Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
36.1 kB
/-
Copyright (c) 2019 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo, YaΓ«l Dillies, Moritz Doll
-/
import analysis.locally_convex.basic
import data.real.pointwise
import data.real.sqrt
import topology.algebra.filter_basis
import topology.algebra.module.locally_convex
/-!
# Seminorms
This file defines seminorms.
A seminorm is a function to the reals which is positive-semidefinite, absolutely homogeneous, and
subadditive. They are closely related to convex sets and a topological vector space is locally
convex if and only if its topology is induced by a family of seminorms.
## Main declarations
For an addditive group:
* `add_group_seminorm`: A function `f` from an add_group `G` to the reals that preserves zero,
takes nonnegative values, is subadditive and such that `f (-x) = f x` for all `x ∈ G`.
For a module over a normed ring:
* `seminorm`: A function to the reals that is positive-semidefinite, absolutely homogeneous, and
subadditive.
* `norm_seminorm π•œ E`: The norm on `E` as a seminorm.
## References
* [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966]
## Tags
seminorm, locally convex, LCTVS
-/
set_option old_structure_cmd true
open normed_field set
open_locale big_operators nnreal pointwise topological_space
variables {R R' π•œ E F G ΞΉ : Type*}
/-- A seminorm on an add_group `G` is a function A function `f : G β†’ ℝ` that preserves zero, takes
nonnegative values, is subadditive and such that `f (-x) = f x` for all `x ∈ G`. -/
structure add_group_seminorm (G : Type*) [add_group G]
extends zero_hom G ℝ :=
(nonneg' : βˆ€ r, 0 ≀ to_fun r)
(add_le' : βˆ€ r s, to_fun (r + s) ≀ to_fun r + to_fun s)
(neg' : βˆ€ r, to_fun (- r) = to_fun r)
attribute [nolint doc_blame] add_group_seminorm.to_zero_hom
namespace add_group_seminorm
variables [add_group E]
instance zero_hom_class : zero_hom_class (add_group_seminorm E) E ℝ :=
{ coe := Ξ» f, f.to_fun,
coe_injective' := Ξ» f g h, by cases f; cases g; congr',
map_zero := Ξ» f, f.map_zero' }
/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`. -/
instance : has_coe_to_fun (add_group_seminorm E) (Ξ» _, E β†’ ℝ) := ⟨λ p, p.to_fun⟩
@[ext] lemma ext {p q : add_group_seminorm E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q :=
fun_like.ext p q h
instance : has_zero (add_group_seminorm E) :=
⟨{ to_fun := 0,
nonneg' := Ξ» r, le_refl _,
map_zero' := pi.zero_apply _,
add_le' := Ξ» _ _, eq.ge (zero_add _),
neg' := λ x, rfl}⟩
@[simp] lemma coe_zero : ⇑(0 : add_group_seminorm E) = 0 := rfl
@[simp] lemma zero_apply (x : E) : (0 : add_group_seminorm E) x = 0 := rfl
instance : inhabited (add_group_seminorm E) := ⟨0⟩
variables (p : add_group_seminorm E) (x y : E) (r : ℝ)
protected lemma nonneg : 0 ≀ p x := p.nonneg' _
@[simp] protected lemma map_zero : p 0 = 0 := p.map_zero'
protected lemma add_le : p (x + y) ≀ p x + p y := p.add_le' _ _
@[simp] protected lemma neg : p (- x) = p x := p.neg' _
/-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to an `add_group_seminorm`. -/
instance [has_smul R ℝ] [has_smul R ℝβ‰₯0] [is_scalar_tower R ℝβ‰₯0 ℝ] :
has_smul R (add_group_seminorm E) :=
{ smul := Ξ» r p,
{ to_fun := Ξ» x, r β€’ p x,
nonneg' := Ξ» x, begin
simp only [←smul_one_smul ℝβ‰₯0 r (_ : ℝ), nnreal.smul_def, smul_eq_mul],
exact mul_nonneg (nnreal.coe_nonneg _) (p.nonneg _)
end,
map_zero' := by simp only [←smul_one_smul ℝβ‰₯0 r (_ : ℝ), nnreal.smul_def, smul_eq_mul,
p.map_zero, mul_zero],
add_le' := Ξ» _ _, begin
simp only [←smul_one_smul ℝβ‰₯0 r (_ : ℝ), nnreal.smul_def, smul_eq_mul],
exact (mul_le_mul_of_nonneg_left (p.add_le _ _) (nnreal.coe_nonneg _)).trans_eq
(mul_add _ _ _),
end,
neg' := Ξ» x, by rw p.neg }}
instance [has_smul R ℝ] [has_smul R ℝβ‰₯0] [is_scalar_tower R ℝβ‰₯0 ℝ]
[has_smul R' ℝ] [has_smul R' ℝβ‰₯0] [is_scalar_tower R' ℝβ‰₯0 ℝ]
[has_smul R R'] [is_scalar_tower R R' ℝ] :
is_scalar_tower R R' (add_group_seminorm E) :=
{ smul_assoc := Ξ» r a p, ext $ Ξ» x, smul_assoc r a (p x) }
@[simp] lemma coe_smul [has_smul R ℝ] [has_smul R ℝβ‰₯0] [is_scalar_tower R ℝβ‰₯0 ℝ]
(r : R) (p : add_group_seminorm E) : ⇑(r β€’ p) = r β€’ p := rfl
@[simp] lemma smul_apply [has_smul R ℝ] [has_smul R ℝβ‰₯0] [is_scalar_tower R ℝβ‰₯0 ℝ]
(r : R) (p : add_group_seminorm E) (x : E) : (r β€’ p) x = r β€’ p x := rfl
instance : has_add (add_group_seminorm E) :=
{ add := Ξ» p q,
{ to_fun := Ξ» x, p x + q x,
nonneg' := Ξ» x, add_nonneg (p.nonneg _) (q.nonneg _),
map_zero' := by rw [p.map_zero, q.map_zero, zero_add],
add_le' := Ξ» _ _, has_le.le.trans_eq (add_le_add (p.add_le _ _) (q.add_le _ _))
(add_add_add_comm _ _ _ _),
neg' := Ξ» x, by rw [p.neg, q.neg] }}
@[simp] lemma coe_add (p q : add_group_seminorm E) : ⇑(p + q) = p + q := rfl
@[simp] lemma add_apply (p q : add_group_seminorm E) (x : E) : (p + q) x = p x + q x := rfl
-- TODO: define `has_Sup` too, from the skeleton at
-- https://github.com/leanprover-community/mathlib/pull/11329#issuecomment-1008915345
noncomputable instance : has_sup (add_group_seminorm E) :=
{ sup := Ξ» p q,
{ to_fun := p βŠ” q,
nonneg' := Ξ» x, begin
simp only [pi.sup_apply, le_sup_iff],
exact or.intro_left _ (p.nonneg _),
end,
map_zero' := begin
simp only [pi.sup_apply],
rw [← p.map_zero, sup_eq_left, p.map_zero, q.map_zero],
end,
add_le' := Ξ» x y, sup_le
((p.add_le x y).trans $ add_le_add le_sup_left le_sup_left)
((q.add_le x y).trans $ add_le_add le_sup_right le_sup_right),
neg' := Ξ» x, by rw [pi.sup_apply, pi.sup_apply, p.neg, q.neg] }}
@[simp] lemma coe_sup (p q : add_group_seminorm E) : ⇑(p βŠ” q) = p βŠ” q := rfl
lemma sup_apply (p q : add_group_seminorm E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl
lemma smul_sup [has_smul R ℝ] [has_smul R ℝβ‰₯0] [is_scalar_tower R ℝβ‰₯0 ℝ]
(r : R) (p q : add_group_seminorm E) :
r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q :=
have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y),
from Ξ» x y, by simpa only [←smul_eq_mul, ←nnreal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)]
using mul_max_of_nonneg x y (r β€’ 1 : ℝβ‰₯0).prop,
ext $ Ξ» x, real.smul_max _ _
instance : partial_order (add_group_seminorm E) := partial_order.lift _ fun_like.coe_injective
lemma le_def (p q : add_group_seminorm E) : p ≀ q ↔ (p : E β†’ ℝ) ≀ q := iff.rfl
lemma lt_def (p q : add_group_seminorm E) : p < q ↔ (p : E β†’ ℝ) < q := iff.rfl
noncomputable instance : semilattice_sup (add_group_seminorm E) :=
function.injective.semilattice_sup _ fun_like.coe_injective coe_sup
section add_comm_group
variable [add_comm_group G]
variables (q : add_group_seminorm G)
protected lemma sub_le (x y : G) : q (x - y) ≀ q x + q y :=
calc
q (x - y)
= q (x + -y) : by rw sub_eq_add_neg
... ≀ q x + q (-y) : q.add_le x (-y)
... = q x + q y : by rw q.neg
lemma sub_rev (x y : G) : q (x - y) = q (y - x) :=
by rw [←neg_sub, q.neg]
/-- The direct path from 0 to y is shorter than the path with x "inserted" in between. -/
lemma le_insert (x y : G) : q y ≀ q x + q (x - y) :=
calc q y = q (x - (x - y)) : by rw sub_sub_cancel
... ≀ q x + q (x - y) : q.sub_le _ _
/-- The direct path from 0 to x is shorter than the path with y "inserted" in between. -/
lemma le_insert' (x y : G) : q x ≀ q y + q (x - y) :=
by { rw sub_rev, exact le_insert _ _ _ }
private lemma bdd_below_range_add (x : G) (p q : add_group_seminorm G) :
bdd_below (range (Ξ» (u : G), p u + q (x - u))) :=
by { use 0, rintro _ ⟨x, rfl⟩, exact add_nonneg (p.nonneg _) (q.nonneg _) }
noncomputable instance : has_inf (add_group_seminorm G) :=
{ inf := Ξ» p q,
{ to_fun := Ξ» x, β¨… u : G, p u + q (x-u),
map_zero' := cinfi_eq_of_forall_ge_of_forall_gt_exists_lt
(Ξ» x, add_nonneg (p.nonneg _) (q.nonneg _))
(λ r hr, ⟨0, by simpa [sub_zero, p.map_zero, q.map_zero, add_zero] using hr⟩),
nonneg' := Ξ» x, le_cinfi (Ξ» x, add_nonneg (p.nonneg _) (q.nonneg _)),
add_le' := Ξ» x y, begin
refine le_cinfi_add_cinfi (Ξ» u v, _),
apply cinfi_le_of_le (bdd_below_range_add _ _ _) (v+u), dsimp only,
convert add_le_add (p.add_le v u) (q.add_le (y-v) (x-u)) using 1,
{ rw show x + y - (v + u) = y - v + (x - u), by abel },
{ abel },
end,
neg' := Ξ» x, begin
have : (β¨… (u : G), p u + q (x - u) : ℝ) = β¨… (u : G), p (- u) + q (x + u),
{ apply function.surjective.infi_congr (Ξ» (x : G), -x) neg_surjective,
{ intro u,
simp only [neg_neg, add_right_inj, sub_eq_add_neg] }},
rw this,
apply congr_arg,
ext u,
rw [p.neg, sub_eq_add_neg, ← neg_add_rev, add_comm u, q.neg],
end }}
@[simp] lemma inf_apply (p q : add_group_seminorm G) (x : G) :
(p βŠ“ q) x = β¨… u : G, p u + q (x-u) := rfl
noncomputable instance : lattice (add_group_seminorm G) :=
{ inf := (βŠ“),
inf_le_left := Ξ» p q x, begin
apply cinfi_le_of_le (bdd_below_range_add _ _ _) x,
simp only [sub_self, map_zero, add_zero],
end,
inf_le_right := Ξ» p q x, begin
apply cinfi_le_of_le (bdd_below_range_add _ _ _) (0:G),
simp only [sub_self, map_zero, zero_add, sub_zero],
end,
le_inf := Ξ» a b c hab hac x,
le_cinfi $ Ξ» u, le_trans (a.le_insert' _ _) (add_le_add (hab _) (hac _)),
..add_group_seminorm.semilattice_sup }
end add_comm_group
section comp
variables [add_group F] [add_group G]
/-- Composition of an add_group_seminorm with an add_monoid_hom is an add_group_seminorm. -/
def comp (p : add_group_seminorm F) (f : E β†’+ F) : add_group_seminorm E :=
{ to_fun := Ξ» x, p (f x),
nonneg' := Ξ» x, p.nonneg _,
map_zero' := by rw [f.map_zero, p.map_zero],
add_le' := Ξ» _ _, by apply eq.trans_le (congr_arg p (f.map_add _ _)) (p.add_le _ _),
neg' := Ξ» x, by rw [map_neg, p.neg] }
@[simp] lemma coe_comp (p : add_group_seminorm F) (f : E β†’+ F) : ⇑(p.comp f) = p ∘ f := rfl
@[simp] lemma comp_apply (p : add_group_seminorm F) (f : E β†’+ F) (x : E) :
(p.comp f) x = p (f x) := rfl
@[simp] lemma comp_id (p : add_group_seminorm E) : p.comp (add_monoid_hom.id _) = p :=
ext $ Ξ» _, rfl
@[simp] lemma comp_zero (p : add_group_seminorm F) : p.comp (0 : E β†’+ F) = 0 :=
ext $ Ξ» _, map_zero p
@[simp] lemma zero_comp (f : E β†’+ F) : (0 : add_group_seminorm F).comp f = 0 :=
ext $ Ξ» _, rfl
lemma comp_comp (p : add_group_seminorm G) (g : F β†’+ G) (f : E β†’+ F) :
p.comp (g.comp f) = (p.comp g).comp f :=
ext $ Ξ» _, rfl
lemma add_comp (p q : add_group_seminorm F) (f : E β†’+ F) : (p + q).comp f = p.comp f + q.comp f :=
ext $ Ξ» _, rfl
lemma comp_add_le {A B : Type*} [add_comm_group A] [add_comm_group B]
(p : add_group_seminorm B) (f g : A β†’+ B) : p.comp (f + g) ≀ p.comp f + p.comp g :=
Ξ» _, p.add_le _ _
lemma comp_mono {p : add_group_seminorm F} {q : add_group_seminorm F} (f : E β†’+ F) (hp : p ≀ q) :
p.comp f ≀ q.comp f := Ξ» _, hp _
end comp
end add_group_seminorm
/-- A seminorm on a module over a normed ring is a function to the reals that is positive
semidefinite, positive homogeneous, and subadditive. -/
structure seminorm (π•œ : Type*) (E : Type*) [semi_normed_ring π•œ] [add_group E] [has_smul π•œ E]
extends add_group_seminorm E :=
(smul' : βˆ€ (a : π•œ) (x : E), to_fun (a β€’ x) = βˆ₯aβˆ₯ * to_fun x)
attribute [nolint doc_blame] seminorm.to_add_group_seminorm
private lemma map_zero.of_smul {π•œ : Type*} {E : Type*} [semi_normed_ring π•œ] [add_group E]
[smul_with_zero π•œ E] {f : E β†’ ℝ} (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = βˆ₯aβˆ₯ * f x) : f 0 = 0 :=
calc f 0 = f ((0 : π•œ) β€’ 0) : by rw zero_smul
... = 0 : by rw [smul, norm_zero, zero_mul]
private lemma neg.of_smul {π•œ : Type*} {E : Type*} [semi_normed_ring π•œ] [add_comm_group E]
[module π•œ E] {f : E β†’ ℝ} (smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = βˆ₯aβˆ₯ * f x) (x : E) :
f (-x) = f x :=
by rw [←neg_one_smul π•œ, smul, norm_neg, ← smul, one_smul]
private lemma nonneg.of {π•œ : Type*} {E : Type*} [semi_normed_ring π•œ] [add_comm_group E] [module π•œ E]
{f : E β†’ ℝ} (add_le : βˆ€ (x y : E), f (x + y) ≀ f x + f y)
(smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = βˆ₯aβˆ₯ * f x) (x : E) : 0 ≀ f x :=
have h: 0 ≀ 2 * f x, from
calc 0 = f (x + (- x)) : by rw [add_neg_self, map_zero.of_smul smul]
... ≀ f x + f (-x) : add_le _ _
... = 2 * f x : by rw [neg.of_smul smul, two_mul],
nonneg_of_mul_nonneg_right h zero_lt_two
/-- Alternative constructor for a `seminorm` on an `add_comm_group E` that is a module over a
`semi_norm_ring π•œ`. -/
def seminorm.of {π•œ : Type*} {E : Type*} [semi_normed_ring π•œ] [add_comm_group E] [module π•œ E]
(f : E β†’ ℝ) (add_le : βˆ€ (x y : E), f (x + y) ≀ f x + f y)
(smul : βˆ€ (a : π•œ) (x : E), f (a β€’ x) = βˆ₯aβˆ₯ * f x) : seminorm π•œ E :=
{ to_fun := f,
map_zero' := map_zero.of_smul smul,
nonneg' := nonneg.of add_le smul,
add_le' := add_le,
smul' := smul,
neg' := neg.of_smul smul }
namespace seminorm
section semi_normed_ring
variables [semi_normed_ring π•œ]
section add_group
variables [add_group E]
section has_smul
variables [has_smul π•œ E]
instance zero_hom_class : zero_hom_class (seminorm π•œ E) E ℝ :=
{ coe := Ξ» f, f.to_fun,
coe_injective' := Ξ» f g h, by cases f; cases g; congr',
map_zero := Ξ» f, f.map_zero' }
/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`. -/
instance : has_coe_to_fun (seminorm π•œ E) (Ξ» _, E β†’ ℝ) := ⟨λ p, p.to_fun⟩
@[ext] lemma ext {p q : seminorm π•œ E} (h : βˆ€ x, (p : E β†’ ℝ) x = q x) : p = q := fun_like.ext p q h
instance : has_zero (seminorm π•œ E) :=
⟨{ smul' := λ _ _, (mul_zero _).symm,
..add_group_seminorm.has_zero.zero }⟩
@[simp] lemma coe_zero : ⇑(0 : seminorm π•œ E) = 0 := rfl
@[simp] lemma zero_apply (x : E) : (0 : seminorm π•œ E) x = 0 := rfl
instance : inhabited (seminorm π•œ E) := ⟨0⟩
variables (p : seminorm π•œ E) (c : π•œ) (x y : E) (r : ℝ)
protected lemma nonneg : 0 ≀ p x := p.nonneg' _
protected lemma map_zero : p 0 = 0 := p.map_zero'
protected lemma smul : p (c β€’ x) = βˆ₯cβˆ₯ * p x := p.smul' _ _
protected lemma add_le : p (x + y) ≀ p x + p y := p.add_le' _ _
/-- Any action on `ℝ` which factors through `ℝβ‰₯0` applies to a seminorm. -/
instance [has_smul R ℝ] [has_smul R ℝβ‰₯0] [is_scalar_tower R ℝβ‰₯0 ℝ] :
has_smul R (seminorm π•œ E) :=
{ smul := Ξ» r p,
{ to_fun := Ξ» x, r β€’ p x,
smul' := Ξ» _ _, begin
simp only [←smul_one_smul ℝβ‰₯0 r (_ : ℝ), nnreal.smul_def, smul_eq_mul],
rw [p.smul, mul_left_comm],
end,
..(r β€’ p.to_add_group_seminorm) }}
instance [has_smul R ℝ] [has_smul R ℝβ‰₯0] [is_scalar_tower R ℝβ‰₯0 ℝ]
[has_smul R' ℝ] [has_smul R' ℝβ‰₯0] [is_scalar_tower R' ℝβ‰₯0 ℝ]
[has_smul R R'] [is_scalar_tower R R' ℝ] :
is_scalar_tower R R' (seminorm π•œ E) :=
{ smul_assoc := Ξ» r a p, ext $ Ξ» x, smul_assoc r a (p x) }
lemma coe_smul [has_smul R ℝ] [has_smul R ℝβ‰₯0] [is_scalar_tower R ℝβ‰₯0 ℝ]
(r : R) (p : seminorm π•œ E) : ⇑(r β€’ p) = r β€’ p := rfl
@[simp] lemma smul_apply [has_smul R ℝ] [has_smul R ℝβ‰₯0] [is_scalar_tower R ℝβ‰₯0 ℝ]
(r : R) (p : seminorm π•œ E) (x : E) : (r β€’ p) x = r β€’ p x := rfl
instance : has_add (seminorm π•œ E) :=
{ add := Ξ» p q,
{ to_fun := Ξ» x, p x + q x,
smul' := Ξ» a x, by simp only [p.smul, q.smul, mul_add],
..(p.to_add_group_seminorm + q.to_add_group_seminorm) }}
lemma coe_add (p q : seminorm π•œ E) : ⇑(p + q) = p + q := rfl
@[simp] lemma add_apply (p q : seminorm π•œ E) (x : E) : (p + q) x = p x + q x := rfl
instance : add_monoid (seminorm π•œ E) :=
fun_like.coe_injective.add_monoid _ rfl coe_add (Ξ» p n, coe_smul n p)
instance : ordered_cancel_add_comm_monoid (seminorm π•œ E) :=
fun_like.coe_injective.ordered_cancel_add_comm_monoid _ rfl coe_add (Ξ» p n, coe_smul n p)
instance [monoid R] [mul_action R ℝ] [has_smul R ℝβ‰₯0] [is_scalar_tower R ℝβ‰₯0 ℝ] :
mul_action R (seminorm π•œ E) :=
fun_like.coe_injective.mul_action _ coe_smul
variables (π•œ E)
/-- `coe_fn` as an `add_monoid_hom`. Helper definition for showing that `seminorm π•œ E` is
a module. -/
@[simps]
def coe_fn_add_monoid_hom : add_monoid_hom (seminorm π•œ E) (E β†’ ℝ) := ⟨coe_fn, coe_zero, coe_add⟩
lemma coe_fn_add_monoid_hom_injective : function.injective (coe_fn_add_monoid_hom π•œ E) :=
show @function.injective (seminorm π•œ E) (E β†’ ℝ) coe_fn, from fun_like.coe_injective
variables {π•œ E}
instance [monoid R] [distrib_mul_action R ℝ] [has_smul R ℝβ‰₯0] [is_scalar_tower R ℝβ‰₯0 ℝ] :
distrib_mul_action R (seminorm π•œ E) :=
(coe_fn_add_monoid_hom_injective π•œ E).distrib_mul_action _ coe_smul
instance [semiring R] [module R ℝ] [has_smul R ℝβ‰₯0] [is_scalar_tower R ℝβ‰₯0 ℝ] :
module R (seminorm π•œ E) :=
(coe_fn_add_monoid_hom_injective π•œ E).module R _ coe_smul
-- TODO: define `has_Sup` too, from the skeleton at
-- https://github.com/leanprover-community/mathlib/pull/11329#issuecomment-1008915345
noncomputable instance : has_sup (seminorm π•œ E) :=
{ sup := Ξ» p q,
{ to_fun := p βŠ” q,
smul' := Ξ» x v, (congr_arg2 max (p.smul x v) (q.smul x v)).trans $
(mul_max_of_nonneg _ _ $ norm_nonneg x).symm,
..(p.to_add_group_seminorm βŠ” q.to_add_group_seminorm) } }
@[simp] lemma coe_sup (p q : seminorm π•œ E) : ⇑(p βŠ” q) = p βŠ” q := rfl
lemma sup_apply (p q : seminorm π•œ E) (x : E) : (p βŠ” q) x = p x βŠ” q x := rfl
lemma smul_sup [has_smul R ℝ] [has_smul R ℝβ‰₯0] [is_scalar_tower R ℝβ‰₯0 ℝ]
(r : R) (p q : seminorm π•œ E) :
r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q :=
have real.smul_max : βˆ€ x y : ℝ, r β€’ max x y = max (r β€’ x) (r β€’ y),
from Ξ» x y, by simpa only [←smul_eq_mul, ←nnreal.smul_def, smul_one_smul ℝβ‰₯0 r (_ : ℝ)]
using mul_max_of_nonneg x y (r β€’ 1 : ℝβ‰₯0).prop,
ext $ Ξ» x, real.smul_max _ _
instance : partial_order (seminorm π•œ E) :=
partial_order.lift _ fun_like.coe_injective
lemma le_def (p q : seminorm π•œ E) : p ≀ q ↔ (p : E β†’ ℝ) ≀ q := iff.rfl
lemma lt_def (p q : seminorm π•œ E) : p < q ↔ (p : E β†’ ℝ) < q := iff.rfl
noncomputable instance : semilattice_sup (seminorm π•œ E) :=
function.injective.semilattice_sup _ fun_like.coe_injective coe_sup
end has_smul
end add_group
section module
variables [add_comm_group E] [add_comm_group F] [add_comm_group G]
variables [module π•œ E] [module π•œ F] [module π•œ G]
variables [has_smul R ℝ] [has_smul R ℝβ‰₯0] [is_scalar_tower R ℝβ‰₯0 ℝ]
/-- Composition of a seminorm with a linear map is a seminorm. -/
def comp (p : seminorm π•œ F) (f : E β†’β‚—[π•œ] F) : seminorm π•œ E :=
{ to_fun := Ξ» x, p (f x),
smul' := Ξ» _ _, (congr_arg p (f.map_smul _ _)).trans (p.smul _ _),
..(p.to_add_group_seminorm.comp f.to_add_monoid_hom) }
lemma coe_comp (p : seminorm π•œ F) (f : E β†’β‚—[π•œ] F) : ⇑(p.comp f) = p ∘ f := rfl
@[simp] lemma comp_apply (p : seminorm π•œ F) (f : E β†’β‚—[π•œ] F) (x : E) : (p.comp f) x = p (f x) := rfl
@[simp] lemma comp_id (p : seminorm π•œ E) : p.comp linear_map.id = p :=
ext $ Ξ» _, rfl
@[simp] lemma comp_zero (p : seminorm π•œ F) : p.comp (0 : E β†’β‚—[π•œ] F) = 0 :=
ext $ Ξ» _, map_zero p
@[simp] lemma zero_comp (f : E β†’β‚—[π•œ] F) : (0 : seminorm π•œ F).comp f = 0 :=
ext $ Ξ» _, rfl
lemma comp_comp (p : seminorm π•œ G) (g : F β†’β‚—[π•œ] G) (f : E β†’β‚—[π•œ] F) :
p.comp (g.comp f) = (p.comp g).comp f :=
ext $ Ξ» _, rfl
lemma add_comp (p q : seminorm π•œ F) (f : E β†’β‚—[π•œ] F) : (p + q).comp f = p.comp f + q.comp f :=
ext $ Ξ» _, rfl
lemma comp_add_le (p : seminorm π•œ F) (f g : E β†’β‚—[π•œ] F) : p.comp (f + g) ≀ p.comp f + p.comp g :=
Ξ» _, p.add_le _ _
lemma smul_comp (p : seminorm π•œ F) (f : E β†’β‚—[π•œ] F) (c : R) : (c β€’ p).comp f = c β€’ (p.comp f) :=
ext $ Ξ» _, rfl
lemma comp_mono {p : seminorm π•œ F} {q : seminorm π•œ F} (f : E β†’β‚—[π•œ] F) (hp : p ≀ q) :
p.comp f ≀ q.comp f := Ξ» _, hp _
/-- The composition as an `add_monoid_hom`. -/
@[simps] def pullback (f : E β†’β‚—[π•œ] F) : add_monoid_hom (seminorm π•œ F) (seminorm π•œ E) :=
⟨λ p, p.comp f, zero_comp f, λ p q, add_comp p q f⟩
section
variables (p : seminorm π•œ E)
@[simp]
protected lemma neg (x : E) : p (-x) = p x :=
by rw [←neg_one_smul π•œ, seminorm.smul, norm_neg, ←seminorm.smul, one_smul]
protected lemma sub_le (x y : E) : p (x - y) ≀ p x + p y :=
calc
p (x - y)
= p (x + -y) : by rw sub_eq_add_neg
... ≀ p x + p (-y) : p.add_le x (-y)
... = p x + p y : by rw p.neg
lemma sub_rev (x y : E) : p (x - y) = p (y - x) := by rw [←neg_sub, p.neg]
/-- The direct path from 0 to y is shorter than the path with x "inserted" in between. -/
lemma le_insert (x y : E) : p y ≀ p x + p (x - y) :=
calc p y = p (x - (x - y)) : by rw sub_sub_cancel
... ≀ p x + p (x - y) : p.sub_le _ _
/-- The direct path from 0 to x is shorter than the path with y "inserted" in between. -/
lemma le_insert' (x y : E) : p x ≀ p y + p (x - y) := by { rw sub_rev, exact le_insert _ _ _ }
end
instance : order_bot (seminorm π•œ E) := ⟨0, seminorm.nonneg⟩
@[simp] lemma coe_bot : ⇑(βŠ₯ : seminorm π•œ E) = 0 := rfl
lemma bot_eq_zero : (βŠ₯ : seminorm π•œ E) = 0 := rfl
lemma smul_le_smul {p q : seminorm π•œ E} {a b : ℝβ‰₯0} (hpq : p ≀ q) (hab : a ≀ b) :
a β€’ p ≀ b β€’ q :=
begin
simp_rw [le_def, pi.le_def, coe_smul],
intros x,
simp_rw [pi.smul_apply, nnreal.smul_def, smul_eq_mul],
exact mul_le_mul hab (hpq x) (p.nonneg x) (nnreal.coe_nonneg b),
end
lemma finset_sup_apply (p : ΞΉ β†’ seminorm π•œ E) (s : finset ΞΉ) (x : E) :
s.sup p x = ↑(s.sup (Ξ» i, ⟨p i x, (p i).nonneg x⟩) : ℝβ‰₯0) :=
begin
induction s using finset.cons_induction_on with a s ha ih,
{ rw [finset.sup_empty, finset.sup_empty, coe_bot, _root_.bot_eq_zero, pi.zero_apply,
nonneg.coe_zero] },
{ rw [finset.sup_cons, finset.sup_cons, coe_sup, sup_eq_max, pi.sup_apply, sup_eq_max,
nnreal.coe_max, subtype.coe_mk, ih] }
end
lemma finset_sup_le_sum (p : ΞΉ β†’ seminorm π•œ E) (s : finset ΞΉ) : s.sup p ≀ βˆ‘ i in s, p i :=
begin
classical,
refine finset.sup_le_iff.mpr _,
intros i hi,
rw [finset.sum_eq_sum_diff_singleton_add hi, le_add_iff_nonneg_left],
exact bot_le,
end
lemma finset_sup_apply_le {p : ΞΉ β†’ seminorm π•œ E} {s : finset ΞΉ} {x : E} {a : ℝ} (ha : 0 ≀ a)
(h : βˆ€ i, i ∈ s β†’ p i x ≀ a) : s.sup p x ≀ a :=
begin
lift a to ℝβ‰₯0 using ha,
rw [finset_sup_apply, nnreal.coe_le_coe],
exact finset.sup_le h,
end
lemma finset_sup_apply_lt {p : ΞΉ β†’ seminorm π•œ E} {s : finset ΞΉ} {x : E} {a : ℝ} (ha : 0 < a)
(h : βˆ€ i, i ∈ s β†’ p i x < a) : s.sup p x < a :=
begin
lift a to ℝβ‰₯0 using ha.le,
rw [finset_sup_apply, nnreal.coe_lt_coe, finset.sup_lt_iff],
{ exact h },
{ exact nnreal.coe_pos.mpr ha },
end
end module
end semi_normed_ring
section semi_normed_comm_ring
variables [semi_normed_comm_ring π•œ] [add_comm_group E] [add_comm_group F] [module π•œ E] [module π•œ F]
lemma comp_smul (p : seminorm π•œ F) (f : E β†’β‚—[π•œ] F) (c : π•œ) :
p.comp (c β€’ f) = βˆ₯cβˆ₯β‚Š β€’ p.comp f :=
ext $ Ξ» _, by rw [comp_apply, smul_apply, linear_map.smul_apply, p.smul, nnreal.smul_def,
coe_nnnorm, smul_eq_mul, comp_apply]
lemma comp_smul_apply (p : seminorm π•œ F) (f : E β†’β‚—[π•œ] F) (c : π•œ) (x : E) :
p.comp (c β€’ f) x = βˆ₯cβˆ₯ * p (f x) := p.smul _ _
end semi_normed_comm_ring
section normed_field
variables [normed_field π•œ] [add_comm_group E] [module π•œ E]
private lemma bdd_below_range_add (x : E) (p q : seminorm π•œ E) :
bdd_below (range (Ξ» (u : E), p u + q (x - u))) :=
by { use 0, rintro _ ⟨x, rfl⟩, exact add_nonneg (p.nonneg _) (q.nonneg _) }
noncomputable instance : has_inf (seminorm π•œ E) :=
{ inf := Ξ» p q,
{ to_fun := Ξ» x, β¨… u : E, p u + q (x-u),
smul' :=
begin
intros a x,
obtain rfl | ha := eq_or_ne a 0,
{ rw [norm_zero, zero_mul, zero_smul],
refine cinfi_eq_of_forall_ge_of_forall_gt_exists_lt
(Ξ» i, add_nonneg (p.nonneg _) (q.nonneg _))
(λ x hx, ⟨0, by rwa [map_zero, sub_zero, map_zero, add_zero]⟩) },
simp_rw [real.mul_infi_of_nonneg (norm_nonneg a), mul_add, ←p.smul, ←q.smul, smul_sub],
refine function.surjective.infi_congr ((β€’) a⁻¹ : E β†’ E) (Ξ» u, ⟨a β€’ u, inv_smul_smulβ‚€ ha u⟩)
(Ξ» u, _),
rw smul_inv_smulβ‚€ ha
end,
..(p.to_add_group_seminorm βŠ“ q.to_add_group_seminorm) }}
@[simp] lemma inf_apply (p q : seminorm π•œ E) (x : E) : (p βŠ“ q) x = β¨… u : E, p u + q (x-u) := rfl
noncomputable instance : lattice (seminorm π•œ E) :=
{ inf := (βŠ“),
inf_le_left := Ξ» p q x, begin
apply cinfi_le_of_le (bdd_below_range_add _ _ _) x,
simp only [sub_self, map_zero, add_zero],
end,
inf_le_right := Ξ» p q x, begin
apply cinfi_le_of_le (bdd_below_range_add _ _ _) (0:E),
simp only [sub_self, map_zero, zero_add, sub_zero],
end,
le_inf := Ξ» a b c hab hac x,
le_cinfi $ Ξ» u, le_trans (a.le_insert' _ _) (add_le_add (hab _) (hac _)),
..seminorm.semilattice_sup }
lemma smul_inf [has_smul R ℝ] [has_smul R ℝβ‰₯0] [is_scalar_tower R ℝβ‰₯0 ℝ]
(r : R) (p q : seminorm π•œ E) :
r β€’ (p βŠ“ q) = r β€’ p βŠ“ r β€’ q :=
begin
ext,
simp_rw [smul_apply, inf_apply, smul_apply, ←smul_one_smul ℝβ‰₯0 r (_ : ℝ), nnreal.smul_def,
smul_eq_mul, real.mul_infi_of_nonneg (subtype.prop _), mul_add],
end
end normed_field
/-! ### Seminorm ball -/
section semi_normed_ring
variables [semi_normed_ring π•œ]
section add_comm_group
variables [add_comm_group E]
section has_smul
variables [has_smul π•œ E] (p : seminorm π•œ E)
/-- The ball of radius `r` at `x` with respect to seminorm `p` is the set of elements `y` with
`p (y - x) < `r`. -/
def ball (x : E) (r : ℝ) := { y : E | p (y - x) < r }
variables {x y : E} {r : ℝ}
@[simp] lemma mem_ball : y ∈ ball p x r ↔ p (y - x) < r := iff.rfl
lemma mem_ball_zero : y ∈ ball p 0 r ↔ p y < r := by rw [mem_ball, sub_zero]
lemma ball_zero_eq : ball p 0 r = { y : E | p y < r } := set.ext $ Ξ» x, p.mem_ball_zero
@[simp] lemma ball_zero' (x : E) (hr : 0 < r) : ball (0 : seminorm π•œ E) x r = set.univ :=
begin
rw [set.eq_univ_iff_forall, ball],
simp [hr],
end
lemma ball_smul (p : seminorm π•œ E) {c : nnreal} (hc : 0 < c) (r : ℝ) (x : E) :
(c β€’ p).ball x r = p.ball x (r / c) :=
by { ext, rw [mem_ball, mem_ball, smul_apply, nnreal.smul_def, smul_eq_mul, mul_comm,
lt_div_iff (nnreal.coe_pos.mpr hc)] }
lemma ball_sup (p : seminorm π•œ E) (q : seminorm π•œ E) (e : E) (r : ℝ) :
ball (p βŠ” q) e r = ball p e r ∩ ball q e r :=
by simp_rw [ball, ←set.set_of_and, coe_sup, pi.sup_apply, sup_lt_iff]
lemma ball_finset_sup' (p : ΞΉ β†’ seminorm π•œ E) (s : finset ΞΉ) (H : s.nonempty) (e : E) (r : ℝ) :
ball (s.sup' H p) e r = s.inf' H (Ξ» i, ball (p i) e r) :=
begin
induction H using finset.nonempty.cons_induction with a a s ha hs ih,
{ classical, simp },
{ rw [finset.sup'_cons hs, finset.inf'_cons hs, ball_sup, inf_eq_inter, ih] },
end
lemma ball_mono {p : seminorm π•œ E} {r₁ rβ‚‚ : ℝ} (h : r₁ ≀ rβ‚‚) : p.ball x r₁ βŠ† p.ball x rβ‚‚ :=
Ξ» _ (hx : _ < _), hx.trans_le h
lemma ball_antitone {p q : seminorm π•œ E} (h : q ≀ p) : p.ball x r βŠ† q.ball x r :=
Ξ» _, (h _).trans_lt
lemma ball_add_ball_subset (p : seminorm π•œ E) (r₁ rβ‚‚ : ℝ) (x₁ xβ‚‚ : E):
p.ball (x₁ : E) r₁ + p.ball (xβ‚‚ : E) rβ‚‚ βŠ† p.ball (x₁ + xβ‚‚) (r₁ + rβ‚‚) :=
begin
rintros x ⟨y₁, yβ‚‚, hy₁, hyβ‚‚, rfl⟩,
rw [mem_ball, add_sub_add_comm],
exact (p.add_le _ _).trans_lt (add_lt_add hy₁ hyβ‚‚),
end
end has_smul
section module
variables [module π•œ E]
variables [add_comm_group F] [module π•œ F]
lemma ball_comp (p : seminorm π•œ F) (f : E β†’β‚—[π•œ] F) (x : E) (r : ℝ) :
(p.comp f).ball x r = f ⁻¹' (p.ball (f x) r) :=
begin
ext,
simp_rw [ball, mem_preimage, comp_apply, set.mem_set_of_eq, map_sub],
end
variables (p : seminorm π•œ E)
lemma ball_zero_eq_preimage_ball {r : ℝ} :
p.ball 0 r = p ⁻¹' (metric.ball 0 r) :=
begin
ext x,
simp only [mem_ball, sub_zero, mem_preimage, mem_ball_zero_iff],
rw real.norm_of_nonneg,
exact p.nonneg _,
end
@[simp] lemma ball_bot {r : ℝ} (x : E) (hr : 0 < r) :
ball (βŠ₯ : seminorm π•œ E) x r = set.univ :=
ball_zero' x hr
/-- Seminorm-balls at the origin are balanced. -/
lemma balanced_ball_zero (r : ℝ) : balanced π•œ (ball p 0 r) :=
begin
rintro a ha x ⟨y, hy, hx⟩,
rw [mem_ball_zero, ←hx, p.smul],
calc _ ≀ p y : mul_le_of_le_one_left (p.nonneg _) ha
... < r : by rwa mem_ball_zero at hy,
end
lemma ball_finset_sup_eq_Inter (p : ΞΉ β†’ seminorm π•œ E) (s : finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) :
ball (s.sup p) x r = β‹‚ (i ∈ s), ball (p i) x r :=
begin
lift r to nnreal using hr.le,
simp_rw [ball, Inter_set_of, finset_sup_apply, nnreal.coe_lt_coe,
finset.sup_lt_iff (show βŠ₯ < r, from hr), ←nnreal.coe_lt_coe, subtype.coe_mk],
end
lemma ball_finset_sup (p : ΞΉ β†’ seminorm π•œ E) (s : finset ΞΉ) (x : E) {r : ℝ} (hr : 0 < r) :
ball (s.sup p) x r = s.inf (Ξ» i, ball (p i) x r) :=
begin
rw finset.inf_eq_infi,
exact ball_finset_sup_eq_Inter _ _ _ hr,
end
lemma ball_smul_ball (p : seminorm π•œ E) (r₁ rβ‚‚ : ℝ) :
metric.ball (0 : π•œ) r₁ β€’ p.ball 0 rβ‚‚ βŠ† p.ball 0 (r₁ * rβ‚‚) :=
begin
rw set.subset_def,
intros x hx,
rw set.mem_smul at hx,
rcases hx with ⟨a, y, ha, hy, hx⟩,
rw [←hx, mem_ball_zero, seminorm.smul],
exact mul_lt_mul'' (mem_ball_zero_iff.mp ha) (p.mem_ball_zero.mp hy) (norm_nonneg a) (p.nonneg y),
end
@[simp] lemma ball_eq_emptyset (p : seminorm π•œ E) {x : E} {r : ℝ} (hr : r ≀ 0) : p.ball x r = βˆ… :=
begin
ext,
rw [seminorm.mem_ball, set.mem_empty_eq, iff_false, not_lt],
exact hr.trans (p.nonneg _),
end
end module
end add_comm_group
end semi_normed_ring
section normed_field
variables [normed_field π•œ] [add_comm_group E] [module π•œ E] (p : seminorm π•œ E) {A B : set E}
{a : π•œ} {r : ℝ} {x : E}
lemma smul_ball_zero {p : seminorm π•œ E} {k : π•œ} {r : ℝ} (hk : 0 < βˆ₯kβˆ₯) :
k β€’ p.ball 0 r = p.ball 0 (βˆ₯kβˆ₯ * r) :=
begin
ext,
rw [set.mem_smul_set, seminorm.mem_ball_zero],
split; intro h,
{ rcases h with ⟨y, hy, h⟩,
rw [←h, seminorm.smul],
rw seminorm.mem_ball_zero at hy,
exact (mul_lt_mul_left hk).mpr hy },
refine ⟨k⁻¹ β€’ x, _, _⟩,
{ rw [seminorm.mem_ball_zero, seminorm.smul, norm_inv, ←(mul_lt_mul_left hk),
←mul_assoc, ←(div_eq_mul_inv βˆ₯kβˆ₯ βˆ₯kβˆ₯), div_self (ne_of_gt hk), one_mul],
exact h},
rw [←smul_assoc, smul_eq_mul, ←div_eq_mul_inv, div_self (norm_pos_iff.mp hk), one_smul],
end
lemma ball_zero_absorbs_ball_zero (p : seminorm π•œ E) {r₁ rβ‚‚ : ℝ} (hr₁ : 0 < r₁) :
absorbs π•œ (p.ball 0 r₁) (p.ball 0 rβ‚‚) :=
begin
by_cases hrβ‚‚ : rβ‚‚ ≀ 0,
{ rw ball_eq_emptyset p hrβ‚‚, exact absorbs_empty },
rw [not_le] at hrβ‚‚,
rcases exists_between hr₁ with ⟨r, hr, hr'⟩,
refine ⟨rβ‚‚/r, div_pos hrβ‚‚ hr, _⟩,
simp_rw set.subset_def,
intros a ha x hx,
have ha' : 0 < βˆ₯aβˆ₯ := lt_of_lt_of_le (div_pos hrβ‚‚ hr) ha,
rw [smul_ball_zero ha', p.mem_ball_zero],
rw p.mem_ball_zero at hx,
rw div_le_iff hr at ha,
exact hx.trans (lt_of_le_of_lt ha ((mul_lt_mul_left ha').mpr hr')),
end
/-- Seminorm-balls at the origin are absorbent. -/
protected lemma absorbent_ball_zero (hr : 0 < r) : absorbent π•œ (ball p (0 : E) r) :=
begin
rw absorbent_iff_nonneg_lt,
rintro x,
have hxr : 0 ≀ p x/r := div_nonneg (p.nonneg _) hr.le,
refine ⟨p x/r, hxr, λ a ha, _⟩,
have haβ‚€ : 0 < βˆ₯aβˆ₯ := hxr.trans_lt ha,
refine ⟨a⁻¹ β€’ x, _, smul_inv_smulβ‚€ (norm_pos_iff.1 haβ‚€) x⟩,
rwa [mem_ball_zero, p.smul, norm_inv, inv_mul_lt_iff haβ‚€, ←div_lt_iff hr],
end
/-- Seminorm-balls containing the origin are absorbent. -/
protected lemma absorbent_ball (hpr : p x < r) : absorbent π•œ (ball p x r) :=
begin
refine (p.absorbent_ball_zero $ sub_pos.2 hpr).subset (Ξ» y hy, _),
rw p.mem_ball_zero at hy,
exact p.mem_ball.2 ((p.sub_le _ _).trans_lt $ add_lt_of_lt_sub_right hy),
end
lemma symmetric_ball_zero (r : ℝ) (hx : x ∈ ball p 0 r) : -x ∈ ball p 0 r :=
balanced_ball_zero p r (-1) (by rw [norm_neg, norm_one]) ⟨x, hx, by rw [neg_smul, one_smul]⟩
@[simp]
lemma neg_ball (p : seminorm π•œ E) (r : ℝ) (x : E) :
-ball p x r = ball p (-x) r :=
by { ext, rw [mem_neg, mem_ball, mem_ball, ←neg_add', sub_neg_eq_add, p.neg], }
@[simp]
lemma smul_ball_preimage (p : seminorm π•œ E) (y : E) (r : ℝ) (a : π•œ) (ha : a β‰  0) :
((β€’) a) ⁻¹' p.ball y r = p.ball (a⁻¹ β€’ y) (r / βˆ₯aβˆ₯) :=
set.ext $ Ξ» _, by rw [mem_preimage, mem_ball, mem_ball,
lt_div_iff (norm_pos_iff.mpr ha), mul_comm, ←p.smul, smul_sub, smul_inv_smulβ‚€ ha]
end normed_field
section convex
variables [normed_field π•œ] [add_comm_group E] [normed_space ℝ π•œ] [module π•œ E]
section has_smul
variables [has_smul ℝ E] [is_scalar_tower ℝ π•œ E] (p : seminorm π•œ E)
/-- A seminorm is convex. Also see `convex_on_norm`. -/
protected lemma convex_on : convex_on ℝ univ p :=
begin
refine ⟨convex_univ, λ x y _ _ a b ha hb hab, _⟩,
calc p (a β€’ x + b β€’ y) ≀ p (a β€’ x) + p (b β€’ y) : p.add_le _ _
... = βˆ₯a β€’ (1 : π•œ)βˆ₯ * p x + βˆ₯b β€’ (1 : π•œ)βˆ₯ * p y
: by rw [←p.smul, ←p.smul, smul_one_smul, smul_one_smul]
... = a * p x + b * p y
: by rw [norm_smul, norm_smul, norm_one, mul_one, mul_one, real.norm_of_nonneg ha,
real.norm_of_nonneg hb],
end
end has_smul
section module
variables [module ℝ E] [is_scalar_tower ℝ π•œ E] (p : seminorm π•œ E) (x : E) (r : ℝ)
/-- Seminorm-balls are convex. -/
lemma convex_ball : convex ℝ (ball p x r) :=
begin
convert (p.convex_on.translate_left (-x)).convex_lt r,
ext y,
rw [preimage_univ, sep_univ, p.mem_ball, sub_eq_add_neg],
refl,
end
end module
end convex
end seminorm
/-! ### The norm as a seminorm -/
section norm_seminorm
variables (π•œ) (E) [normed_field π•œ] [seminormed_add_comm_group E] [normed_space π•œ E] {r : ℝ}
/-- The norm of a seminormed group as an add_monoid seminorm. -/
def norm_add_group_seminorm : add_group_seminorm E :=
⟨norm, norm_zero, norm_nonneg, norm_add_le, norm_neg⟩
@[simp] lemma coe_norm_add_group_seminorm : ⇑(norm_add_group_seminorm E) = norm := rfl
/-- The norm of a seminormed group as a seminorm. -/
def norm_seminorm : seminorm π•œ E :=
{ smul' := norm_smul,
..(norm_add_group_seminorm E)}
@[simp] lemma coe_norm_seminorm : ⇑(norm_seminorm π•œ E) = norm := rfl
@[simp] lemma ball_norm_seminorm : (norm_seminorm π•œ E).ball = metric.ball :=
by { ext x r y, simp only [seminorm.mem_ball, metric.mem_ball, coe_norm_seminorm, dist_eq_norm] }
variables {π•œ E} {x : E}
/-- Balls at the origin are absorbent. -/
lemma absorbent_ball_zero (hr : 0 < r) : absorbent π•œ (metric.ball (0 : E) r) :=
by { rw ←ball_norm_seminorm π•œ, exact (norm_seminorm _ _).absorbent_ball_zero hr }
/-- Balls containing the origin are absorbent. -/
lemma absorbent_ball (hx : βˆ₯xβˆ₯ < r) : absorbent π•œ (metric.ball x r) :=
by { rw ←ball_norm_seminorm π•œ, exact (norm_seminorm _ _).absorbent_ball hx }
/-- Balls at the origin are balanced. -/
lemma balanced_ball_zero : balanced π•œ (metric.ball (0 : E) r) :=
by { rw ←ball_norm_seminorm π•œ, exact (norm_seminorm _ _).balanced_ball_zero r }
end norm_seminorm