Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Jireh Loreaux. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Jireh Loreaux | |
-/ | |
import algebra.algebra.spectrum | |
import analysis.special_functions.pow | |
import analysis.special_functions.exponential | |
import analysis.complex.liouville | |
import analysis.analytic.radius_liminf | |
/-! | |
# The spectrum of elements in a complete normed algebra | |
This file contains the basic theory for the resolvent and spectrum of a Banach algebra. | |
## Main definitions | |
* `spectral_radius : ββ₯0β`: supremum of `β₯kβ₯β` for all `k β spectrum π a` | |
## Main statements | |
* `spectrum.is_open_resolvent_set`: the resolvent set is open. | |
* `spectrum.is_closed`: the spectrum is closed. | |
* `spectrum.subset_closed_ball_norm`: the spectrum is a subset of closed disk of radius | |
equal to the norm. | |
* `spectrum.is_compact`: the spectrum is compact. | |
* `spectrum.spectral_radius_le_nnnorm`: the spectral radius is bounded above by the norm. | |
* `spectrum.has_deriv_at_resolvent`: the resolvent function is differentiable on the resolvent set. | |
* `spectrum.pow_nnnorm_pow_one_div_tendsto_nhds_spectral_radius`: Gelfand's formula for the | |
spectral radius in Banach algebras over `β`. | |
* `spectrum.nonempty`: the spectrum of any element in a complex Banach algebra is nonempty. | |
* `normed_division_ring.alg_equiv_complex_of_complete`: **Gelfand-Mazur theorem** For a complex | |
Banach division algebra, the natural `algebra_map β A` is an algebra isomorphism whose inverse | |
is given by selecting the (unique) element of `spectrum β a` | |
## TODO | |
* compute all derivatives of `resolvent a`. | |
-/ | |
open_locale ennreal | |
/-- The *spectral radius* is the supremum of the `nnnorm` (`β₯β¬β₯β`) of elements in the spectrum, | |
coerced into an element of `ββ₯0β`. Note that it is possible for `spectrum π a = β `. In this | |
case, `spectral_radius a = 0`. It is also possible that `spectrum π a` be unbounded (though | |
not for Banach algebras, see `spectrum.is_bounded`, below). In this case, | |
`spectral_radius a = β`. -/ | |
noncomputable def spectral_radius (π : Type*) {A : Type*} [normed_field π] [ring A] | |
[algebra π A] (a : A) : ββ₯0β := | |
β¨ k β spectrum π a, β₯kβ₯β | |
variables {π : Type*} {A : Type*} | |
namespace spectrum | |
section spectrum_compact | |
variables [normed_field π] [normed_ring A] [normed_algebra π A] | |
local notation `Ο` := spectrum π | |
local notation `Ο` := resolvent_set π | |
local notation `ββ` := algebra_map π A | |
lemma mem_resolvent_set_of_spectral_radius_lt {a : A} {k : π} (h : spectral_radius π a < β₯kβ₯β) : | |
k β Ο a := | |
not_not.mp $ Ξ» hn, h.not_le $ le_suprβ k hn | |
variable [complete_space A] | |
lemma is_open_resolvent_set (a : A) : is_open (Ο a) := | |
units.is_open.preimage ((algebra_map_clm π A).continuous.sub continuous_const) | |
lemma is_closed (a : A) : is_closed (Ο a) := | |
(is_open_resolvent_set a).is_closed_compl | |
lemma mem_resolvent_of_norm_lt [norm_one_class A] {a : A} {k : π} (h : β₯aβ₯ < β₯kβ₯) : | |
k β Ο a := | |
begin | |
rw [resolvent_set, set.mem_set_of_eq, algebra.algebra_map_eq_smul_one], | |
have hk : k β 0 := ne_zero_of_norm_ne_zero (by linarith [norm_nonneg a]), | |
let ku := units.map (ββ).to_monoid_hom (units.mk0 k hk), | |
have hku : β₯-aβ₯ < β₯(βkuβ»ΒΉ:A)β₯β»ΒΉ := by simpa [ku, algebra_map_isometry] using h, | |
simpa [ku, sub_eq_add_neg, algebra.algebra_map_eq_smul_one] using (ku.add (-a) hku).is_unit, | |
end | |
lemma norm_le_norm_of_mem [norm_one_class A] {a : A} {k : π} (hk : k β Ο a) : | |
β₯kβ₯ β€ β₯aβ₯ := | |
le_of_not_lt $ mt mem_resolvent_of_norm_lt hk | |
lemma subset_closed_ball_norm [norm_one_class A] (a : A) : | |
Ο a β metric.closed_ball (0 : π) (β₯aβ₯) := | |
Ξ» k hk, by simp [norm_le_norm_of_mem hk] | |
lemma is_bounded [norm_one_class A] (a : A) : metric.bounded (Ο a) := | |
(metric.bounded_iff_subset_ball 0).mpr β¨β₯aβ₯, subset_closed_ball_norm aβ© | |
theorem is_compact [norm_one_class A] [proper_space π] (a : A) : is_compact (Ο a) := | |
metric.is_compact_of_is_closed_bounded (is_closed a) (is_bounded a) | |
theorem spectral_radius_le_nnnorm [norm_one_class A] (a : A) : | |
spectral_radius π a β€ β₯aβ₯β := | |
by { refine suprβ_le (Ξ» k hk, _), exact_mod_cast norm_le_norm_of_mem hk } | |
open ennreal polynomial | |
variable (π) | |
theorem spectral_radius_le_pow_nnnorm_pow_one_div [norm_one_class A] (a : A) (n : β) : | |
spectral_radius π a β€ β₯a ^ (n + 1)β₯β ^ (1 / (n + 1) : β) := | |
begin | |
refine suprβ_le (Ξ» k hk, _), | |
/- apply easy direction of the spectral mapping theorem for polynomials -/ | |
have pow_mem : k ^ (n + 1) β Ο (a ^ (n + 1)), | |
by simpa only [one_mul, algebra.algebra_map_eq_smul_one, one_smul, aeval_monomial, one_mul, | |
eval_monomial] using subset_polynomial_aeval a (monomial (n + 1) (1 : π)) β¨k, hk, rflβ©, | |
/- power of the norm is bounded by norm of the power -/ | |
have nnnorm_pow_le : (β(β₯kβ₯β ^ (n + 1)) : ββ₯0β) β€ ββ₯a ^ (n + 1)β₯β, | |
by simpa only [norm_to_nnreal, nnnorm_pow k (n+1)] | |
using coe_mono (real.to_nnreal_mono (norm_le_norm_of_mem pow_mem)), | |
/- take (n + 1)α΅Κ° roots and clean up the left-hand side -/ | |
have hn : 0 < ((n + 1 : β) : β), by exact_mod_cast nat.succ_pos', | |
convert monotone_rpow_of_nonneg (one_div_pos.mpr hn).le nnnorm_pow_le, | |
erw [coe_pow, βrpow_nat_cast, βrpow_mul, mul_one_div_cancel hn.ne', rpow_one], rw nat.cast_succ, | |
end | |
end spectrum_compact | |
section resolvent | |
open filter asymptotics | |
variables [nontrivially_normed_field π] [normed_ring A] [normed_algebra π A] [complete_space A] | |
local notation `Ο` := resolvent_set π | |
local notation `ββ` := algebra_map π A | |
theorem has_deriv_at_resolvent {a : A} {k : π} (hk : k β Ο a) : | |
has_deriv_at (resolvent a) (-(resolvent a k) ^ 2) k := | |
begin | |
have Hβ : has_fderiv_at ring.inverse _ (ββk - a) := has_fderiv_at_ring_inverse hk.unit, | |
have Hβ : has_deriv_at (Ξ» k, ββk - a) 1 k, | |
{ simpa using (algebra.linear_map π A).has_deriv_at.sub_const a }, | |
simpa [resolvent, sq, hk.unit_spec, β ring.inverse_unit hk.unit] using Hβ.comp_has_deriv_at k Hβ, | |
end | |
/- TODO: Once there is sufficient API for bornology, we should get a nice filter / asymptotics | |
version of this, for example: `tendsto (resolvent a) (cobounded π) (π 0)` or more specifically | |
`(resolvent a) =O[cobounded π] (Ξ» z, zβ»ΒΉ)`. -/ | |
lemma norm_resolvent_le_forall (a : A) : | |
β Ξ΅ > 0, β R > 0, β z : π, R β€ β₯zβ₯ β β₯resolvent a zβ₯ β€ Ξ΅ := | |
begin | |
obtain β¨c, c_pos, hcβ© := (@normed_ring.inverse_one_sub_norm A _ _).exists_pos, | |
rw [is_O_with_iff, eventually_iff, metric.mem_nhds_iff] at hc, | |
rcases hc with β¨Ξ΄, Ξ΄_pos, hΞ΄β©, | |
simp only [cstar_ring.norm_one, mul_one] at hΞ΄, | |
intros Ξ΅ hΞ΅, | |
have haβ : 0 < β₯aβ₯ + 1 := lt_of_le_of_lt (norm_nonneg a) (lt_add_one _), | |
have min_pos : 0 < min (Ξ΄ * (β₯aβ₯ + 1)β»ΒΉ) (Ξ΅ * cβ»ΒΉ), | |
from lt_min (mul_pos Ξ΄_pos (inv_pos.mpr haβ)) (mul_pos hΞ΅ (inv_pos.mpr c_pos)), | |
refine β¨(min (Ξ΄ * (β₯aβ₯ + 1)β»ΒΉ) (Ξ΅ * cβ»ΒΉ))β»ΒΉ, inv_pos.mpr min_pos, (Ξ» z hz, _)β©, | |
have hnz : z β 0 := norm_pos_iff.mp (lt_of_lt_of_le (inv_pos.mpr min_pos) hz), | |
replace hz := inv_le_of_inv_le min_pos hz, | |
rcases (β¨units.mk0 z hnz, units.coe_mk0 hnzβ© : is_unit z) with β¨z, rflβ©, | |
have lt_Ξ΄ : β₯zβ»ΒΉ β’ aβ₯ < Ξ΄, | |
{ rw [units.smul_def, norm_smul, units.coe_inv, norm_inv], | |
calc β₯(z : π)β₯β»ΒΉ * β₯aβ₯ β€ Ξ΄ * (β₯aβ₯ + 1)β»ΒΉ * β₯aβ₯ | |
: mul_le_mul_of_nonneg_right (hz.trans (min_le_left _ _)) (norm_nonneg _) | |
... < Ξ΄ | |
: by { conv { rw mul_assoc, to_rhs, rw (mul_one Ξ΄).symm }, | |
exact mul_lt_mul_of_pos_left | |
((inv_mul_lt_iff haβ).mpr ((mul_one (β₯aβ₯ + 1)).symm βΈ (lt_add_one _))) Ξ΄_pos } }, | |
rw [βinv_smul_smul z (resolvent a (z : π)), units_smul_resolvent_self, resolvent, | |
algebra.algebra_map_eq_smul_one, one_smul, units.smul_def, norm_smul, units.coe_inv, norm_inv], | |
calc _ β€ Ξ΅ * cβ»ΒΉ * c : mul_le_mul (hz.trans (min_le_right _ _)) (hΞ΄ (mem_ball_zero_iff.mpr lt_Ξ΄)) | |
(norm_nonneg _) (mul_pos hΞ΅ (inv_pos.mpr c_pos)).le | |
... = _ : inv_mul_cancel_rightβ c_pos.ne.symm Ξ΅, | |
end | |
end resolvent | |
section one_sub_smul | |
open continuous_multilinear_map ennreal formal_multilinear_series | |
open_locale nnreal ennreal | |
variables | |
[nontrivially_normed_field π] [normed_ring A] [normed_algebra π A] | |
variable (π) | |
/-- In a Banach algebra `A` over a nontrivially normed field `π`, for any `a : A` the | |
power series with coefficients `a ^ n` represents the function `(1 - z β’ a)β»ΒΉ` in a disk of | |
radius `β₯aβ₯ββ»ΒΉ`. -/ | |
lemma has_fpower_series_on_ball_inverse_one_sub_smul [complete_space A] (a : A) : | |
has_fpower_series_on_ball (Ξ» z : π, ring.inverse (1 - z β’ a)) | |
(Ξ» n, continuous_multilinear_map.mk_pi_field π (fin n) (a ^ n)) 0 (β₯aβ₯β)β»ΒΉ := | |
{ r_le := | |
begin | |
refine le_of_forall_nnreal_lt (Ξ» r hr, le_radius_of_bound_nnreal _ (max 1 β₯(1 : A)β₯β) (Ξ» n, _)), | |
rw [βnorm_to_nnreal, norm_mk_pi_field, norm_to_nnreal], | |
cases n, | |
{ simp only [le_refl, mul_one, or_true, le_max_iff, pow_zero] }, | |
{ refine le_trans (le_trans (mul_le_mul_right' (nnnorm_pow_le' a n.succ_pos) (r ^ n.succ)) _) | |
(le_max_left _ _), | |
{ by_cases β₯aβ₯β = 0, | |
{ simp only [h, zero_mul, zero_le', pow_succ], }, | |
{ rw [βcoe_inv h, coe_lt_coe, nnreal.lt_inv_iff_mul_lt h] at hr, | |
simpa only [βmul_pow, mul_comm] using pow_le_one' hr.le n.succ } } } | |
end, | |
r_pos := ennreal.inv_pos.mpr coe_ne_top, | |
has_sum := Ξ» y hy, | |
begin | |
have norm_lt : β₯y β’ aβ₯ < 1, | |
{ by_cases h : β₯aβ₯β = 0, | |
{ simp only [nnnorm_eq_zero.mp h, norm_zero, zero_lt_one, smul_zero] }, | |
{ have nnnorm_lt : β₯yβ₯β < β₯aβ₯ββ»ΒΉ, | |
by simpa only [βcoe_inv h, mem_ball_zero_iff, metric.emetric_ball_nnreal] using hy, | |
rwa [βcoe_nnnorm, βreal.lt_to_nnreal_iff_coe_lt, real.to_nnreal_one, nnnorm_smul, | |
βnnreal.lt_inv_iff_mul_lt h] } }, | |
simpa [βsmul_pow, (normed_ring.summable_geometric_of_norm_lt_1 _ norm_lt).has_sum_iff] | |
using (normed_ring.inverse_one_sub _ norm_lt).symm, | |
end } | |
variable {π} | |
lemma is_unit_one_sub_smul_of_lt_inv_radius {a : A} {z : π} (h : ββ₯zβ₯β < (spectral_radius π a)β»ΒΉ) : | |
is_unit (1 - z β’ a) := | |
begin | |
by_cases hz : z = 0, | |
{ simp only [hz, is_unit_one, sub_zero, zero_smul] }, | |
{ let u := units.mk0 z hz, | |
suffices hu : is_unit (uβ»ΒΉ β’ 1 - a), | |
{ rwa [is_unit.smul_sub_iff_sub_inv_smul, inv_inv u] at hu }, | |
{ rw [units.smul_def, βalgebra.algebra_map_eq_smul_one, βmem_resolvent_set_iff], | |
refine mem_resolvent_set_of_spectral_radius_lt _, | |
rwa [units.coe_inv, nnnorm_inv, coe_inv (nnnorm_ne_zero_iff.mpr | |
(units.coe_mk0 hz βΈ hz : (u : π) β 0)), lt_inv_iff_lt_inv] } } | |
end | |
/-- In a Banach algebra `A` over `π`, for `a : A` the function `Ξ» z, (1 - z β’ a)β»ΒΉ` is | |
differentiable on any closed ball centered at zero of radius `r < (spectral_radius π a)β»ΒΉ`. -/ | |
theorem differentiable_on_inverse_one_sub_smul [complete_space A] {a : A} {r : ββ₯0} | |
(hr : (r : ββ₯0β) < (spectral_radius π a)β»ΒΉ) : | |
differentiable_on π (Ξ» z : π, ring.inverse (1 - z β’ a)) (metric.closed_ball 0 r) := | |
begin | |
intros z z_mem, | |
apply differentiable_at.differentiable_within_at, | |
have hu : is_unit (1 - z β’ a), | |
{ refine is_unit_one_sub_smul_of_lt_inv_radius (lt_of_le_of_lt (coe_mono _) hr), | |
simpa only [norm_to_nnreal, real.to_nnreal_coe] | |
using real.to_nnreal_mono (mem_closed_ball_zero_iff.mp z_mem) }, | |
have Hβ : differentiable π (Ξ» w : π, 1 - w β’ a) := (differentiable_id.smul_const a).const_sub 1, | |
exact differentiable_at.comp z (differentiable_at_inverse hu.unit) (Hβ.differentiable_at), | |
end | |
end one_sub_smul | |
section gelfand_formula | |
open filter ennreal continuous_multilinear_map | |
open_locale topological_space | |
variables | |
[normed_ring A] [normed_algebra β A] [complete_space A] | |
/-- The `limsup` relationship for the spectral radius used to prove `spectrum.gelfand_formula`. -/ | |
lemma limsup_pow_nnnorm_pow_one_div_le_spectral_radius (a : A) : | |
limsup at_top (Ξ» n : β, ββ₯a ^ nβ₯β ^ (1 / n : β)) β€ spectral_radius β a := | |
begin | |
refine ennreal.inv_le_inv.mp (le_of_forall_pos_nnreal_lt (Ξ» r r_pos r_lt, _)), | |
simp_rw [inv_limsup, βone_div], | |
let p : formal_multilinear_series β β A := | |
Ξ» n, continuous_multilinear_map.mk_pi_field β (fin n) (a ^ n), | |
suffices h : (r : ββ₯0β) β€ p.radius, | |
{ convert h, | |
simp only [p.radius_eq_liminf, βnorm_to_nnreal, norm_mk_pi_field], | |
refine congr_arg _ (funext (Ξ» n, congr_arg _ _)), | |
rw [norm_to_nnreal, ennreal.coe_rpow_def (β₯a ^ nβ₯β) (1 / n : β), if_neg], | |
exact Ξ» ha, by linarith [ha.2, (one_div_nonneg.mpr n.cast_nonneg : 0 β€ (1 / n : β))], }, | |
{ have Hβ := (differentiable_on_inverse_one_sub_smul r_lt).has_fpower_series_on_ball r_pos, | |
exact ((has_fpower_series_on_ball_inverse_one_sub_smul β a).exchange_radius Hβ).r_le, } | |
end | |
/-- **Gelfand's formula**: Given an element `a : A` of a complex Banach algebra, the | |
`spectral_radius` of `a` is the limit of the sequence `β₯a ^ nβ₯β ^ (1 / n)` -/ | |
theorem pow_nnnorm_pow_one_div_tendsto_nhds_spectral_radius [norm_one_class A] (a : A) : | |
tendsto (Ξ» n : β, ((β₯a ^ nβ₯β ^ (1 / n : β)) : ββ₯0β)) at_top (π (spectral_radius β a)) := | |
begin | |
refine tendsto_of_le_liminf_of_limsup_le _ _ (by apply_auto_param) (by apply_auto_param), | |
{ rw [βliminf_nat_add _ 1, liminf_eq_supr_infi_of_nat], | |
refine le_trans _ (le_supr _ 0), | |
simp only [nat.cast_succ], | |
exact le_infiβ (Ξ» i hi, spectral_radius_le_pow_nnnorm_pow_one_div β a i) }, | |
{ exact limsup_pow_nnnorm_pow_one_div_le_spectral_radius a }, | |
end | |
/- This is the same as `pow_nnnorm_pow_one_div_tendsto_nhds_spectral_radius` but for `norm` | |
instead of `nnnorm`. -/ | |
/-- **Gelfand's formula**: Given an element `a : A` of a complex Banach algebra, the | |
`spectral_radius` of `a` is the limit of the sequence `β₯a ^ nβ₯β ^ (1 / n)` -/ | |
theorem pow_norm_pow_one_div_tendsto_nhds_spectral_radius [norm_one_class A] (a : A) : | |
tendsto (Ξ» n : β, ennreal.of_real (β₯a ^ nβ₯ ^ (1 / n : β))) at_top (π (spectral_radius β a)) := | |
begin | |
convert pow_nnnorm_pow_one_div_tendsto_nhds_spectral_radius a, | |
ext1, | |
rw [βof_real_rpow_of_nonneg (norm_nonneg _) _, βcoe_nnnorm, coe_nnreal_eq], | |
exact one_div_nonneg.mpr (by exact_mod_cast zero_le _), | |
end | |
end gelfand_formula | |
/-- In a (nontrivial) complex Banach algebra, every element has nonempty spectrum. -/ | |
theorem nonempty {A : Type*} [normed_ring A] [normed_algebra β A] [complete_space A] | |
[nontrivial A] | |
(a : A) : (spectrum β a).nonempty := | |
begin | |
/- Suppose `Ο a = β `, then resolvent set is `β`, any `(z β’ 1 - a)` is a unit, and `resolvent` | |
is differentiable on `β`. -/ | |
rw βset.ne_empty_iff_nonempty, | |
by_contra h, | |
have Hβ : resolvent_set β a = set.univ, by rwa [spectrum, set.compl_empty_iff] at h, | |
have Hβ : differentiable β (Ξ» z : β, resolvent a z), from Ξ» z, | |
(has_deriv_at_resolvent (Hβ.symm βΈ set.mem_univ z : z β resolvent_set β a)).differentiable_at, | |
/- The norm of the resolvent is small for all sufficently large `z`, and by compactness and | |
continuity it is bounded on the complement of a large ball, thus uniformly bounded on `β`. | |
By Liouville's theorem `Ξ» z, resolvent a z` is constant -/ | |
have Hβ := norm_resolvent_le_forall a, | |
have Hβ : β z : β, resolvent a z = resolvent a (0 : β), | |
{ refine Ξ» z, Hβ.apply_eq_apply_of_bounded (bounded_iff_exists_norm_le.mpr _) z 0, | |
rcases Hβ 1 zero_lt_one with β¨R, R_pos, hRβ©, | |
rcases (proper_space.is_compact_closed_ball (0 : β) R).exists_bound_of_continuous_on | |
Hβ.continuous.continuous_on with β¨C, hCβ©, | |
use max C 1, | |
rintros _ β¨w, rflβ©, | |
refine or.elim (em (β₯wβ₯ β€ R)) (Ξ» hw, _) (Ξ» hw, _), | |
{ exact (hC w (mem_closed_ball_zero_iff.mpr hw)).trans (le_max_left _ _) }, | |
{ exact (hR w (not_le.mp hw).le).trans (le_max_right _ _), }, }, | |
/- `resolvent a 0 = 0`, which is a contradition because it isn't a unit. -/ | |
have Hβ : resolvent a (0 : β) = 0, | |
{ refine norm_eq_zero.mp (le_antisymm (le_of_forall_pos_le_add (Ξ» Ξ΅ hΞ΅, _)) (norm_nonneg _)), | |
rcases Hβ Ξ΅ hΞ΅ with β¨R, R_pos, hRβ©, | |
simpa only [Hβ R] using (zero_add Ξ΅).symm.subst | |
(hR R (by exact_mod_cast (real.norm_of_nonneg R_pos.lt.le).symm.le)), }, | |
/- `not_is_unit_zero` is where we need `nontrivial A`, it is unavoidable. -/ | |
exact not_is_unit_zero (Hβ .subst (is_unit_resolvent.mp | |
(mem_resolvent_set_iff.mp (Hβ.symm βΈ set.mem_univ 0)))), | |
end | |
section gelfand_mazur_isomorphism | |
variables [normed_division_ring A] [normed_algebra β A] | |
local notation `Ο` := spectrum β | |
lemma algebra_map_eq_of_mem {a : A} {z : β} (h : z β Ο a) : algebra_map β A z = a := | |
by rwa [mem_iff, is_unit_iff_ne_zero, not_not, sub_eq_zero] at h | |
/-- **Gelfand-Mazur theorem**: For a complex Banach division algebra, the natural `algebra_map β A` | |
is an algebra isomorphism whose inverse is given by selecting the (unique) element of | |
`spectrum β a`. In addition, `algebra_map_isometry` guarantees this map is an isometry. -/ | |
@[simps] | |
noncomputable def _root_.normed_division_ring.alg_equiv_complex_of_complete | |
[complete_space A] : β ββ[β] A := | |
{ to_fun := algebra_map β A, | |
inv_fun := Ξ» a, (spectrum.nonempty a).some, | |
left_inv := Ξ» z, by simpa only [scalar_eq] using (spectrum.nonempty $ algebra_map β A z).some_mem, | |
right_inv := Ξ» a, algebra_map_eq_of_mem (spectrum.nonempty a).some_mem, | |
..algebra.of_id β A } | |
end gelfand_mazur_isomorphism | |
section exp_mapping | |
local notation `ββ` := algebra_map π A | |
/-- For `π = β` or `π = β`, `exp π` maps the spectrum of `a` into the spectrum of `exp π a`. -/ | |
theorem exp_mem_exp [is_R_or_C π] [normed_ring A] [normed_algebra π A] [complete_space A] | |
(a : A) {z : π} (hz : z β spectrum π a) : exp π z β spectrum π (exp π a) := | |
begin | |
have hexpmul : exp π a = exp π (a - ββ z) * ββ (exp π z), | |
{ rw [algebra_map_exp_comm z, βexp_add_of_commute (algebra.commutes z (a - ββz)).symm, | |
sub_add_cancel] }, | |
let b := β' n : β, ((n + 1).factorialβ»ΒΉ : π) β’ (a - ββz) ^ n, | |
have hb : summable (Ξ» n : β, ((n + 1).factorialβ»ΒΉ : π) β’ (a - ββz) ^ n), | |
{ refine summable_of_norm_bounded_eventually _ (real.summable_pow_div_factorial β₯a - ββzβ₯) _, | |
filter_upwards [filter.eventually_cofinite_ne 0] with n hn, | |
rw [norm_smul, mul_comm, norm_inv, is_R_or_C.norm_eq_abs, is_R_or_C.abs_cast_nat, | |
βdiv_eq_mul_inv], | |
exact div_le_div (pow_nonneg (norm_nonneg _) n) (norm_pow_le' (a - ββz) (zero_lt_iff.mpr hn)) | |
(by exact_mod_cast nat.factorial_pos n) | |
(by exact_mod_cast nat.factorial_le (lt_add_one n).le) }, | |
have hβ : β' n : β, ((n + 1).factorialβ»ΒΉ : π) β’ (a - ββz) ^ (n + 1) = (a - ββz) * b, | |
{ simpa only [mul_smul_comm, pow_succ] using hb.tsum_mul_left (a - ββz) }, | |
have hβ : β' n : β, ((n + 1).factorialβ»ΒΉ : π) β’ (a - ββz) ^ (n + 1) = b * (a - ββz), | |
{ simpa only [pow_succ', algebra.smul_mul_assoc] using hb.tsum_mul_right (a - ββz) }, | |
have hβ : exp π (a - ββz) = 1 + (a - ββz) * b, | |
{ rw exp_eq_tsum, | |
convert tsum_eq_zero_add (exp_series_summable' (a - ββz)), | |
simp only [nat.factorial_zero, nat.cast_one, inv_one, pow_zero, one_smul], | |
exact hβ.symm }, | |
rw [spectrum.mem_iff, is_unit.sub_iff, βone_mul (ββ(exp π z)), hexpmul, β_root_.sub_mul, | |
commute.is_unit_mul_iff (algebra.commutes (exp π z) (exp π (a - ββz) - 1)).symm, | |
sub_eq_iff_eq_add'.mpr hβ, commute.is_unit_mul_iff (hβ βΈ hβ : (a - ββz) * b = b * (a - ββz))], | |
exact not_and_of_not_left _ (not_and_of_not_left _ ((not_iff_not.mpr is_unit.sub_iff).mp hz)), | |
end | |
end exp_mapping | |
end spectrum | |
namespace alg_hom | |
section normed_field | |
variables [normed_field π] [normed_ring A] [normed_algebra π A] [complete_space A] | |
local notation `ββ` := algebra_map π A | |
/-- An algebra homomorphism into the base field, as a continuous linear map (since it is | |
automatically bounded). -/ | |
@[simps] def to_continuous_linear_map [norm_one_class A] (Ο : A ββ[π] π) : A βL[π] π := | |
Ο.to_linear_map.mk_continuous_of_exists_bound $ | |
β¨1, Ξ» a, (one_mul β₯aβ₯).symm βΈ spectrum.norm_le_norm_of_mem (Ο.apply_mem_spectrum _)β© | |
lemma continuous [norm_one_class A] (Ο : A ββ[π] π) : continuous Ο := | |
Ο.to_continuous_linear_map.continuous | |
end normed_field | |
section nontrivially_normed_field | |
variables [nontrivially_normed_field π] [normed_ring A] [normed_algebra π A] [complete_space A] | |
local notation `ββ` := algebra_map π A | |
@[simp] lemma to_continuous_linear_map_norm [norm_one_class A] (Ο : A ββ[π] π) : | |
β₯Ο.to_continuous_linear_mapβ₯ = 1 := | |
continuous_linear_map.op_norm_eq_of_bounds zero_le_one | |
(Ξ» a, (one_mul β₯aβ₯).symm βΈ spectrum.norm_le_norm_of_mem (Ο.apply_mem_spectrum _)) | |
(Ξ» _ _ h, by simpa only [to_continuous_linear_map_apply, mul_one, map_one, norm_one] using h 1) | |
end nontrivially_normed_field | |
end alg_hom | |