Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Sébastien Gouëzel. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Sébastien Gouëzel, Yaël Dillies | |
-/ | |
import analysis.normed.group.pointwise | |
import analysis.normed_space.basic | |
/-! | |
# Properties of pointwise scalar multiplication of sets in normed spaces. | |
We explore the relationships between scalar multiplication of sets in vector spaces, and the norm. | |
Notably, we express arbitrary balls as rescaling of other balls, and we show that the | |
multiplication of bounded sets remain bounded. | |
-/ | |
open metric set | |
open_locale pointwise topological_space | |
variables {𝕜 E : Type*} [normed_field 𝕜] | |
section seminormed_add_comm_group | |
variables [seminormed_add_comm_group E] [normed_space 𝕜 E] | |
theorem smul_ball {c : 𝕜} (hc : c ≠ 0) (x : E) (r : ℝ) : | |
c • ball x r = ball (c • x) (∥c∥ * r) := | |
begin | |
ext y, | |
rw mem_smul_set_iff_inv_smul_mem₀ hc, | |
conv_lhs { rw ←inv_smul_smul₀ hc x }, | |
simp [← div_eq_inv_mul, div_lt_iff (norm_pos_iff.2 hc), mul_comm _ r, dist_smul], | |
end | |
lemma smul_unit_ball {c : 𝕜} (hc : c ≠ 0) : c • ball (0 : E) (1 : ℝ) = ball (0 : E) (∥c∥) := | |
by rw [smul_ball hc, smul_zero, mul_one] | |
theorem smul_sphere' {c : 𝕜} (hc : c ≠ 0) (x : E) (r : ℝ) : | |
c • sphere x r = sphere (c • x) (∥c∥ * r) := | |
begin | |
ext y, | |
rw mem_smul_set_iff_inv_smul_mem₀ hc, | |
conv_lhs { rw ←inv_smul_smul₀ hc x }, | |
simp only [mem_sphere, dist_smul, norm_inv, ← div_eq_inv_mul, | |
div_eq_iff (norm_pos_iff.2 hc).ne', mul_comm r], | |
end | |
theorem smul_closed_ball' {c : 𝕜} (hc : c ≠ 0) (x : E) (r : ℝ) : | |
c • closed_ball x r = closed_ball (c • x) (∥c∥ * r) := | |
by simp only [← ball_union_sphere, set.smul_set_union, smul_ball hc, smul_sphere' hc] | |
lemma metric.bounded.smul {s : set E} (hs : bounded s) (c : 𝕜) : | |
bounded (c • s) := | |
begin | |
obtain ⟨R, hR⟩ : ∃ (R : ℝ), ∀ x ∈ s, ∥x∥ ≤ R := hs.exists_norm_le, | |
refine (bounded_iff_exists_norm_le).2 ⟨∥c∥ * R, _⟩, | |
assume z hz, | |
obtain ⟨y, ys, rfl⟩ : ∃ (y : E), y ∈ s ∧ c • y = z := mem_smul_set.1 hz, | |
calc ∥c • y∥ = ∥c∥ * ∥y∥ : norm_smul _ _ | |
... ≤ ∥c∥ * R : mul_le_mul_of_nonneg_left (hR y ys) (norm_nonneg _) | |
end | |
/-- If `s` is a bounded set, then for small enough `r`, the set `{x} + r • s` is contained in any | |
fixed neighborhood of `x`. -/ | |
lemma eventually_singleton_add_smul_subset | |
{x : E} {s : set E} (hs : bounded s) {u : set E} (hu : u ∈ 𝓝 x) : | |
∀ᶠ r in 𝓝 (0 : 𝕜), {x} + r • s ⊆ u := | |
begin | |
obtain ⟨ε, εpos, hε⟩ : ∃ ε (hε : 0 < ε), closed_ball x ε ⊆ u := | |
nhds_basis_closed_ball.mem_iff.1 hu, | |
obtain ⟨R, Rpos, hR⟩ : ∃ (R : ℝ), 0 < R ∧ s ⊆ closed_ball 0 R := hs.subset_ball_lt 0 0, | |
have : metric.closed_ball (0 : 𝕜) (ε / R) ∈ 𝓝 (0 : 𝕜) := | |
closed_ball_mem_nhds _ (div_pos εpos Rpos), | |
filter_upwards [this] with r hr, | |
simp only [image_add_left, singleton_add], | |
assume y hy, | |
obtain ⟨z, zs, hz⟩ : ∃ (z : E), z ∈ s ∧ r • z = -x + y, by simpa [mem_smul_set] using hy, | |
have I : ∥r • z∥ ≤ ε := calc | |
∥r • z∥ = ∥r∥ * ∥z∥ : norm_smul _ _ | |
... ≤ (ε / R) * R : | |
mul_le_mul (mem_closed_ball_zero_iff.1 hr) | |
(mem_closed_ball_zero_iff.1 (hR zs)) (norm_nonneg _) (div_pos εpos Rpos).le | |
... = ε : by field_simp [Rpos.ne'], | |
have : y = x + r • z, by simp only [hz, add_neg_cancel_left], | |
apply hε, | |
simpa only [this, dist_eq_norm, add_sub_cancel', mem_closed_ball] using I, | |
end | |
variables [normed_space ℝ E] {x y z : E} {δ ε : ℝ} | |
/-- In a real normed space, the image of the unit ball under scalar multiplication by a positive | |
constant `r` is the ball of radius `r`. -/ | |
lemma smul_unit_ball_of_pos {r : ℝ} (hr : 0 < r) : r • ball 0 1 = ball (0 : E) r := | |
by rw [smul_unit_ball hr.ne', real.norm_of_nonneg hr.le] | |
-- This is also true for `ℚ`-normed spaces | |
lemma exists_dist_eq (x z : E) {a b : ℝ} (ha : 0 ≤ a) (hb : 0 ≤ b) (hab : a + b = 1) : | |
∃ y, dist x y = b * dist x z ∧ dist y z = a * dist x z := | |
begin | |
use a • x + b • z, | |
nth_rewrite 0 [←one_smul ℝ x], | |
nth_rewrite 3 [←one_smul ℝ z], | |
simp [dist_eq_norm, ←hab, add_smul, ←smul_sub, norm_smul_of_nonneg, ha, hb], | |
end | |
lemma exists_dist_le_le (hδ : 0 ≤ δ) (hε : 0 ≤ ε) (h : dist x z ≤ ε + δ) : | |
∃ y, dist x y ≤ δ ∧ dist y z ≤ ε := | |
begin | |
obtain rfl | hε' := hε.eq_or_lt, | |
{ exact ⟨z, by rwa zero_add at h, (dist_self _).le⟩ }, | |
have hεδ := add_pos_of_pos_of_nonneg hε' hδ, | |
refine (exists_dist_eq x z (div_nonneg hε $ add_nonneg hε hδ) (div_nonneg hδ $ add_nonneg hε hδ) $ | |
by rw [←add_div, div_self hεδ.ne']).imp (λ y hy, _), | |
rw [hy.1, hy.2, div_mul_comm, div_mul_comm ε], | |
rw ←div_le_one hεδ at h, | |
exact ⟨mul_le_of_le_one_left hδ h, mul_le_of_le_one_left hε h⟩, | |
end | |
-- This is also true for `ℚ`-normed spaces | |
lemma exists_dist_le_lt (hδ : 0 ≤ δ) (hε : 0 < ε) (h : dist x z < ε + δ) : | |
∃ y, dist x y ≤ δ ∧ dist y z < ε := | |
begin | |
refine (exists_dist_eq x z (div_nonneg hε.le $ add_nonneg hε.le hδ) (div_nonneg hδ $ add_nonneg | |
hε.le hδ) $ by rw [←add_div, div_self (add_pos_of_pos_of_nonneg hε hδ).ne']).imp (λ y hy, _), | |
rw [hy.1, hy.2, div_mul_comm, div_mul_comm ε], | |
rw ←div_lt_one (add_pos_of_pos_of_nonneg hε hδ) at h, | |
exact ⟨mul_le_of_le_one_left hδ h.le, mul_lt_of_lt_one_left hε h⟩, | |
end | |
-- This is also true for `ℚ`-normed spaces | |
lemma exists_dist_lt_le (hδ : 0 < δ) (hε : 0 ≤ ε) (h : dist x z < ε + δ) : | |
∃ y, dist x y < δ ∧ dist y z ≤ ε := | |
begin | |
obtain ⟨y, yz, xy⟩ := exists_dist_le_lt hε hδ | |
(show dist z x < δ + ε, by simpa only [dist_comm, add_comm] using h), | |
exact ⟨y, by simp [dist_comm x y, dist_comm y z, *]⟩, | |
end | |
-- This is also true for `ℚ`-normed spaces | |
lemma exists_dist_lt_lt (hδ : 0 < δ) (hε : 0 < ε) (h : dist x z < ε + δ) : | |
∃ y, dist x y < δ ∧ dist y z < ε := | |
begin | |
refine (exists_dist_eq x z (div_nonneg hε.le $ add_nonneg hε.le hδ.le) (div_nonneg hδ.le $ | |
add_nonneg hε.le hδ.le) $ by rw [←add_div, div_self (add_pos hε hδ).ne']).imp (λ y hy, _), | |
rw [hy.1, hy.2, div_mul_comm, div_mul_comm ε], | |
rw ←div_lt_one (add_pos hε hδ) at h, | |
exact ⟨mul_lt_of_lt_one_left hδ h, mul_lt_of_lt_one_left hε h⟩, | |
end | |
-- This is also true for `ℚ`-normed spaces | |
lemma disjoint_ball_ball_iff (hδ : 0 < δ) (hε : 0 < ε) : | |
disjoint (ball x δ) (ball y ε) ↔ δ + ε ≤ dist x y := | |
begin | |
refine ⟨λ h, le_of_not_lt $ λ hxy, _, ball_disjoint_ball⟩, | |
rw add_comm at hxy, | |
obtain ⟨z, hxz, hzy⟩ := exists_dist_lt_lt hδ hε hxy, | |
rw dist_comm at hxz, | |
exact h ⟨hxz, hzy⟩, | |
end | |
-- This is also true for `ℚ`-normed spaces | |
lemma disjoint_ball_closed_ball_iff (hδ : 0 < δ) (hε : 0 ≤ ε) : | |
disjoint (ball x δ) (closed_ball y ε) ↔ δ + ε ≤ dist x y := | |
begin | |
refine ⟨λ h, le_of_not_lt $ λ hxy, _, ball_disjoint_closed_ball⟩, | |
rw add_comm at hxy, | |
obtain ⟨z, hxz, hzy⟩ := exists_dist_lt_le hδ hε hxy, | |
rw dist_comm at hxz, | |
exact h ⟨hxz, hzy⟩, | |
end | |
-- This is also true for `ℚ`-normed spaces | |
lemma disjoint_closed_ball_ball_iff (hδ : 0 ≤ δ) (hε : 0 < ε) : | |
disjoint (closed_ball x δ) (ball y ε) ↔ δ + ε ≤ dist x y := | |
by rw [disjoint.comm, disjoint_ball_closed_ball_iff hε hδ, add_comm, dist_comm]; apply_instance | |
lemma disjoint_closed_ball_closed_ball_iff (hδ : 0 ≤ δ) (hε : 0 ≤ ε) : | |
disjoint (closed_ball x δ) (closed_ball y ε) ↔ δ + ε < dist x y := | |
begin | |
refine ⟨λ h, lt_of_not_ge $ λ hxy, _, closed_ball_disjoint_closed_ball⟩, | |
rw add_comm at hxy, | |
obtain ⟨z, hxz, hzy⟩ := exists_dist_le_le hδ hε hxy, | |
rw dist_comm at hxz, | |
exact h ⟨hxz, hzy⟩, | |
end | |
open emetric ennreal | |
@[simp] lemma inf_edist_thickening (hδ : 0 < δ) (s : set E) (x : E) : | |
inf_edist x (thickening δ s) = inf_edist x s - ennreal.of_real δ := | |
begin | |
obtain hs | hs := lt_or_le (inf_edist x s) (ennreal.of_real δ), | |
{ rw [inf_edist_zero_of_mem, tsub_eq_zero_of_le hs.le], exact hs }, | |
refine (tsub_le_iff_right.2 inf_edist_le_inf_edist_thickening_add).antisymm' _, | |
refine le_sub_of_add_le_right of_real_ne_top _, | |
refine le_inf_edist.2 (λ z hz, le_of_forall_lt' $ λ r h, _), | |
cases r, | |
{ exact add_lt_top.2 ⟨lt_top_iff_ne_top.2 $ inf_edist_ne_top ⟨z, self_subset_thickening hδ _ hz⟩, | |
of_real_lt_top⟩ }, | |
have hr : 0 < ↑r - δ, | |
{ refine sub_pos_of_lt _, | |
have := hs.trans_lt ((inf_edist_le_edist_of_mem hz).trans_lt h), | |
rw [of_real_eq_coe_nnreal hδ.le, some_eq_coe] at this, | |
exact_mod_cast this }, | |
rw [some_eq_coe, edist_lt_coe, ←dist_lt_coe, ←add_sub_cancel'_right δ (↑r)] at h, | |
obtain ⟨y, hxy, hyz⟩ := exists_dist_lt_lt hr hδ h, | |
refine (ennreal.add_lt_add_right of_real_ne_top $ inf_edist_lt_iff.2 | |
⟨_, mem_thickening_iff.2 ⟨_, hz, hyz⟩, edist_lt_of_real.2 hxy⟩).trans_le _, | |
rw [←of_real_add hr.le hδ.le, sub_add_cancel, of_real_coe_nnreal], | |
exact le_rfl, | |
end | |
@[simp] lemma thickening_thickening (hε : 0 < ε) (hδ : 0 < δ) (s : set E) : | |
thickening ε (thickening δ s) = thickening (ε + δ) s := | |
(thickening_thickening_subset _ _ _).antisymm $ λ x, begin | |
simp_rw mem_thickening_iff, | |
rintro ⟨z, hz, hxz⟩, | |
rw add_comm at hxz, | |
obtain ⟨y, hxy, hyz⟩ := exists_dist_lt_lt hε hδ hxz, | |
exact ⟨y, ⟨_, hz, hyz⟩, hxy⟩, | |
end | |
@[simp] lemma cthickening_thickening (hε : 0 ≤ ε) (hδ : 0 < δ) (s : set E) : | |
cthickening ε (thickening δ s) = cthickening (ε + δ) s := | |
(cthickening_thickening_subset hε _ _).antisymm $ λ x, begin | |
simp_rw [mem_cthickening_iff, ennreal.of_real_add hε hδ.le, inf_edist_thickening hδ], | |
exact tsub_le_iff_right.2, | |
end | |
-- Note: `interior (cthickening δ s) ≠ thickening δ s` in general | |
@[simp] lemma closure_thickening (hδ : 0 < δ) (s : set E) : | |
closure (thickening δ s) = cthickening δ s := | |
by { rw [←cthickening_zero, cthickening_thickening le_rfl hδ, zero_add], apply_instance } | |
@[simp] lemma inf_edist_cthickening (δ : ℝ) (s : set E) (x : E) : | |
inf_edist x (cthickening δ s) = inf_edist x s - ennreal.of_real δ := | |
begin | |
obtain hδ | hδ := le_or_lt δ 0, | |
{ rw [cthickening_of_nonpos hδ, inf_edist_closure, of_real_of_nonpos hδ, tsub_zero] }, | |
{ rw [←closure_thickening hδ, inf_edist_closure, inf_edist_thickening hδ]; apply_instance } | |
end | |
@[simp] lemma thickening_cthickening (hε : 0 < ε) (hδ : 0 ≤ δ) (s : set E) : | |
thickening ε (cthickening δ s) = thickening (ε + δ) s := | |
begin | |
obtain rfl | hδ := hδ.eq_or_lt, | |
{ rw [cthickening_zero, thickening_closure, add_zero] }, | |
{ rw [←closure_thickening hδ, thickening_closure, thickening_thickening hε hδ]; apply_instance } | |
end | |
@[simp] lemma cthickening_cthickening (hε : 0 ≤ ε) (hδ : 0 ≤ δ) (s : set E) : | |
cthickening ε (cthickening δ s) = cthickening (ε + δ) s := | |
(cthickening_cthickening_subset hε hδ _).antisymm $ λ x, begin | |
simp_rw [mem_cthickening_iff, ennreal.of_real_add hε hδ, inf_edist_cthickening], | |
exact tsub_le_iff_right.2, | |
end | |
@[simp] lemma thickening_ball (hε : 0 < ε) (hδ : 0 < δ) (x : E) : | |
thickening ε (ball x δ) = ball x (ε + δ) := | |
by rw [←thickening_singleton, thickening_thickening hε hδ, thickening_singleton]; apply_instance | |
@[simp] lemma thickening_closed_ball (hε : 0 < ε) (hδ : 0 ≤ δ) (x : E) : | |
thickening ε (closed_ball x δ) = ball x (ε + δ) := | |
by rw [←cthickening_singleton _ hδ, thickening_cthickening hε hδ, thickening_singleton]; | |
apply_instance | |
@[simp] lemma cthickening_ball (hε : 0 ≤ ε) (hδ : 0 < δ) (x : E) : | |
cthickening ε (ball x δ) = closed_ball x (ε + δ) := | |
by rw [←thickening_singleton, cthickening_thickening hε hδ, | |
cthickening_singleton _ (add_nonneg hε hδ.le)]; apply_instance | |
@[simp] lemma cthickening_closed_ball (hε : 0 ≤ ε) (hδ : 0 ≤ δ) (x : E) : | |
cthickening ε (closed_ball x δ) = closed_ball x (ε + δ) := | |
by rw [←cthickening_singleton _ hδ, cthickening_cthickening hε hδ, | |
cthickening_singleton _ (add_nonneg hε hδ)]; apply_instance | |
lemma ball_add_ball (hε : 0 < ε) (hδ : 0 < δ) (a b : E) : | |
ball a ε + ball b δ = ball (a + b) (ε + δ) := | |
by rw [ball_add, thickening_ball hε hδ, vadd_ball, vadd_eq_add]; apply_instance | |
lemma ball_sub_ball (hε : 0 < ε) (hδ : 0 < δ) (a b : E) : | |
ball a ε - ball b δ = ball (a - b) (ε + δ) := | |
by simp_rw [sub_eq_add_neg, neg_ball, ball_add_ball hε hδ] | |
lemma ball_add_closed_ball (hε : 0 < ε) (hδ : 0 ≤ δ) (a b : E) : | |
ball a ε + closed_ball b δ = ball (a + b) (ε + δ) := | |
by rw [ball_add, thickening_closed_ball hε hδ, vadd_ball, vadd_eq_add]; apply_instance | |
lemma ball_sub_closed_ball (hε : 0 < ε) (hδ : 0 ≤ δ) (a b : E) : | |
ball a ε - closed_ball b δ = ball (a - b) (ε + δ) := | |
by simp_rw [sub_eq_add_neg, neg_closed_ball, ball_add_closed_ball hε hδ] | |
lemma closed_ball_add_ball (hε : 0 ≤ ε) (hδ : 0 < δ) (a b : E) : | |
closed_ball a ε + ball b δ = ball (a + b) (ε + δ) := | |
by rw [add_comm, ball_add_closed_ball hδ hε, add_comm, add_comm δ]; apply_instance | |
lemma closed_ball_sub_ball (hε : 0 ≤ ε) (hδ : 0 < δ) (a b : E) : | |
closed_ball a ε - ball b δ = ball (a - b) (ε + δ) := | |
by simp_rw [sub_eq_add_neg, neg_ball, closed_ball_add_ball hε hδ] | |
lemma closed_ball_add_closed_ball [proper_space E] (hε : 0 ≤ ε) (hδ : 0 ≤ δ) (a b : E) : | |
closed_ball a ε + closed_ball b δ = closed_ball (a + b) (ε + δ) := | |
by rw [(is_compact_closed_ball _ _).add_closed_ball hδ, cthickening_closed_ball hδ hε, | |
vadd_closed_ball, vadd_eq_add, add_comm, add_comm δ]; apply_instance | |
lemma closed_ball_sub_closed_ball [proper_space E] (hε : 0 ≤ ε) (hδ : 0 ≤ δ) (a b : E) : | |
closed_ball a ε - closed_ball b δ = closed_ball (a - b) (ε + δ) := | |
by simp_rw [sub_eq_add_neg, neg_closed_ball, closed_ball_add_closed_ball hε hδ] | |
end seminormed_add_comm_group | |
section normed_add_comm_group | |
variables [normed_add_comm_group E] [normed_space 𝕜 E] | |
theorem smul_closed_ball (c : 𝕜) (x : E) {r : ℝ} (hr : 0 ≤ r) : | |
c • closed_ball x r = closed_ball (c • x) (∥c∥ * r) := | |
begin | |
rcases eq_or_ne c 0 with rfl|hc, | |
{ simp [hr, zero_smul_set, set.singleton_zero, ← nonempty_closed_ball] }, | |
{ exact smul_closed_ball' hc x r } | |
end | |
lemma smul_closed_unit_ball (c : 𝕜) : c • closed_ball (0 : E) (1 : ℝ) = closed_ball (0 : E) (∥c∥) := | |
by rw [smul_closed_ball _ _ zero_le_one, smul_zero, mul_one] | |
variables [normed_space ℝ E] | |
/-- In a real normed space, the image of the unit closed ball under multiplication by a nonnegative | |
number `r` is the closed ball of radius `r` with center at the origin. -/ | |
lemma smul_closed_unit_ball_of_nonneg {r : ℝ} (hr : 0 ≤ r) : | |
r • closed_ball 0 1 = closed_ball (0 : E) r := | |
by rw [smul_closed_unit_ball, real.norm_of_nonneg hr] | |
/-- In a nontrivial real normed space, a sphere is nonempty if and only if its radius is | |
nonnegative. -/ | |
@[simp] lemma normed_space.sphere_nonempty [nontrivial E] {x : E} {r : ℝ} : | |
(sphere x r).nonempty ↔ 0 ≤ r := | |
begin | |
obtain ⟨y, hy⟩ := exists_ne x, | |
refine ⟨λ h, nonempty_closed_ball.1 (h.mono sphere_subset_closed_ball), λ hr, | |
⟨r • ∥y - x∥⁻¹ • (y - x) + x, _⟩⟩, | |
have : ∥y - x∥ ≠ 0, by simpa [sub_eq_zero], | |
simp [norm_smul, this, real.norm_of_nonneg hr], | |
end | |
lemma smul_sphere [nontrivial E] (c : 𝕜) (x : E) {r : ℝ} (hr : 0 ≤ r) : | |
c • sphere x r = sphere (c • x) (∥c∥ * r) := | |
begin | |
rcases eq_or_ne c 0 with rfl|hc, | |
{ simp [zero_smul_set, set.singleton_zero, hr] }, | |
{ exact smul_sphere' hc x r } | |
end | |
/-- Any ball `metric.ball x r`, `0 < r` is the image of the unit ball under `λ y, x + r • y`. -/ | |
lemma affinity_unit_ball {r : ℝ} (hr : 0 < r) (x : E) : x +ᵥ r • ball 0 1 = ball x r := | |
by rw [smul_unit_ball_of_pos hr, vadd_ball_zero] | |
/-- Any closed ball `metric.closed_ball x r`, `0 ≤ r` is the image of the unit closed ball under | |
`λ y, x + r • y`. -/ | |
lemma affinity_unit_closed_ball {r : ℝ} (hr : 0 ≤ r) (x : E) : | |
x +ᵥ r • closed_ball 0 1 = closed_ball x r := | |
by rw [smul_closed_unit_ball, real.norm_of_nonneg hr, vadd_closed_ball_zero] | |
end normed_add_comm_group | |