Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Sébastien Gouëzel. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Anatole Dedecker, Sébastien Gouëzel, Yury G. Kudryashov, Dylan MacKenzie, Patrick Massot | |
-/ | |
import algebra.order.field | |
import analysis.asymptotics.asymptotics | |
import analysis.specific_limits.basic | |
/-! | |
# A collection of specific limit computations | |
This file contains important specific limit computations in (semi-)normed groups/rings/spaces, as | |
as well as such computations in `ℝ` when the natural proof passes through a fact about normed | |
spaces. | |
-/ | |
noncomputable theory | |
open classical set function filter finset metric asymptotics | |
open_locale classical topological_space nat big_operators uniformity nnreal ennreal | |
variables {α : Type*} {β : Type*} {ι : Type*} | |
lemma tendsto_norm_at_top_at_top : tendsto (norm : ℝ → ℝ) at_top at_top := | |
tendsto_abs_at_top_at_top | |
lemma summable_of_absolute_convergence_real {f : ℕ → ℝ} : | |
(∃r, tendsto (λn, (∑ i in range n, |f i|)) at_top (𝓝 r)) → summable f | |
| ⟨r, hr⟩ := | |
begin | |
refine summable_of_summable_norm ⟨r, (has_sum_iff_tendsto_nat_of_nonneg _ _).2 _⟩, | |
exact assume i, norm_nonneg _, | |
simpa only using hr | |
end | |
/-! ### Powers -/ | |
lemma tendsto_norm_zero' {𝕜 : Type*} [normed_add_comm_group 𝕜] : | |
tendsto (norm : 𝕜 → ℝ) (𝓝[≠] 0) (𝓝[>] 0) := | |
tendsto_norm_zero.inf $ tendsto_principal_principal.2 $ λ x hx, norm_pos_iff.2 hx | |
namespace normed_field | |
lemma tendsto_norm_inverse_nhds_within_0_at_top {𝕜 : Type*} [normed_field 𝕜] : | |
tendsto (λ x:𝕜, ∥x⁻¹∥) (𝓝[≠] 0) at_top := | |
(tendsto_inv_zero_at_top.comp tendsto_norm_zero').congr $ λ x, (norm_inv x).symm | |
lemma tendsto_norm_zpow_nhds_within_0_at_top {𝕜 : Type*} [normed_field 𝕜] {m : ℤ} | |
(hm : m < 0) : | |
tendsto (λ x : 𝕜, ∥x ^ m∥) (𝓝[≠] 0) at_top := | |
begin | |
rcases neg_surjective m with ⟨m, rfl⟩, | |
rw neg_lt_zero at hm, lift m to ℕ using hm.le, rw int.coe_nat_pos at hm, | |
simp only [norm_pow, zpow_neg, zpow_coe_nat, ← inv_pow], | |
exact (tendsto_pow_at_top hm.ne').comp normed_field.tendsto_norm_inverse_nhds_within_0_at_top | |
end | |
/-- The (scalar) product of a sequence that tends to zero with a bounded one also tends to zero. -/ | |
lemma tendsto_zero_smul_of_tendsto_zero_of_bounded {ι 𝕜 𝔸 : Type*} [normed_field 𝕜] | |
[normed_add_comm_group 𝔸] [normed_space 𝕜 𝔸] {l : filter ι} {ε : ι → 𝕜} {f : ι → 𝔸} | |
(hε : tendsto ε l (𝓝 0)) (hf : filter.is_bounded_under (≤) l (norm ∘ f)) : | |
tendsto (ε • f) l (𝓝 0) := | |
begin | |
rw ← is_o_one_iff 𝕜 at hε ⊢, | |
simpa using is_o.smul_is_O hε (hf.is_O_const (one_ne_zero : (1 : 𝕜) ≠ 0)) | |
end | |
@[simp] lemma continuous_at_zpow {𝕜 : Type*} [nontrivially_normed_field 𝕜] {m : ℤ} {x : 𝕜} : | |
continuous_at (λ x, x ^ m) x ↔ x ≠ 0 ∨ 0 ≤ m := | |
begin | |
refine ⟨_, continuous_at_zpow₀ _ _⟩, | |
contrapose!, rintro ⟨rfl, hm⟩ hc, | |
exact not_tendsto_at_top_of_tendsto_nhds (hc.tendsto.mono_left nhds_within_le_nhds).norm | |
(tendsto_norm_zpow_nhds_within_0_at_top hm) | |
end | |
@[simp] lemma continuous_at_inv {𝕜 : Type*} [nontrivially_normed_field 𝕜] {x : 𝕜} : | |
continuous_at has_inv.inv x ↔ x ≠ 0 := | |
by simpa [(@zero_lt_one ℤ _ _).not_le] using @continuous_at_zpow _ _ (-1) x | |
end normed_field | |
lemma is_o_pow_pow_of_lt_left {r₁ r₂ : ℝ} (h₁ : 0 ≤ r₁) (h₂ : r₁ < r₂) : | |
(λ n : ℕ, r₁ ^ n) =o[at_top] (λ n, r₂ ^ n) := | |
have H : 0 < r₂ := h₁.trans_lt h₂, | |
is_o_of_tendsto (λ n hn, false.elim $ H.ne' $ pow_eq_zero hn) $ | |
(tendsto_pow_at_top_nhds_0_of_lt_1 (div_nonneg h₁ (h₁.trans h₂.le)) ((div_lt_one H).2 h₂)).congr | |
(λ n, div_pow _ _ _) | |
lemma is_O_pow_pow_of_le_left {r₁ r₂ : ℝ} (h₁ : 0 ≤ r₁) (h₂ : r₁ ≤ r₂) : | |
(λ n : ℕ, r₁ ^ n) =O[at_top] (λ n, r₂ ^ n) := | |
h₂.eq_or_lt.elim (λ h, h ▸ is_O_refl _ _) (λ h, (is_o_pow_pow_of_lt_left h₁ h).is_O) | |
lemma is_o_pow_pow_of_abs_lt_left {r₁ r₂ : ℝ} (h : |r₁| < |r₂|) : | |
(λ n : ℕ, r₁ ^ n) =o[at_top] (λ n, r₂ ^ n) := | |
begin | |
refine (is_o.of_norm_left _).of_norm_right, | |
exact (is_o_pow_pow_of_lt_left (abs_nonneg r₁) h).congr (pow_abs r₁) (pow_abs r₂) | |
end | |
/-- Various statements equivalent to the fact that `f n` grows exponentially slower than `R ^ n`. | |
* 0: $f n = o(a ^ n)$ for some $-R < a < R$; | |
* 1: $f n = o(a ^ n)$ for some < a < R$; | |
* 2: $f n = O(a ^ n)$ for some $-R < a < R$; | |
* 3: $f n = O(a ^ n)$ for some < a < R$; | |
* 4: there exist `a < R` and `C` such that one of `C` and `R` is positive and $|f n| ≤ Ca^n$ | |
for all `n`; | |
* 5: there exists `0 < a < R` and a positive `C` such that $|f n| ≤ Ca^n$ for all `n`; | |
* 6: there exists `a < R` such that $|f n| ≤ a ^ n$ for sufficiently large `n`; | |
* 7: there exists `0 < a < R` such that $|f n| ≤ a ^ n$ for sufficiently large `n`. | |
NB: For backwards compatibility, if you add more items to the list, please append them at the end of | |
the list. -/ | |
lemma tfae_exists_lt_is_o_pow (f : ℕ → ℝ) (R : ℝ) : | |
tfae [∃ a ∈ Ioo (-R) R, f =o[at_top] pow a, | |
∃ a ∈ Ioo 0 R, f =o[at_top] (pow a), | |
∃ a ∈ Ioo (-R) R, f =O[at_top] pow a, | |
∃ a ∈ Ioo 0 R, f =O[at_top] pow a, | |
∃ (a < R) C (h₀ : 0 < C ∨ 0 < R), ∀ n, |f n| ≤ C * a ^ n, | |
∃ (a ∈ Ioo 0 R) (C > 0), ∀ n, |f n| ≤ C * a ^ n, | |
∃ a < R, ∀ᶠ n in at_top, |f n| ≤ a ^ n, | |
∃ a ∈ Ioo 0 R, ∀ᶠ n in at_top, |f n| ≤ a ^ n] := | |
begin | |
have A : Ico 0 R ⊆ Ioo (-R) R, | |
from λ x hx, ⟨(neg_lt_zero.2 (hx.1.trans_lt hx.2)).trans_le hx.1, hx.2⟩, | |
have B : Ioo 0 R ⊆ Ioo (-R) R := subset.trans Ioo_subset_Ico_self A, | |
-- First we prove that 1-4 are equivalent using 2 → 3 → 4, 1 → 3, and 2 → 1 | |
tfae_have : 1 → 3, from λ ⟨a, ha, H⟩, ⟨a, ha, H.is_O⟩, | |
tfae_have : 2 → 1, from λ ⟨a, ha, H⟩, ⟨a, B ha, H⟩, | |
tfae_have : 3 → 2, | |
{ rintro ⟨a, ha, H⟩, | |
rcases exists_between (abs_lt.2 ha) with ⟨b, hab, hbR⟩, | |
exact ⟨b, ⟨(abs_nonneg a).trans_lt hab, hbR⟩, | |
H.trans_is_o (is_o_pow_pow_of_abs_lt_left (hab.trans_le (le_abs_self b)))⟩ }, | |
tfae_have : 2 → 4, from λ ⟨a, ha, H⟩, ⟨a, ha, H.is_O⟩, | |
tfae_have : 4 → 3, from λ ⟨a, ha, H⟩, ⟨a, B ha, H⟩, | |
-- Add 5 and 6 using 4 → 6 → 5 → 3 | |
tfae_have : 4 → 6, | |
{ rintro ⟨a, ha, H⟩, | |
rcases bound_of_is_O_nat_at_top H with ⟨C, hC₀, hC⟩, | |
refine ⟨a, ha, C, hC₀, λ n, _⟩, | |
simpa only [real.norm_eq_abs, abs_pow, abs_of_nonneg ha.1.le] | |
using hC (pow_ne_zero n ha.1.ne') }, | |
tfae_have : 6 → 5, from λ ⟨a, ha, C, H₀, H⟩, ⟨a, ha.2, C, or.inl H₀, H⟩, | |
tfae_have : 5 → 3, | |
{ rintro ⟨a, ha, C, h₀, H⟩, | |
rcases sign_cases_of_C_mul_pow_nonneg (λ n, (abs_nonneg _).trans (H n)) with rfl | ⟨hC₀, ha₀⟩, | |
{ obtain rfl : f = 0, by { ext n, simpa using H n }, | |
simp only [lt_irrefl, false_or] at h₀, | |
exact ⟨0, ⟨neg_lt_zero.2 h₀, h₀⟩, is_O_zero _ _⟩ }, | |
exact ⟨a, A ⟨ha₀, ha⟩, | |
is_O_of_le' _ (λ n, (H n).trans $ mul_le_mul_of_nonneg_left (le_abs_self _) hC₀.le)⟩ }, | |
-- Add 7 and 8 using 2 → 8 → 7 → 3 | |
tfae_have : 2 → 8, | |
{ rintro ⟨a, ha, H⟩, | |
refine ⟨a, ha, (H.def zero_lt_one).mono (λ n hn, _)⟩, | |
rwa [real.norm_eq_abs, real.norm_eq_abs, one_mul, abs_pow, abs_of_pos ha.1] at hn }, | |
tfae_have : 8 → 7, from λ ⟨a, ha, H⟩, ⟨a, ha.2, H⟩, | |
tfae_have : 7 → 3, | |
{ rintro ⟨a, ha, H⟩, | |
have : 0 ≤ a, from nonneg_of_eventually_pow_nonneg (H.mono $ λ n, (abs_nonneg _).trans), | |
refine ⟨a, A ⟨this, ha⟩, is_O.of_bound 1 _⟩, | |
simpa only [real.norm_eq_abs, one_mul, abs_pow, abs_of_nonneg this] }, | |
tfae_finish | |
end | |
/-- For any natural `k` and a real `r > 1` we have `n ^ k = o(r ^ n)` as `n → ∞`. -/ | |
lemma is_o_pow_const_const_pow_of_one_lt {R : Type*} [normed_ring R] (k : ℕ) {r : ℝ} (hr : 1 < r) : | |
(λ n, n ^ k : ℕ → R) =o[at_top] (λ n, r ^ n) := | |
begin | |
have : tendsto (λ x : ℝ, x ^ k) (𝓝[>] 1) (𝓝 1), | |
from ((continuous_id.pow k).tendsto' (1 : ℝ) 1 (one_pow _)).mono_left inf_le_left, | |
obtain ⟨r' : ℝ, hr' : r' ^ k < r, h1 : 1 < r'⟩ := | |
((this.eventually (gt_mem_nhds hr)).and self_mem_nhds_within).exists, | |
have h0 : 0 ≤ r' := zero_le_one.trans h1.le, | |
suffices : (λ n, n ^ k : ℕ → R) =O[at_top] (λ n : ℕ, (r' ^ k) ^ n), | |
from this.trans_is_o (is_o_pow_pow_of_lt_left (pow_nonneg h0 _) hr'), | |
conv in ((r' ^ _) ^ _) { rw [← pow_mul, mul_comm, pow_mul] }, | |
suffices : ∀ n : ℕ, ∥(n : R)∥ ≤ (r' - 1)⁻¹ * ∥(1 : R)∥ * ∥r' ^ n∥, | |
from (is_O_of_le' _ this).pow _, | |
intro n, rw mul_right_comm, | |
refine n.norm_cast_le.trans (mul_le_mul_of_nonneg_right _ (norm_nonneg _)), | |
simpa [div_eq_inv_mul, real.norm_eq_abs, abs_of_nonneg h0] using n.cast_le_pow_div_sub h1 | |
end | |
/-- For a real `r > 1` we have `n = o(r ^ n)` as `n → ∞`. -/ | |
lemma is_o_coe_const_pow_of_one_lt {R : Type*} [normed_ring R] {r : ℝ} (hr : 1 < r) : | |
(coe : ℕ → R) =o[at_top] (λ n, r ^ n) := | |
by simpa only [pow_one] using @is_o_pow_const_const_pow_of_one_lt R _ 1 _ hr | |
/-- If `∥r₁∥ < r₂`, then for any naturak `k` we have `n ^ k r₁ ^ n = o (r₂ ^ n)` as `n → ∞`. -/ | |
lemma is_o_pow_const_mul_const_pow_const_pow_of_norm_lt {R : Type*} [normed_ring R] (k : ℕ) | |
{r₁ : R} {r₂ : ℝ} (h : ∥r₁∥ < r₂) : | |
(λ n, n ^ k * r₁ ^ n : ℕ → R) =o[at_top] (λ n, r₂ ^ n) := | |
begin | |
by_cases h0 : r₁ = 0, | |
{ refine (is_o_zero _ _).congr' (mem_at_top_sets.2 $ ⟨1, λ n hn, _⟩) eventually_eq.rfl, | |
simp [zero_pow (zero_lt_one.trans_le hn), h0] }, | |
rw [← ne.def, ← norm_pos_iff] at h0, | |
have A : (λ n, n ^ k : ℕ → R) =o[at_top] (λ n, (r₂ / ∥r₁∥) ^ n), | |
from is_o_pow_const_const_pow_of_one_lt k ((one_lt_div h0).2 h), | |
suffices : (λ n, r₁ ^ n) =O[at_top] (λ n, ∥r₁∥ ^ n), | |
by simpa [div_mul_cancel _ (pow_pos h0 _).ne'] using A.mul_is_O this, | |
exact is_O.of_bound 1 (by simpa using eventually_norm_pow_le r₁) | |
end | |
lemma tendsto_pow_const_div_const_pow_of_one_lt (k : ℕ) {r : ℝ} (hr : 1 < r) : | |
tendsto (λ n, n ^ k / r ^ n : ℕ → ℝ) at_top (𝓝 0) := | |
(is_o_pow_const_const_pow_of_one_lt k hr).tendsto_div_nhds_zero | |
/-- If `|r| < 1`, then `n ^ k r ^ n` tends to zero for any natural `k`. -/ | |
lemma tendsto_pow_const_mul_const_pow_of_abs_lt_one (k : ℕ) {r : ℝ} (hr : |r| < 1) : | |
tendsto (λ n, n ^ k * r ^ n : ℕ → ℝ) at_top (𝓝 0) := | |
begin | |
by_cases h0 : r = 0, | |
{ exact tendsto_const_nhds.congr' | |
(mem_at_top_sets.2 ⟨1, λ n hn, by simp [zero_lt_one.trans_le hn, h0]⟩) }, | |
have hr' : 1 < (|r|)⁻¹, from one_lt_inv (abs_pos.2 h0) hr, | |
rw tendsto_zero_iff_norm_tendsto_zero, | |
simpa [div_eq_mul_inv] using tendsto_pow_const_div_const_pow_of_one_lt k hr' | |
end | |
/-- If `0 ≤ r < 1`, then `n ^ k r ^ n` tends to zero for any natural `k`. | |
This is a specialized version of `tendsto_pow_const_mul_const_pow_of_abs_lt_one`, singled out | |
for ease of application. -/ | |
lemma tendsto_pow_const_mul_const_pow_of_lt_one (k : ℕ) {r : ℝ} (hr : 0 ≤ r) (h'r : r < 1) : | |
tendsto (λ n, n ^ k * r ^ n : ℕ → ℝ) at_top (𝓝 0) := | |
tendsto_pow_const_mul_const_pow_of_abs_lt_one k (abs_lt.2 ⟨neg_one_lt_zero.trans_le hr, h'r⟩) | |
/-- If `|r| < 1`, then `n * r ^ n` tends to zero. -/ | |
lemma tendsto_self_mul_const_pow_of_abs_lt_one {r : ℝ} (hr : |r| < 1) : | |
tendsto (λ n, n * r ^ n : ℕ → ℝ) at_top (𝓝 0) := | |
by simpa only [pow_one] using tendsto_pow_const_mul_const_pow_of_abs_lt_one 1 hr | |
/-- If `0 ≤ r < 1`, then `n * r ^ n` tends to zero. This is a specialized version of | |
`tendsto_self_mul_const_pow_of_abs_lt_one`, singled out for ease of application. -/ | |
lemma tendsto_self_mul_const_pow_of_lt_one {r : ℝ} (hr : 0 ≤ r) (h'r : r < 1) : | |
tendsto (λ n, n * r ^ n : ℕ → ℝ) at_top (𝓝 0) := | |
by simpa only [pow_one] using tendsto_pow_const_mul_const_pow_of_lt_one 1 hr h'r | |
/-- In a normed ring, the powers of an element x with `∥x∥ < 1` tend to zero. -/ | |
lemma tendsto_pow_at_top_nhds_0_of_norm_lt_1 {R : Type*} [normed_ring R] {x : R} | |
(h : ∥x∥ < 1) : tendsto (λ (n : ℕ), x ^ n) at_top (𝓝 0) := | |
begin | |
apply squeeze_zero_norm' (eventually_norm_pow_le x), | |
exact tendsto_pow_at_top_nhds_0_of_lt_1 (norm_nonneg _) h, | |
end | |
lemma tendsto_pow_at_top_nhds_0_of_abs_lt_1 {r : ℝ} (h : |r| < 1) : | |
tendsto (λn:ℕ, r^n) at_top (𝓝 0) := | |
tendsto_pow_at_top_nhds_0_of_norm_lt_1 h | |
/-! ### Geometric series-/ | |
section geometric | |
variables {K : Type*} [normed_field K] {ξ : K} | |
lemma has_sum_geometric_of_norm_lt_1 (h : ∥ξ∥ < 1) : has_sum (λn:ℕ, ξ ^ n) (1 - ξ)⁻¹ := | |
begin | |
have xi_ne_one : ξ ≠ 1, by { contrapose! h, simp [h] }, | |
have A : tendsto (λn, (ξ ^ n - 1) * (ξ - 1)⁻¹) at_top (𝓝 ((0 - 1) * (ξ - 1)⁻¹)), | |
from ((tendsto_pow_at_top_nhds_0_of_norm_lt_1 h).sub tendsto_const_nhds).mul tendsto_const_nhds, | |
rw [has_sum_iff_tendsto_nat_of_summable_norm], | |
{ simpa [geom_sum_eq, xi_ne_one, neg_inv, div_eq_mul_inv] using A }, | |
{ simp [norm_pow, summable_geometric_of_lt_1 (norm_nonneg _) h] } | |
end | |
lemma summable_geometric_of_norm_lt_1 (h : ∥ξ∥ < 1) : summable (λn:ℕ, ξ ^ n) := | |
⟨_, has_sum_geometric_of_norm_lt_1 h⟩ | |
lemma tsum_geometric_of_norm_lt_1 (h : ∥ξ∥ < 1) : ∑'n:ℕ, ξ ^ n = (1 - ξ)⁻¹ := | |
(has_sum_geometric_of_norm_lt_1 h).tsum_eq | |
lemma has_sum_geometric_of_abs_lt_1 {r : ℝ} (h : |r| < 1) : has_sum (λn:ℕ, r ^ n) (1 - r)⁻¹ := | |
has_sum_geometric_of_norm_lt_1 h | |
lemma summable_geometric_of_abs_lt_1 {r : ℝ} (h : |r| < 1) : summable (λn:ℕ, r ^ n) := | |
summable_geometric_of_norm_lt_1 h | |
lemma tsum_geometric_of_abs_lt_1 {r : ℝ} (h : |r| < 1) : ∑'n:ℕ, r ^ n = (1 - r)⁻¹ := | |
tsum_geometric_of_norm_lt_1 h | |
/-- A geometric series in a normed field is summable iff the norm of the common ratio is less than | |
one. -/ | |
@[simp] lemma summable_geometric_iff_norm_lt_1 : summable (λ n : ℕ, ξ ^ n) ↔ ∥ξ∥ < 1 := | |
begin | |
refine ⟨λ h, _, summable_geometric_of_norm_lt_1⟩, | |
obtain ⟨k : ℕ, hk : dist (ξ ^ k) 0 < 1⟩ := | |
(h.tendsto_cofinite_zero.eventually (ball_mem_nhds _ zero_lt_one)).exists, | |
simp only [norm_pow, dist_zero_right] at hk, | |
rw [← one_pow k] at hk, | |
exact lt_of_pow_lt_pow _ zero_le_one hk | |
end | |
end geometric | |
section mul_geometric | |
lemma summable_norm_pow_mul_geometric_of_norm_lt_1 {R : Type*} [normed_ring R] | |
(k : ℕ) {r : R} (hr : ∥r∥ < 1) : summable (λ n : ℕ, ∥(n ^ k * r ^ n : R)∥) := | |
begin | |
rcases exists_between hr with ⟨r', hrr', h⟩, | |
exact summable_of_is_O_nat (summable_geometric_of_lt_1 ((norm_nonneg _).trans hrr'.le) h) | |
(is_o_pow_const_mul_const_pow_const_pow_of_norm_lt _ hrr').is_O.norm_left | |
end | |
lemma summable_pow_mul_geometric_of_norm_lt_1 {R : Type*} [normed_ring R] [complete_space R] | |
(k : ℕ) {r : R} (hr : ∥r∥ < 1) : summable (λ n, n ^ k * r ^ n : ℕ → R) := | |
summable_of_summable_norm $ summable_norm_pow_mul_geometric_of_norm_lt_1 _ hr | |
/-- If `∥r∥ < 1`, then `∑' n : ℕ, n * r ^ n = r / (1 - r) ^ 2`, `has_sum` version. -/ | |
lemma has_sum_coe_mul_geometric_of_norm_lt_1 {𝕜 : Type*} [normed_field 𝕜] [complete_space 𝕜] | |
{r : 𝕜} (hr : ∥r∥ < 1) : has_sum (λ n, n * r ^ n : ℕ → 𝕜) (r / (1 - r) ^ 2) := | |
begin | |
have A : summable (λ n, n * r ^ n : ℕ → 𝕜), | |
by simpa using summable_pow_mul_geometric_of_norm_lt_1 1 hr, | |
have B : has_sum (pow r : ℕ → 𝕜) (1 - r)⁻¹, from has_sum_geometric_of_norm_lt_1 hr, | |
refine A.has_sum_iff.2 _, | |
have hr' : r ≠ 1, by { rintro rfl, simpa [lt_irrefl] using hr }, | |
set s : 𝕜 := ∑' n : ℕ, n * r ^ n, | |
calc s = (1 - r) * s / (1 - r) : (mul_div_cancel_left _ (sub_ne_zero.2 hr'.symm)).symm | |
... = (s - r * s) / (1 - r) : by rw [sub_mul, one_mul] | |
... = ((0 : ℕ) * r ^ 0 + (∑' n : ℕ, (n + 1 : ℕ) * r ^ (n + 1)) - r * s) / (1 - r) : | |
by rw ← tsum_eq_zero_add A | |
... = (r * (∑' n : ℕ, (n + 1) * r ^ n) - r * s) / (1 - r) : | |
by simp [pow_succ, mul_left_comm _ r, tsum_mul_left] | |
... = r / (1 - r) ^ 2 : | |
by simp [add_mul, tsum_add A B.summable, mul_add, B.tsum_eq, ← div_eq_mul_inv, sq, | |
div_div] | |
end | |
/-- If `∥r∥ < 1`, then `∑' n : ℕ, n * r ^ n = r / (1 - r) ^ 2`. -/ | |
lemma tsum_coe_mul_geometric_of_norm_lt_1 {𝕜 : Type*} [normed_field 𝕜] [complete_space 𝕜] | |
{r : 𝕜} (hr : ∥r∥ < 1) : | |
(∑' n : ℕ, n * r ^ n : 𝕜) = (r / (1 - r) ^ 2) := | |
(has_sum_coe_mul_geometric_of_norm_lt_1 hr).tsum_eq | |
end mul_geometric | |
section summable_le_geometric | |
variables [seminormed_add_comm_group α] {r C : ℝ} {f : ℕ → α} | |
lemma seminormed_add_comm_group.cauchy_seq_of_le_geometric {C : ℝ} {r : ℝ} (hr : r < 1) | |
{u : ℕ → α} (h : ∀ n, ∥u n - u (n + 1)∥ ≤ C*r^n) : cauchy_seq u := | |
cauchy_seq_of_le_geometric r C hr (by simpa [dist_eq_norm] using h) | |
lemma dist_partial_sum_le_of_le_geometric (hf : ∀n, ∥f n∥ ≤ C * r^n) (n : ℕ) : | |
dist (∑ i in range n, f i) (∑ i in range (n+1), f i) ≤ C * r ^ n := | |
begin | |
rw [sum_range_succ, dist_eq_norm, ← norm_neg, neg_sub, add_sub_cancel'], | |
exact hf n, | |
end | |
/-- If `∥f n∥ ≤ C * r ^ n` for all `n : ℕ` and some `r < 1`, then the partial sums of `f` form a | |
Cauchy sequence. This lemma does not assume `0 ≤ r` or `0 ≤ C`. -/ | |
lemma cauchy_seq_finset_of_geometric_bound (hr : r < 1) (hf : ∀n, ∥f n∥ ≤ C * r^n) : | |
cauchy_seq (λ s : finset (ℕ), ∑ x in s, f x) := | |
cauchy_seq_finset_of_norm_bounded _ | |
(aux_has_sum_of_le_geometric hr (dist_partial_sum_le_of_le_geometric hf)).summable hf | |
/-- If `∥f n∥ ≤ C * r ^ n` for all `n : ℕ` and some `r < 1`, then the partial sums of `f` are within | |
distance `C * r ^ n / (1 - r)` of the sum of the series. This lemma does not assume `0 ≤ r` or | |
`0 ≤ C`. -/ | |
lemma norm_sub_le_of_geometric_bound_of_has_sum (hr : r < 1) (hf : ∀n, ∥f n∥ ≤ C * r^n) | |
{a : α} (ha : has_sum f a) (n : ℕ) : | |
∥(∑ x in finset.range n, f x) - a∥ ≤ (C * r ^ n) / (1 - r) := | |
begin | |
rw ← dist_eq_norm, | |
apply dist_le_of_le_geometric_of_tendsto r C hr (dist_partial_sum_le_of_le_geometric hf), | |
exact ha.tendsto_sum_nat | |
end | |
@[simp] lemma dist_partial_sum (u : ℕ → α) (n : ℕ) : | |
dist (∑ k in range (n + 1), u k) (∑ k in range n, u k) = ∥u n∥ := | |
by simp [dist_eq_norm, sum_range_succ] | |
@[simp] lemma dist_partial_sum' (u : ℕ → α) (n : ℕ) : | |
dist (∑ k in range n, u k) (∑ k in range (n+1), u k) = ∥u n∥ := | |
by simp [dist_eq_norm', sum_range_succ] | |
lemma cauchy_series_of_le_geometric {C : ℝ} {u : ℕ → α} | |
{r : ℝ} (hr : r < 1) (h : ∀ n, ∥u n∥ ≤ C*r^n) : cauchy_seq (λ n, ∑ k in range n, u k) := | |
cauchy_seq_of_le_geometric r C hr (by simp [h]) | |
lemma normed_add_comm_group.cauchy_series_of_le_geometric' {C : ℝ} {u : ℕ → α} {r : ℝ} (hr : r < 1) | |
(h : ∀ n, ∥u n∥ ≤ C*r^n) : cauchy_seq (λ n, ∑ k in range (n + 1), u k) := | |
(cauchy_series_of_le_geometric hr h).comp_tendsto $ tendsto_add_at_top_nat 1 | |
lemma normed_add_comm_group.cauchy_series_of_le_geometric'' {C : ℝ} {u : ℕ → α} {N : ℕ} {r : ℝ} | |
(hr₀ : 0 < r) (hr₁ : r < 1) | |
(h : ∀ n ≥ N, ∥u n∥ ≤ C*r^n) : cauchy_seq (λ n, ∑ k in range (n + 1), u k) := | |
begin | |
set v : ℕ → α := λ n, if n < N then 0 else u n, | |
have hC : 0 ≤ C, | |
from (zero_le_mul_right $ pow_pos hr₀ N).mp ((norm_nonneg _).trans $ h N $ le_refl N), | |
have : ∀ n ≥ N, u n = v n, | |
{ intros n hn, | |
simp [v, hn, if_neg (not_lt.mpr hn)] }, | |
refine cauchy_seq_sum_of_eventually_eq this (normed_add_comm_group.cauchy_series_of_le_geometric' | |
hr₁ _), | |
{ exact C }, | |
intro n, | |
dsimp [v], | |
split_ifs with H H, | |
{ rw norm_zero, | |
exact mul_nonneg hC (pow_nonneg hr₀.le _) }, | |
{ push_neg at H, | |
exact h _ H } | |
end | |
end summable_le_geometric | |
section normed_ring_geometric | |
variables {R : Type*} [normed_ring R] [complete_space R] | |
open normed_space | |
/-- A geometric series in a complete normed ring is summable. | |
Proved above (same name, different namespace) for not-necessarily-complete normed fields. -/ | |
lemma normed_ring.summable_geometric_of_norm_lt_1 | |
(x : R) (h : ∥x∥ < 1) : summable (λ (n:ℕ), x ^ n) := | |
begin | |
have h1 : summable (λ (n:ℕ), ∥x∥ ^ n) := summable_geometric_of_lt_1 (norm_nonneg _) h, | |
refine summable_of_norm_bounded_eventually _ h1 _, | |
rw nat.cofinite_eq_at_top, | |
exact eventually_norm_pow_le x, | |
end | |
/-- Bound for the sum of a geometric series in a normed ring. This formula does not assume that the | |
normed ring satisfies the axiom `∥1∥ = 1`. -/ | |
lemma normed_ring.tsum_geometric_of_norm_lt_1 | |
(x : R) (h : ∥x∥ < 1) : ∥∑' n:ℕ, x ^ n∥ ≤ ∥(1:R)∥ - 1 + (1 - ∥x∥)⁻¹ := | |
begin | |
rw tsum_eq_zero_add (normed_ring.summable_geometric_of_norm_lt_1 x h), | |
simp only [pow_zero], | |
refine le_trans (norm_add_le _ _) _, | |
have : ∥∑' b : ℕ, (λ n, x ^ (n + 1)) b∥ ≤ (1 - ∥x∥)⁻¹ - 1, | |
{ refine tsum_of_norm_bounded _ (λ b, norm_pow_le' _ (nat.succ_pos b)), | |
convert (has_sum_nat_add_iff' 1).mpr (has_sum_geometric_of_lt_1 (norm_nonneg x) h), | |
simp }, | |
linarith | |
end | |
lemma geom_series_mul_neg (x : R) (h : ∥x∥ < 1) : | |
(∑' i:ℕ, x ^ i) * (1 - x) = 1 := | |
begin | |
have := ((normed_ring.summable_geometric_of_norm_lt_1 x h).has_sum.mul_right (1 - x)), | |
refine tendsto_nhds_unique this.tendsto_sum_nat _, | |
have : tendsto (λ (n : ℕ), 1 - x ^ n) at_top (𝓝 1), | |
{ simpa using tendsto_const_nhds.sub (tendsto_pow_at_top_nhds_0_of_norm_lt_1 h) }, | |
convert ← this, | |
ext n, | |
rw [←geom_sum_mul_neg, finset.sum_mul], | |
end | |
lemma mul_neg_geom_series (x : R) (h : ∥x∥ < 1) : | |
(1 - x) * ∑' i:ℕ, x ^ i = 1 := | |
begin | |
have := (normed_ring.summable_geometric_of_norm_lt_1 x h).has_sum.mul_left (1 - x), | |
refine tendsto_nhds_unique this.tendsto_sum_nat _, | |
have : tendsto (λ (n : ℕ), 1 - x ^ n) at_top (nhds 1), | |
{ simpa using tendsto_const_nhds.sub | |
(tendsto_pow_at_top_nhds_0_of_norm_lt_1 h) }, | |
convert ← this, | |
ext n, | |
rw [←mul_neg_geom_sum, finset.mul_sum] | |
end | |
end normed_ring_geometric | |
/-! ### Summability tests based on comparison with geometric series -/ | |
lemma summable_of_ratio_norm_eventually_le {α : Type*} [seminormed_add_comm_group α] | |
[complete_space α] {f : ℕ → α} {r : ℝ} (hr₁ : r < 1) | |
(h : ∀ᶠ n in at_top, ∥f (n+1)∥ ≤ r * ∥f n∥) : summable f := | |
begin | |
by_cases hr₀ : 0 ≤ r, | |
{ rw eventually_at_top at h, | |
rcases h with ⟨N, hN⟩, | |
rw ← @summable_nat_add_iff α _ _ _ _ N, | |
refine summable_of_norm_bounded (λ n, ∥f N∥ * r^n) | |
(summable.mul_left _ $ summable_geometric_of_lt_1 hr₀ hr₁) (λ n, _), | |
conv_rhs {rw [mul_comm, ← zero_add N]}, | |
refine le_geom hr₀ n (λ i _, _), | |
convert hN (i + N) (N.le_add_left i) using 3, | |
ac_refl }, | |
{ push_neg at hr₀, | |
refine summable_of_norm_bounded_eventually 0 summable_zero _, | |
rw nat.cofinite_eq_at_top, | |
filter_upwards [h] with _ hn, | |
by_contra' h, | |
exact not_lt.mpr (norm_nonneg _) (lt_of_le_of_lt hn $ mul_neg_of_neg_of_pos hr₀ h), }, | |
end | |
lemma summable_of_ratio_test_tendsto_lt_one {α : Type*} [normed_add_comm_group α] [complete_space α] | |
{f : ℕ → α} {l : ℝ} (hl₁ : l < 1) (hf : ∀ᶠ n in at_top, f n ≠ 0) | |
(h : tendsto (λ n, ∥f (n+1)∥/∥f n∥) at_top (𝓝 l)) : summable f := | |
begin | |
rcases exists_between hl₁ with ⟨r, hr₀, hr₁⟩, | |
refine summable_of_ratio_norm_eventually_le hr₁ _, | |
filter_upwards [eventually_le_of_tendsto_lt hr₀ h, hf] with _ _ h₁, | |
rwa ← div_le_iff (norm_pos_iff.mpr h₁), | |
end | |
lemma not_summable_of_ratio_norm_eventually_ge {α : Type*} [seminormed_add_comm_group α] | |
{f : ℕ → α} {r : ℝ} (hr : 1 < r) (hf : ∃ᶠ n in at_top, ∥f n∥ ≠ 0) | |
(h : ∀ᶠ n in at_top, r * ∥f n∥ ≤ ∥f (n+1)∥) : ¬ summable f := | |
begin | |
rw eventually_at_top at h, | |
rcases h with ⟨N₀, hN₀⟩, | |
rw frequently_at_top at hf, | |
rcases hf N₀ with ⟨N, hNN₀ : N₀ ≤ N, hN⟩, | |
rw ← @summable_nat_add_iff α _ _ _ _ N, | |
refine mt summable.tendsto_at_top_zero | |
(λ h', not_tendsto_at_top_of_tendsto_nhds (tendsto_norm_zero.comp h') _), | |
convert tendsto_at_top_of_geom_le _ hr _, | |
{ refine lt_of_le_of_ne (norm_nonneg _) _, | |
intro h'', | |
specialize hN₀ N hNN₀, | |
simp only [comp_app, zero_add] at h'', | |
exact hN h''.symm }, | |
{ intro i, | |
dsimp only [comp_app], | |
convert (hN₀ (i + N) (hNN₀.trans (N.le_add_left i))) using 3, | |
ac_refl } | |
end | |
lemma not_summable_of_ratio_test_tendsto_gt_one {α : Type*} [seminormed_add_comm_group α] | |
{f : ℕ → α} {l : ℝ} (hl : 1 < l) | |
(h : tendsto (λ n, ∥f (n+1)∥/∥f n∥) at_top (𝓝 l)) : ¬ summable f := | |
begin | |
have key : ∀ᶠ n in at_top, ∥f n∥ ≠ 0, | |
{ filter_upwards [eventually_ge_of_tendsto_gt hl h] with _ hn hc, | |
rw [hc, div_zero] at hn, | |
linarith }, | |
rcases exists_between hl with ⟨r, hr₀, hr₁⟩, | |
refine not_summable_of_ratio_norm_eventually_ge hr₀ key.frequently _, | |
filter_upwards [eventually_ge_of_tendsto_gt hr₁ h, key] with _ _ h₁, | |
rwa ← le_div_iff (lt_of_le_of_ne (norm_nonneg _) h₁.symm) | |
end | |
section | |
/-! ### Dirichlet and alternating series tests -/ | |
variables {E : Type*} [normed_add_comm_group E] [normed_space ℝ E] | |
variables {b : ℝ} {f : ℕ → ℝ} {z : ℕ → E} | |
/-- **Dirichlet's Test** for monotone sequences. -/ | |
theorem monotone.cauchy_seq_series_mul_of_tendsto_zero_of_bounded | |
(hfa : monotone f) (hf0 : tendsto f at_top (𝓝 0)) (hgb : ∀ n, ∥∑ i in range n, z i∥ ≤ b) : | |
cauchy_seq (λ n, ∑ i in range (n + 1), (f i) • z i) := | |
begin | |
simp_rw [finset.sum_range_by_parts _ _ (nat.succ _), sub_eq_add_neg, | |
nat.succ_sub_succ_eq_sub, tsub_zero], | |
apply (normed_field.tendsto_zero_smul_of_tendsto_zero_of_bounded hf0 | |
⟨b, eventually_map.mpr $ eventually_of_forall $ λ n, hgb $ n+1⟩).cauchy_seq.add, | |
apply (cauchy_seq_range_of_norm_bounded _ _ (_ : ∀ n, _ ≤ b * |f(n+1) - f(n)|)).neg, | |
{ exact normed_uniform_group }, | |
{ simp_rw [abs_of_nonneg (sub_nonneg_of_le (hfa (nat.le_succ _))), ← mul_sum], | |
apply real.uniform_continuous_mul_const.comp_cauchy_seq, | |
simp_rw [sum_range_sub, sub_eq_add_neg], | |
exact (tendsto.cauchy_seq hf0).add_const }, | |
{ intro n, | |
rw [norm_smul, mul_comm], | |
exact mul_le_mul_of_nonneg_right (hgb _) (abs_nonneg _) }, | |
end | |
/-- **Dirichlet's test** for antitone sequences. -/ | |
theorem antitone.cauchy_seq_series_mul_of_tendsto_zero_of_bounded | |
(hfa : antitone f) (hf0 : tendsto f at_top (𝓝 0)) (hzb : ∀ n, ∥∑ i in range n, z i∥ ≤ b) : | |
cauchy_seq (λ n, ∑ i in range (n+1), (f i) • z i) := | |
begin | |
have hfa': monotone (λ n, -f n) := λ _ _ hab, neg_le_neg $ hfa hab, | |
have hf0': tendsto (λ n, -f n) at_top (𝓝 0) := by { convert hf0.neg, norm_num }, | |
convert (hfa'.cauchy_seq_series_mul_of_tendsto_zero_of_bounded hf0' hzb).neg, | |
funext, | |
simp | |
end | |
lemma norm_sum_neg_one_pow_le (n : ℕ) : ∥∑ i in range n, (-1 : ℝ) ^ i∥ ≤ 1 := | |
by { rw [neg_one_geom_sum], split_ifs; norm_num } | |
/-- The **alternating series test** for monotone sequences. | |
See also `tendsto_alternating_series_of_monotone_tendsto_zero`. -/ | |
theorem monotone.cauchy_seq_alternating_series_of_tendsto_zero | |
(hfa : monotone f) (hf0 : tendsto f at_top (𝓝 0)) : | |
cauchy_seq (λ n, ∑ i in range (n+1), (-1) ^ i * f i) := | |
begin | |
simp_rw [mul_comm], | |
exact hfa.cauchy_seq_series_mul_of_tendsto_zero_of_bounded hf0 norm_sum_neg_one_pow_le | |
end | |
/-- The **alternating series test** for monotone sequences. -/ | |
theorem monotone.tendsto_alternating_series_of_tendsto_zero | |
(hfa : monotone f) (hf0 : tendsto f at_top (𝓝 0)) : | |
∃ l, tendsto (λ n, ∑ i in range (n+1), (-1) ^ i * f i) at_top (𝓝 l) := | |
cauchy_seq_tendsto_of_complete $ hfa.cauchy_seq_alternating_series_of_tendsto_zero hf0 | |
/-- The **alternating series test** for antitone sequences. | |
See also `tendsto_alternating_series_of_antitone_tendsto_zero`. -/ | |
theorem antitone.cauchy_seq_alternating_series_of_tendsto_zero | |
(hfa : antitone f) (hf0 : tendsto f at_top (𝓝 0)) : | |
cauchy_seq (λ n, ∑ i in range (n+1), (-1) ^ i * f i) := | |
begin | |
simp_rw [mul_comm], | |
exact | |
hfa.cauchy_seq_series_mul_of_tendsto_zero_of_bounded hf0 norm_sum_neg_one_pow_le | |
end | |
/-- The **alternating series test** for antitone sequences. -/ | |
theorem antitone.tendsto_alternating_series_of_tendsto_zero | |
(hfa : antitone f) (hf0 : tendsto f at_top (𝓝 0)) : | |
∃ l, tendsto (λ n, ∑ i in range (n+1), (-1) ^ i * f i) at_top (𝓝 l) := | |
cauchy_seq_tendsto_of_complete $ hfa.cauchy_seq_alternating_series_of_tendsto_zero hf0 | |
end | |
/-! | |
### Factorial | |
-/ | |
/-- The series `∑' n, x ^ n / n!` is summable of any `x : ℝ`. See also `exp_series_div_summable` | |
for a version that also works in `ℂ`, and `exp_series_summable'` for a version that works in | |
any normed algebra over `ℝ` or `ℂ`. -/ | |
lemma real.summable_pow_div_factorial (x : ℝ) : | |
summable (λ n, x ^ n / n! : ℕ → ℝ) := | |
begin | |
-- We start with trivial extimates | |
have A : (0 : ℝ) < ⌊∥x∥⌋₊ + 1, from zero_lt_one.trans_le (by simp), | |
have B : ∥x∥ / (⌊∥x∥⌋₊ + 1) < 1, from (div_lt_one A).2 (nat.lt_floor_add_one _), | |
-- Then we apply the ratio test. The estimate works for `n ≥ ⌊∥x∥⌋₊`. | |
suffices : ∀ n ≥ ⌊∥x∥⌋₊, ∥x ^ (n + 1) / (n + 1)!∥ ≤ ∥x∥ / (⌊∥x∥⌋₊ + 1) * ∥x ^ n / ↑n!∥, | |
from summable_of_ratio_norm_eventually_le B (eventually_at_top.2 ⟨⌊∥x∥⌋₊, this⟩), | |
-- Finally, we prove the upper estimate | |
intros n hn, | |
calc ∥x ^ (n + 1) / (n + 1)!∥ = (∥x∥ / (n + 1)) * ∥x ^ n / n!∥ : | |
by rw [pow_succ, nat.factorial_succ, nat.cast_mul, ← div_mul_div_comm, | |
norm_mul, norm_div, real.norm_coe_nat, nat.cast_succ] | |
... ≤ (∥x∥ / (⌊∥x∥⌋₊ + 1)) * ∥x ^ n / n!∥ : | |
by mono* with [0 ≤ ∥x ^ n / n!∥, 0 ≤ ∥x∥]; apply norm_nonneg | |
end | |
lemma real.tendsto_pow_div_factorial_at_top (x : ℝ) : | |
tendsto (λ n, x ^ n / n! : ℕ → ℝ) at_top (𝓝 0) := | |
(real.summable_pow_div_factorial x).tendsto_at_top_zero | |