hu,
obtain ⟨R, Rpos, hR⟩ : ∃ (R : ℝ), 0 < R ∧ s ⊆ closed_ball 0 R := hs.subset_ball_lt 0 0,
have : metric.closed_ball (0 : 𝕜) (ε / R) ∈ 𝓝 (0 : 𝕜) :=
closed_ball_mem_nhds _ (div_pos εpos Rpos),
filter_upwards [this] with r hr,
simp only [image_add_left, singleton_add],
assume y hy,
obtain ⟨z, zs, hz⟩ : ∃ (z : E), z ∈ s ∧ r • z = -x + y, by simpa [mem_smul_set] using hy,
have I : ∥r • z∥ ≤ ε := calc
∥r • z∥ = ∥r∥ * ∥z∥ : norm_smul _ _
... ≤ (ε / R) * R :
mul_le_mul (mem_closed_ball_zero_iff.1 hr)
(mem_closed_ball_zero_iff.1 (hR zs)) (norm_nonneg _) (div_pos εpos Rpos).le
... = ε : by field_simp [Rpos.ne'],
have : y = x + r • z, by simp only [hz, add_neg_cancel_left],
apply hε,
simpa only [this, dist_eq_norm, add_sub_cancel', mem_closed_ball] using I,
end
variables [normed_space ℝ E] {x y z : E} {δ ε : ℝ}
/-- In a real normed space, the image of the unit ball under scalar multiplication by a positive
constant `r` is the ball of radius `r`. -/
lemma smul_unit_ball_of_pos {r : ℝ} (hr : 0 < r) : r • ball 0 1 = ball (0 : E) r :=
by rw [smul_unit_ball hr.ne', real.norm_of_nonneg hr.le]
-- This is also true for `ℚ`-normed spaces
lemma exists_dist_eq (x z : E) {a b : ℝ} (ha : 0 ≤ a) (hb : 0 ≤ b) (hab : a + b = 1) :
y, dist x y = b * dist x z ∧ dist y z = a * dist x z :=
begin
use a • x + b • z,
nth_rewrite 0 [←one_smul ℝ x],
nth_rewrite 3 [←one_smul ℝ z],
simp [dist_eq_norm, ←hab, add_smul, ←smul_sub, norm_smul_of_nonneg, ha, hb],
end
lemma exists_dist_le_le (hδ : 0 ≤ δ) (hε : 0 ≤ ε) (h : dist x z ≤ ε + δ) :
y, dist x y ≤ δ ∧ dist y z ≤ ε :=
begin
obtain rfl | hε' := hε.eq_or_lt,
{ exact ⟨z, by rwa zero_add at h, (dist_self _).le⟩ },
have hεδ := add_pos_of_pos_of_nonneg hε' hδ,
refine (exists_dist_eq x z (div_nonneg hε $ add_nonneg hε hδ) (div_nonneg hδ $ add_nonneg hε hδ) $
by rw [←add_div, div_self hεδ.ne']).imp (λ y hy, _),
rw [hy.1, hy.2, div_mul_comm, div_mul_comm ε],
rw ←div_le_one hεδ at h,
exact ⟨mul_le_of_le_one_left hδ h, mul_le_of_le_one_left hε h⟩,
end
-- This is also true for `ℚ`-normed spaces
lemma exists_dist_le_lt (hδ : 0 ≤ δ) (hε : 0 < ε) (h : dist x z < ε + δ) :
y, dist x y ≤ δ ∧ dist y z < ε :=
begin
refine (exists_dist_eq x z (div_nonneg hε.le $ add_nonneg hε.le hδ) (div_nonneg hδ $ add_nonneg
hε.le hδ) $ by rw [←add_div, div_self (add_pos_of_pos_of_nonneg hε hδ).ne']).imp (λ y hy, _),
rw [hy.1, hy.2, div_mul_comm, div_mul_comm ε],
rw ←div_lt_one (add_pos_of_pos_of_nonneg hε hδ) at h,
exact ⟨mul_le_of_le_one_left hδ h.le, mul_lt_of_lt_one_left hε h⟩,
end
-- This is also true for `ℚ`-normed spaces
lemma exists_dist_lt_le (hδ : 0 < δ) (hε : 0 ≤ ε) (h : dist x z < ε + δ) :
y, dist x y < δ ∧ dist y z ≤ ε :=
begin
obtain ⟨y, yz, xy⟩ := exists_dist_le_lt hε hδ
(show dist z x < δ + ε, by simpa only [dist_comm, add_comm] using h),
exact ⟨y, by simp [dist_comm x y, dist_comm y z, *]⟩,
end
-- This is also true for `ℚ`-normed spaces
lemma exists_dist_lt_lt (hδ : 0 < δ) (hε : 0 < ε) (h : dist x z < ε + δ) :
y, dist x y < δ ∧ dist y z < ε :=
begin
refine (exists_dist_eq x z (div_nonneg hε.le $ add_nonneg hε.le hδ.le) (div_nonneg hδ.le $
add_nonneg hε.le hδ.le) $ by rw [←add_div, div_self (add_pos hε hδ).ne']).imp (λ y hy, _),
rw [hy.1, hy.2, div_mul_comm, div_mul_comm ε],
rw ←div_lt_one (add_pos hε hδ) at h,
exact ⟨mul_lt_of_lt_one_left hδ h, mul_lt_of_lt_one_left hε h⟩,
end
-- This is also true for `ℚ`-normed spaces
lemma disjoint_ball_ball_iff (hδ : 0 < δ) (hε : 0 < ε) :
disjoint (ball x δ) (ball y ε) ↔ δ + ε ≤ dist x y :=
begin
refine ⟨λ h, le_of_not_lt $ λ hxy, _, ball_disjoint_ball⟩,
rw add_comm at hxy,
obtain ⟨z, hxz, hzy⟩ := exists_dist_lt_lt hδ hε hxy,
rw dist_comm at hxz,
exact h ⟨hxz, hzy⟩,
end
-- This is also true for `ℚ`-normed spaces
lemma disjoint_ball_closed_ball_iff (hδ : 0 < δ) (hε : 0 ≤ ε) :
disjoint (ball x δ) (closed_ball y ε) ↔ δ + ε ≤ dist x y :=
begin
refine ⟨λ h, le_of_not_lt $ λ hxy, _, ball_disjoint_closed_ball⟩,
rw add_comm at hxy,
obtain ⟨z, hxz, hzy⟩ := exists_dist_lt_le hδ hε hxy,
rw dist_comm at hxz,
exact h ⟨hxz, hzy⟩,
end
-- This is also true for `ℚ`-normed spaces
lemma disjoint_closed_ball_ball_iff (hδ : 0 ≤ δ) (hε : 0 < ε) :
disjoint (closed_ball x δ) (ball y ε) ↔ δ + ε ≤ dist x y :=
by rw [disjoint.comm, disjoint_ball_closed_ball_iff hε hδ, add_comm, dist_comm]; apply_instance
lemma disjoint_closed_ball_closed_ball_iff (hδ : 0 ≤ δ) (hε : 0 ≤ ε) :
disjoint (closed_ball x δ) (closed_ball y ε) ↔ δ + ε < dist x y :=
begin
refine ⟨λ h, lt_of_not_ge $ λ hxy, _, closed_ball_disjoint_closed_ball⟩,
rw add_comm at hxy,
obtain ⟨z, hxz, hzy⟩ := exists_dist_le_le hδ hε hxy,
rw dist_comm at hxz,
exact h ⟨hxz, hzy⟩,
end
open emetric ennreal
@[simp] lemma inf_edist_thickening (hδ : 0 < δ) (s : set E) (x : E) :
inf_edist x (thickening δ s) = inf_edist x s - ennreal.of_real δ :=
begin
obtain hs | hs := lt_or_le (inf_edist x s) (ennreal.of_real δ),
{ rw [inf_edist_zero_of_mem, tsub_eq_zero_of_le hs.le], exact hs },
refine (tsub_le_iff_right.2 inf_edist_le_inf_edist_thickening_add).antisymm' _,
refine le_sub_of_add_le_right of_real_ne_top _,
refine le_inf_edist.2 (λ z hz, le_of_forall_lt' $ λ r h, _),
cases r,
{ exact add_lt_top.2 ⟨lt_top_iff_ne_top.2 $ inf_edist_ne_top ⟨z, self_subset_thickening hδ _ hz⟩,
of_real_lt_top⟩ },
have hr : 0 < ↑r - δ,
{ refine sub_pos_of_lt _,
have := hs.trans_lt ((inf_edist_le_edist_of_mem hz).trans_lt h),
rw [of_real_eq_coe_nnreal hδ.le, some_eq_coe] at this,
exact_mod_cast this },
rw [some_eq_coe, edist_lt_coe, ←dist_lt_coe, ←add_sub_cancel'_right δ (↑r)] at h,
obtain ⟨y, hxy, hyz⟩ := exists_dist_lt_lt hr hδ h,
refine (ennreal.add_lt_add_right of_real_ne_top $ inf_edist_lt_iff.2
⟨_, mem_thickening_iff.2 ⟨_, hz, hyz⟩, edist_lt_of_real.2 hxy⟩).trans_le _,
rw [←of_real_add hr.le hδ.le, sub_add_cancel, of_real_coe_nnreal],
exact le_rfl,
end
@[simp] lemma thickening_thickening (hε : 0 < ε) (hδ : 0 < δ) (s : set E) :
thickening ε (thickening δ s) = thickening (ε + δ) s :=
(thickening_thickening_subset _ _ _).antisymm $ λ x, begin
simp_rw mem_thickening_iff,
rintro ⟨z, hz, hxz⟩,
rw add_comm at hxz,
obtain ⟨y, hxy, hyz⟩ := exists_dist_lt_lt hε hδ hxz,
exact ⟨y, ⟨_, hz, hyz⟩, hxy⟩,
end
@[simp] lemma cthickening_thickening (hε : 0 ≤ ε) (hδ : 0 < δ) (s : set E) :
cthickening ε (thickening δ s) = cthickening (ε + δ) s :=
(cthickening_thickening_subset hε _ _).antisymm $ λ x, begin
simp_rw [mem_cthickening_iff, ennreal.of_real_add hε hδ.le, inf_edist_thickening hδ],
exact tsub_le_iff_right.2,
end
-- Note: `interior (cthickening δ s) ≠ thickening δ s` in general
@[simp] lemma closure_thickening (hδ : 0 < δ) (s : set E) :
closure (thickening δ s) = cthickening δ s :=
by { rw [←cthickening_zero, cthickening_thickening le_rfl hδ, zero_add], apply_instance }
@[simp] lemma inf_edist_cthickening (δ : ℝ) (s : set E) (x : E) :
inf_edist x (cthickening δ s) = inf_edist x s - ennreal.of_real δ :=
begin
obtain hδ | hδ := le_or_lt δ 0,
{ rw [cthickening_of_nonpos hδ, inf_edist_closure, of_real_of_nonpos hδ, tsub_zero] },
{ rw [←closure_thickening hδ, inf_edist_closure, inf_edist_thickening hδ]; apply_instance }
end
@[simp] lemma thickening_cthickening (hε : 0 < ε) (hδ : 0 ≤ δ) (s : set E) :
thickening ε (cthickening δ s) = thickening (ε + δ) s :=
begin
obtain rfl | hδ := hδ.eq_or_lt,
{ rw [cthickening_zero, thickening_closure, add_zero] },
{ rw [←closure_thickening hδ, thickening_closure, thickening_thickening hε hδ]; apply_instance }
end
@[simp] lemma cthickening_cthickening (hε : 0 ≤ ε) (hδ : 0 ≤ δ) (s : set E) :
cthickening ε (cthickening δ s) = cthickening (ε + δ) s :=
(cthickening_cthickening_subset hε hδ _).antisymm $ λ x, begin
simp_rw [mem_cthickening_iff, ennreal.of_real_add hε hδ, inf_edist_cthickening],
exact tsub_le_iff_right.2,
end
@[simp] lemma thickening_ball (hε : 0 < ε) (hδ : 0 < δ) (x : E) :
thickening ε (ball x δ) = ball x (ε + δ) :=
by rw [←thickening_singleton, thickening_thickening hε hδ, thickening_singleton]; apply_instance
@[simp] lemma thickening_closed_ball (hε : 0 < ε) (hδ : 0 ≤ δ) (x : E) :
thickening ε (closed_ball x δ) = ball x (ε + δ) :=
by rw [←cthickening_singleton _ hδ, thickening_cthickening hε hδ, thickening_singleton];
apply_instance
@[simp] lemma cthickening_ball (hε : 0 ≤ ε) (hδ : 0 < δ) (x : E) :
cthickening ε (ball x δ) = closed_ball x (ε + δ) :=
by rw [←thickening_singleton, cthickening_thickening hε hδ,
cthickening_singleton _ (add_nonneg hε hδ.le)]; apply_instance
@[simp] lemma cthickening_closed_ball (hε : 0 ≤ ε) (hδ : 0 ≤ δ) (x : E) :
cthickening ε (closed_ball x δ) = closed_ball x (ε + δ) :=
by rw [←cthickening_singleton _ hδ, cthickening_cthickening hε hδ,
cthickening_singleton _ (add_nonneg hε hδ)]; apply_instance
lemma ball_add_ball (hε : 0 < ε) (hδ : 0 < δ) (a b : E) :
ball a ε + ball b δ = ball (a + b) (ε + δ) :=
by rw [ball_add, thickening_ball hε hδ, vadd_ball, vadd_eq_add]; apply_instance
lemma ball_sub_ball (hε : 0 < ε) (hδ : 0 < δ) (a b : E) :
ball a ε - ball b δ = ball (a - b) (ε + δ) :=
by simp_rw [sub_eq_add_neg, neg_ball, ball_add_ball hε hδ]
lemma ball_add_closed_ball (hε : 0 < ε) (hδ : 0 ≤ δ) (a b : E) :
ball a ε + closed_ball b δ = ball (a + b) (ε + δ) :=
by rw [ball_add, thickening_closed_ball hε hδ, vadd_ball, vadd_eq_add]; apply_instance
lemma ball_sub_closed_ball (hε : 0 < ε) (hδ : 0 ≤ δ) (a b : E) :
ball a ε - closed_ball b δ = ball (a - b) (ε + δ) :=
by simp_rw [sub_eq_add_neg, neg_closed_ball, ball_add_closed_ball hε hδ]
lemma closed_ball_add_ball (hε : 0 ≤ ε) (hδ : 0 < δ) (a b : E) :
closed_ball a ε + ball b δ = ball (a + b) (ε + δ) :=
by rw [add_comm, ball_add_closed_ball hδ hε, add_comm, add_comm δ]; apply_instance
lemma closed_ball_sub_ball (hε : 0 ≤ ε) (hδ : 0 < δ) (a b : E) :
closed_ball a ε - ball b δ = ball (a - b) (ε + δ) :=
by simp_rw [sub_eq_add_neg, neg_ball, closed_ball_add_ball hε hδ]
lemma closed_ball_add_closed_ball [proper_space E] (hε : 0 ≤ ε) (hδ : 0 ≤ δ) (a b : E) :
closed_ball a ε + closed_ball b δ = closed_ball (a + b) (ε + δ) :=
by rw [(is_compact_closed_ball _ _).add_closed_ball hδ, cthickening_closed_ball hδ hε,
vadd_closed_ball, vadd_eq_add, add_comm, add_comm δ]; apply_instance
lemma closed_ball_sub_closed_ball [proper_space E] (hε : 0 ≤ ε) (hδ : 0 ≤ δ) (a b : E) :
closed_ball a ε - closed_ball b δ = closed_ball (a - b) (ε + δ) :=
by simp_rw [sub_eq_add_neg, neg_closed_ball, closed_ball_add_closed_ball hε hδ]
end seminormed_add_comm_group
section normed_add_comm_group
variables [normed_add_comm_group E] [normed_space 𝕜 E]
theorem smul_closed_ball (c : 𝕜) (x : E) {r : ℝ} (hr : 0 ≤ r) :
c • closed_ball x r = closed_ball (c • x) (∥c∥ * r) :=
begin
rcases eq_or_ne c 0 with rfl|hc,
{ simp [hr, zero_smul_set, set.singleton_zero, ← nonempty_closed_ball] },
{ exact smul_closed_ball' hc x r }
end
lemma smul_closed_unit_ball (c : 𝕜) : c • closed_ball (0 : E) (1 : ℝ) = closed_ball (0 : E) (∥c∥) :=
by rw [smul_closed_ball _ _ zero_le_one, smul_zero, mul_one]
variables [normed_space ℝ E]
/-- In a real normed space, the image of the unit closed ball under multiplication by a nonnegative
number `r` is the closed ball of radius `r` with center at the origin. -/
lemma smul_closed_unit_ball_of_nonneg {r : ℝ} (hr : 0 ≤ r) :
r • closed_ball 0 1 = closed_ball (0 : E) r :=
by rw [smul_closed_unit_ball, real.norm_of_nonneg hr]
/-- In a nontrivial real normed space, a sphere is nonempty if and only if its radius is
nonnegative. -/
@[simp] lemma normed_space.sphere_nonempty [nontrivial E] {x : E} {r : ℝ} :
(sphere x r).nonempty ↔ 0 ≤ r :=
begin
obtain ⟨y, hy⟩ := exists_ne x,
refine ⟨λ h, nonempty_closed_ball.1 (h.mono sphere_subset_closed_ball), λ hr,
⟨r • ∥y - x∥⁻¹ • (y - x) + x, _⟩⟩,
have : ∥y - x∥ ≠ 0, by simpa [sub_eq_zero],
simp [norm_smul, this, real.norm_of_nonneg hr],
end
lemma smul_sphere [nontrivial E] (c : 𝕜) (x : E) {r : ℝ} (hr : 0 ≤ r) :
c • sphere x r = sphere (c • x) (∥c∥ * r) :=
begin
rcases eq_or_ne c 0 with rfl|hc,
{ simp [zero_smul_set, set.singleton_zero, hr] },
{ exact smul_sphere' hc x r }
end
/-- Any ball `metric.ball x r`, `0 < r` is the image of the unit ball under `λ y, x + r • y`. -/
lemma affinity_unit_ball {r : ℝ} (hr : 0 < r) (x : E) : x +ᵥ r • ball 0 1 = ball x r :=
by rw [smul_unit_ball_of_pos hr, vadd_ball_zero]
/-- Any closed ball `metric.closed_ball x r`, `0 ≤ r` is the image of the unit closed ball under
`λ y, x + r • y`. -/
lemma affinity_unit_closed_ball {r : ℝ} (hr : 0 ≤ r) (x : E) :
x +ᵥ r • closed_ball 0 1 = closed_ball x r :=
by rw [smul_closed_unit_ball, real.norm_of_nonneg hr, vadd_closed_ball_zero]
end normed_add_comm_group