Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Yury G. Kudryashov. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yury G. Kudryashov | |
-/ | |
import analysis.special_functions.pow | |
/-! | |
# Convergence of `p`-series | |
In this file we prove that the series `∑' k in ℕ, 1 / k ^ p` converges if and only if `p > 1`. | |
The proof is based on the | |
[Cauchy condensation test](https://en.wikipedia.org/wiki/Cauchy_condensation_test): `∑ k, f k` | |
converges if and only if so does `∑ k, 2 ^ k f (2 ^ k)`. We prove this test in | |
`nnreal.summable_condensed_iff` and `summable_condensed_iff_of_nonneg`, then use it to prove | |
`summable_one_div_rpow`. After this transformation, a `p`-series turns into a geometric series. | |
## TODO | |
It should be easy to generalize arguments to Schlömilch's generalization of the Cauchy condensation | |
test once we need it. | |
## Tags | |
p-series, Cauchy condensation test | |
-/ | |
open filter | |
open_locale big_operators ennreal nnreal topological_space | |
/-! | |
### Cauchy condensation test | |
In this section we prove the Cauchy condensation test: for `f : ℕ → ℝ≥0` or `f : ℕ → ℝ`, | |
`∑ k, f k` converges if and only if so does `∑ k, 2 ^ k f (2 ^ k)`. Instead of giving a monolithic | |
proof, we split it into a series of lemmas with explicit estimates of partial sums of each series in | |
terms of the partial sums of the other series. | |
-/ | |
namespace finset | |
variables {M : Type*} [ordered_add_comm_monoid M] {f : ℕ → M} | |
lemma le_sum_condensed' (hf : ∀ ⦃m n⦄, 0 < m → m ≤ n → f n ≤ f m) (n : ℕ) : | |
(∑ k in Ico 1 (2 ^ n), f k) ≤ ∑ k in range n, (2 ^ k) • f (2 ^ k) := | |
begin | |
induction n with n ihn, { simp }, | |
suffices : (∑ k in Ico (2 ^ n) (2 ^ (n + 1)), f k) ≤ (2 ^ n) • f (2 ^ n), | |
{ rw [sum_range_succ, ← sum_Ico_consecutive], | |
exact add_le_add ihn this, | |
exacts [n.one_le_two_pow, nat.pow_le_pow_of_le_right zero_lt_two n.le_succ] }, | |
have : ∀ k ∈ Ico (2 ^ n) (2 ^ (n + 1)), f k ≤ f (2 ^ n) := | |
λ k hk, hf (pow_pos zero_lt_two _) (mem_Ico.mp hk).1, | |
convert sum_le_sum this, | |
simp [pow_succ, two_mul] | |
end | |
lemma le_sum_condensed (hf : ∀ ⦃m n⦄, 0 < m → m ≤ n → f n ≤ f m) (n : ℕ) : | |
(∑ k in range (2 ^ n), f k) ≤ f 0 + ∑ k in range n, (2 ^ k) • f (2 ^ k) := | |
begin | |
convert add_le_add_left (le_sum_condensed' hf n) (f 0), | |
rw [← sum_range_add_sum_Ico _ n.one_le_two_pow, sum_range_succ, sum_range_zero, zero_add] | |
end | |
lemma sum_condensed_le' (hf : ∀ ⦃m n⦄, 1 < m → m ≤ n → f n ≤ f m) (n : ℕ) : | |
(∑ k in range n, (2 ^ k) • f (2 ^ (k + 1))) ≤ ∑ k in Ico 2 (2 ^ n + 1), f k := | |
begin | |
induction n with n ihn, { simp }, | |
suffices : (2 ^ n) • f (2 ^ (n + 1)) ≤ ∑ k in Ico (2 ^ n + 1) (2 ^ (n + 1) + 1), f k, | |
{ rw [sum_range_succ, ← sum_Ico_consecutive], | |
exact add_le_add ihn this, | |
exacts [add_le_add_right n.one_le_two_pow _, | |
add_le_add_right (nat.pow_le_pow_of_le_right zero_lt_two n.le_succ) _] }, | |
have : ∀ k ∈ Ico (2 ^ n + 1) (2 ^ (n + 1) + 1), f (2 ^ (n + 1)) ≤ f k := | |
λ k hk, hf (n.one_le_two_pow.trans_lt $ (nat.lt_succ_of_le le_rfl).trans_le (mem_Ico.mp hk).1) | |
(nat.le_of_lt_succ $ (mem_Ico.mp hk).2), | |
convert sum_le_sum this, | |
simp [pow_succ, two_mul] | |
end | |
lemma sum_condensed_le (hf : ∀ ⦃m n⦄, 1 < m → m ≤ n → f n ≤ f m) (n : ℕ) : | |
(∑ k in range (n + 1), (2 ^ k) • f (2 ^ k)) ≤ f 1 + 2 • ∑ k in Ico 2 (2 ^ n + 1), f k := | |
begin | |
convert add_le_add_left (nsmul_le_nsmul_of_le_right (sum_condensed_le' hf n) 2) (f 1), | |
simp [sum_range_succ', add_comm, pow_succ, mul_nsmul, sum_nsmul] | |
end | |
end finset | |
namespace ennreal | |
variable {f : ℕ → ℝ≥0∞} | |
lemma le_tsum_condensed (hf : ∀ ⦃m n⦄, 0 < m → m ≤ n → f n ≤ f m) : | |
∑' k, f k ≤ f 0 + ∑' k : ℕ, (2 ^ k) * f (2 ^ k) := | |
begin | |
rw [ennreal.tsum_eq_supr_nat' (nat.tendsto_pow_at_top_at_top_of_one_lt _root_.one_lt_two)], | |
refine supr_le (λ n, (finset.le_sum_condensed hf n).trans (add_le_add_left _ _)), | |
simp only [nsmul_eq_mul, nat.cast_pow, nat.cast_two], | |
apply ennreal.sum_le_tsum | |
end | |
lemma tsum_condensed_le (hf : ∀ ⦃m n⦄, 1 < m → m ≤ n → f n ≤ f m) : | |
∑' k : ℕ, (2 ^ k * f (2 ^ k)) ≤ f 1 + 2 * ∑' k, f k := | |
begin | |
rw [ennreal.tsum_eq_supr_nat' (tendsto_at_top_mono nat.le_succ tendsto_id), two_mul, ← two_nsmul], | |
refine supr_le (λ n, le_trans _ (add_le_add_left (nsmul_le_nsmul_of_le_right | |
(ennreal.sum_le_tsum $ finset.Ico 2 (2^n + 1)) _) _)), | |
simpa using finset.sum_condensed_le hf n | |
end | |
end ennreal | |
namespace nnreal | |
/-- Cauchy condensation test for a series of `nnreal` version. -/ | |
lemma summable_condensed_iff {f : ℕ → ℝ≥0} (hf : ∀ ⦃m n⦄, 0 < m → m ≤ n → f n ≤ f m) : | |
summable (λ k : ℕ, (2 ^ k) * f (2 ^ k)) ↔ summable f := | |
begin | |
simp only [← ennreal.tsum_coe_ne_top_iff_summable, ne.def, not_iff_not, ennreal.coe_mul, | |
ennreal.coe_pow, ennreal.coe_two], | |
split; intro h, | |
{ replace hf : ∀ m n, 1 < m → m ≤ n → (f n : ℝ≥0∞) ≤ f m := | |
λ m n hm hmn, ennreal.coe_le_coe.2 (hf (zero_lt_one.trans hm) hmn), | |
simpa [h, ennreal.add_eq_top] using (ennreal.tsum_condensed_le hf) }, | |
{ replace hf : ∀ m n, 0 < m → m ≤ n → (f n : ℝ≥0∞) ≤ f m := | |
λ m n hm hmn, ennreal.coe_le_coe.2 (hf hm hmn), | |
simpa [h, ennreal.add_eq_top] using (ennreal.le_tsum_condensed hf) } | |
end | |
end nnreal | |
/-- Cauchy condensation test for series of nonnegative real numbers. -/ | |
lemma summable_condensed_iff_of_nonneg {f : ℕ → ℝ} (h_nonneg : ∀ n, 0 ≤ f n) | |
(h_mono : ∀ ⦃m n⦄, 0 < m → m ≤ n → f n ≤ f m) : | |
summable (λ k : ℕ, (2 ^ k) * f (2 ^ k)) ↔ summable f := | |
begin | |
lift f to ℕ → ℝ≥0 using h_nonneg, | |
simp only [nnreal.coe_le_coe] at *, | |
exact_mod_cast nnreal.summable_condensed_iff h_mono | |
end | |
open real | |
/-! | |
### Convergence of the `p`-series | |
In this section we prove that for a real number `p`, the series `∑' n : ℕ, 1 / (n ^ p)` converges if | |
and only if `1 < p`. There are many different proofs of this fact. The proof in this file uses the | |
Cauchy condensation test we formalized above. This test implies that `∑ n, 1 / (n ^ p)` converges if | |
and only if `∑ n, 2 ^ n / ((2 ^ n) ^ p)` converges, and the latter series is a geometric series with | |
common ratio `2 ^ {1 - p}`. -/ | |
/-- Test for convergence of the `p`-series: the real-valued series `∑' n : ℕ, (n ^ p)⁻¹` converges | |
if and only if `1 < p`. -/ | |
@[simp] lemma real.summable_nat_rpow_inv {p : ℝ} : summable (λ n, (n ^ p)⁻¹ : ℕ → ℝ) ↔ 1 < p := | |
begin | |
cases le_or_lt 0 p with hp hp, | |
/- Cauchy condensation test applies only to antitone sequences, so we consider the | |
cases `0 ≤ p` and `p < 0` separately. -/ | |
{ rw ← summable_condensed_iff_of_nonneg, | |
{ simp_rw [nat.cast_pow, nat.cast_two, ← rpow_nat_cast, ← rpow_mul zero_lt_two.le, mul_comm _ p, | |
rpow_mul zero_lt_two.le, rpow_nat_cast, ← inv_pow, ← mul_pow, | |
summable_geometric_iff_norm_lt_1], | |
nth_rewrite 0 [← rpow_one 2], | |
rw [← division_def, ← rpow_sub zero_lt_two, norm_eq_abs, | |
abs_of_pos (rpow_pos_of_pos zero_lt_two _), rpow_lt_one_iff zero_lt_two.le], | |
norm_num }, | |
{ intro n, | |
exact inv_nonneg.2 (rpow_nonneg_of_nonneg n.cast_nonneg _) }, | |
{ intros m n hm hmn, | |
exact inv_le_inv_of_le (rpow_pos_of_pos (nat.cast_pos.2 hm) _) | |
(rpow_le_rpow m.cast_nonneg (nat.cast_le.2 hmn) hp) } }, | |
/- If `p < 0`, then `1 / n ^ p` tends to infinity, thus the series diverges. -/ | |
{ suffices : ¬summable (λ n, (n ^ p)⁻¹ : ℕ → ℝ), | |
{ have : ¬(1 < p) := λ hp₁, hp.not_le (zero_le_one.trans hp₁.le), | |
simpa [this, -one_div] }, | |
{ intro h, | |
obtain ⟨k : ℕ, hk₁ : ((k ^ p)⁻¹ : ℝ) < 1, hk₀ : k ≠ 0⟩ := | |
((h.tendsto_cofinite_zero.eventually (gt_mem_nhds zero_lt_one)).and | |
(eventually_cofinite_ne 0)).exists, | |
apply hk₀, | |
rw [← pos_iff_ne_zero, ← @nat.cast_pos ℝ] at hk₀, | |
simpa [inv_lt_one_iff_of_pos (rpow_pos_of_pos hk₀ _), one_lt_rpow_iff_of_pos hk₀, hp, | |
hp.not_lt, hk₀] using hk₁ } } | |
end | |
@[simp] lemma real.summable_nat_rpow {p : ℝ} : summable (λ n, n ^ p : ℕ → ℝ) ↔ p < -1 := | |
by { rcases neg_surjective p with ⟨p, rfl⟩, simp [rpow_neg] } | |
/-- Test for convergence of the `p`-series: the real-valued series `∑' n : ℕ, 1 / n ^ p` converges | |
if and only if `1 < p`. -/ | |
lemma real.summable_one_div_nat_rpow {p : ℝ} : summable (λ n, 1 / n ^ p : ℕ → ℝ) ↔ 1 < p := | |
by simp | |
/-- Test for convergence of the `p`-series: the real-valued series `∑' n : ℕ, (n ^ p)⁻¹` converges | |
if and only if `1 < p`. -/ | |
@[simp] lemma real.summable_nat_pow_inv {p : ℕ} : summable (λ n, (n ^ p)⁻¹ : ℕ → ℝ) ↔ 1 < p := | |
by simp only [← rpow_nat_cast, real.summable_nat_rpow_inv, nat.one_lt_cast] | |
/-- Test for convergence of the `p`-series: the real-valued series `∑' n : ℕ, 1 / n ^ p` converges | |
if and only if `1 < p`. -/ | |
lemma real.summable_one_div_nat_pow {p : ℕ} : summable (λ n, 1 / n ^ p : ℕ → ℝ) ↔ 1 < p := | |
by simp | |
/-- Harmonic series is not unconditionally summable. -/ | |
lemma real.not_summable_nat_cast_inv : ¬summable (λ n, n⁻¹ : ℕ → ℝ) := | |
have ¬summable (λ n, (n^1)⁻¹ : ℕ → ℝ), from mt real.summable_nat_pow_inv.1 (lt_irrefl 1), | |
by simpa | |
/-- Harmonic series is not unconditionally summable. -/ | |
lemma real.not_summable_one_div_nat_cast : ¬summable (λ n, 1 / n : ℕ → ℝ) := | |
by simpa only [inv_eq_one_div] using real.not_summable_nat_cast_inv | |
/-- **Divergence of the Harmonic Series** -/ | |
lemma real.tendsto_sum_range_one_div_nat_succ_at_top : | |
tendsto (λ n, ∑ i in finset.range n, (1 / (i + 1) : ℝ)) at_top at_top := | |
begin | |
rw ← not_summable_iff_tendsto_nat_at_top_of_nonneg, | |
{ exact_mod_cast mt (summable_nat_add_iff 1).1 real.not_summable_one_div_nat_cast }, | |
{ exact λ i, div_nonneg zero_le_one i.cast_add_one_pos.le } | |
end | |
@[simp] lemma nnreal.summable_rpow_inv {p : ℝ} : summable (λ n, (n ^ p)⁻¹ : ℕ → ℝ≥0) ↔ 1 < p := | |
by simp [← nnreal.summable_coe] | |
@[simp] lemma nnreal.summable_rpow {p : ℝ} : summable (λ n, n ^ p : ℕ → ℝ≥0) ↔ p < -1 := | |
by simp [← nnreal.summable_coe] | |
lemma nnreal.summable_one_div_rpow {p : ℝ} : summable (λ n, 1 / n ^ p : ℕ → ℝ≥0) ↔ 1 < p := | |
by simp | |
section | |
open finset | |
variables {α : Type*} [linear_ordered_field α] | |
lemma sum_Ioc_inv_sq_le_sub {k n : ℕ} (hk : k ≠ 0) (h : k ≤ n) : | |
∑ i in Ioc k n, ((i ^ 2) ⁻¹ : α) ≤ k ⁻¹ - n ⁻¹ := | |
begin | |
refine nat.le_induction _ _ n h, | |
{ simp only [Ioc_self, sum_empty, sub_self] }, | |
assume n hn IH, | |
rw [sum_Ioc_succ_top hn], | |
apply (add_le_add IH le_rfl).trans, | |
simp only [sub_eq_add_neg, add_assoc, nat.cast_add, nat.cast_one, le_add_neg_iff_add_le, | |
add_le_iff_nonpos_right, neg_add_le_iff_le_add, add_zero], | |
have A : 0 < (n : α), by simpa using hk.bot_lt.trans_le hn, | |
have B : 0 < (n : α) + 1, by linarith, | |
field_simp [B.ne'], | |
rw [div_le_div_iff _ A, ← sub_nonneg], | |
{ ring_nf, exact B.le }, | |
{ nlinarith }, | |
end | |
lemma sum_Ioo_inv_sq_le (k n : ℕ) : | |
∑ i in Ioo k n, ((i ^ 2) ⁻¹ : α) ≤ 2 / (k + 1) := | |
calc | |
∑ i in Ioo k n, ((i ^ 2) ⁻¹ : α) ≤ ∑ i in Ioc k (max (k+1) n), (i ^ 2) ⁻¹ : | |
begin | |
apply sum_le_sum_of_subset_of_nonneg, | |
{ assume x hx, | |
simp only [mem_Ioo] at hx, | |
simp only [hx, hx.2.le, mem_Ioc, le_max_iff, or_true, and_self] }, | |
{ assume i hi hident, | |
exact inv_nonneg.2 (sq_nonneg _), } | |
end | |
... ≤ ((k + 1) ^ 2) ⁻¹ + ∑ i in Ioc k.succ (max (k + 1) n), (i ^ 2) ⁻¹ : | |
begin | |
rw [← nat.Icc_succ_left, ← nat.Ico_succ_right, sum_eq_sum_Ico_succ_bot], | |
swap, { exact nat.succ_lt_succ ((nat.lt_succ_self k).trans_le (le_max_left _ _)) }, | |
rw [nat.Ico_succ_right, nat.Icc_succ_left, nat.cast_succ], | |
end | |
... ≤ ((k + 1) ^ 2) ⁻¹ + (k + 1) ⁻¹ : | |
begin | |
refine add_le_add le_rfl ((sum_Ioc_inv_sq_le_sub _ (le_max_left _ _)).trans _), | |
{ simp only [ne.def, nat.succ_ne_zero, not_false_iff] }, | |
{ simp only [nat.cast_succ, one_div, sub_le_self_iff, inv_nonneg, nat.cast_nonneg] } | |
end | |
... ≤ 1 / (k + 1) + 1 / (k + 1) : | |
begin | |
have A : (1 : α) ≤ k + 1, by simp only [le_add_iff_nonneg_left, nat.cast_nonneg], | |
simp_rw ← one_div, | |
apply add_le_add_right, | |
refine div_le_div zero_le_one le_rfl (zero_lt_one.trans_le A) _, | |
simpa using pow_le_pow A one_le_two, | |
end | |
... = 2 / (k + 1) : by ring | |
end | |