Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
16.6 kB
/-
Copyright (c) 2020 Jean Lo. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jean Lo
-/
import dynamics.flow
/-!
# ω-limits
For a function `ϕ : τ → α → β` where `β` is a topological space, we
define the ω-limit under `ϕ` of a set `s` in `α` with respect to
filter `f` on `τ`: an element `y : β` is in the ω-limit of `s` if the
forward images of `s` intersect arbitrarily small neighbourhoods of
`y` frequently "in the direction of `f`".
In practice `ϕ` is often a continuous monoid-act, but the definition
requires only that `ϕ` has a coercion to the appropriate function
type. In the case where `τ` is `ℕ` or `ℝ` and `f` is `at_top`, we
recover the usual definition of the ω-limit set as the set of all `y`
such that there exist sequences `(tₙ)`, `(xₙ)` such that `ϕ tₙ xₙ ⟶ y`
as `n ⟶ ∞`.
## Notations
The `omega_limit` locale provides the localised notation `ω` for
`omega_limit`, as well as `ω⁺` and `ω⁻` for `omega_limit at_top` and
`omega_limit at_bot` respectively for when the acting monoid is
endowed with an order.
-/
open set function filter
open_locale topological_space
/-!
### Definition and notation
-/
section omega_limit
variables {τ : Type*} {α : Type*} {β : Type*} {ι : Type*}
/-- The ω-limit of a set `s` under `ϕ` with respect to a filter `f` is
⋂ u ∈ f, cl (ϕ u s). -/
def omega_limit [topological_space β] (f : filter τ) (ϕ : τ → α → β) (s : set α) : set β :=
⋂ u ∈ f, closure (image2 ϕ u s)
localized "notation `ω` := omega_limit" in omega_limit
localized "notation `ω⁺` := omega_limit filter.at_top" in omega_limit
localized "notation `ω⁻` := omega_limit filter.at_bot" in omega_limit
variables [topological_space β]
variables (f : filter τ) (ϕ : τ → α → β) (s s₁ s₂: set α)
/-!
### Elementary properties
-/
lemma omega_limit_def : ω f ϕ s = ⋂ u ∈ f, closure (image2 ϕ u s) := rfl
lemma omega_limit_subset_of_tendsto {m : τ → τ} {f₁ f₂ : filter τ} (hf : tendsto m f₁ f₂) :
ω f₁ (λ t x, ϕ (m t) x) s ⊆ ω f₂ ϕ s :=
begin
refine Inter₂_mono' (λ u hu, ⟨m ⁻¹' u, tendsto_def.mp hf _ hu, _⟩),
rw ←image2_image_left,
exact closure_mono (image2_subset (image_preimage_subset _ _) subset.rfl),
end
lemma omega_limit_mono_left {f₁ f₂ : filter τ} (hf : f₁ ≤ f₂) : ω f₁ ϕ s ⊆ ω f₂ ϕ s :=
omega_limit_subset_of_tendsto ϕ s (tendsto_id'.2 hf)
lemma omega_limit_mono_right {s₁ s₂ : set α} (hs : s₁ ⊆ s₂) : ω f ϕ s₁ ⊆ ω f ϕ s₂ :=
Inter₂_mono $ λ u hu, closure_mono (image2_subset subset.rfl hs)
lemma is_closed_omega_limit : is_closed (ω f ϕ s) :=
is_closed_Inter $ λ u, is_closed_Inter $ λ hu, is_closed_closure
lemma maps_to_omega_limit'' β' : Type*} [topological_space β'] {f : filter τ} {ϕ : τ → α → β}
{ϕ' : τ → α' → β'} {ga : α → α'} {s' : set α'} (hs : maps_to ga s s')
{gb : β → β'} (hg : ∀ᶠ t in f, eq_on (gb ∘ (ϕ t)) (ϕ' t ∘ ga) s)
(hgc : continuous gb) :
maps_to gb (ω f ϕ s) (ω f ϕ' s') :=
begin
simp only [omega_limit_def, mem_Inter, maps_to],
intros y hy u hu,
refine map_mem_closure hgc (hy _ (inter_mem hu hg)) (forall_image2_iff.2 $ λ t ht x hx, _),
calc gb (ϕ t x) = ϕ' t (ga x) : ht.2 hx
... ∈ image2 ϕ' u s' : mem_image2_of_mem ht.1 (hs hx)
end
lemma maps_to_omega_limit {α' β' : Type*} [topological_space β'] {f : filter τ} {ϕ : τ → α → β}
' : τ → α' → β'} {ga : α → α'} {s' : set α'} (hs : maps_to ga s s')
{gb : β → β'} (hg : ∀ t x, gb (ϕ t x) = ϕ' t (ga x))
(hgc : continuous gb) :
maps_to gb (ω f ϕ s) (ω f ϕ' s') :=
maps_to_omega_limit' _ hs (eventually_of_forall $ λ t x hx, hg t x) hgc
lemma omega_limit_image_eq {α' : Type*} (ϕ : τ → α' → β) (f : filter τ) (g : α → α') :
ω f ϕ (g '' s) = ω f (λ t x, ϕ t (g x)) s :=
by simp only [omega_limit, image2_image_right]
lemma omega_limit_preimage_subset {α' : Type*} (ϕ : τ → α' → β) (s : set α') (f : filter τ)
(g : α → α') :
ω f (λ t x, ϕ t (g x)) (g ⁻¹' s) ⊆ ω f ϕ s :=
maps_to_omega_limit _ (maps_to_preimage _ _) (λ t x, rfl) continuous_id
/-!
### Equivalent definitions of the omega limit
The next few lemmas are various versions of the property
characterising ω-limits:
-/
/-- An element `y` is in the ω-limit set of `s` w.r.t. `f` if the
preimages of an arbitrary neighbourhood of `y` frequently
(w.r.t. `f`) intersects of `s`. -/
lemma mem_omega_limit_iff_frequently (y : β) : y ∈ ω f ϕ s ↔
∀ n ∈ 𝓝 y, ∃ᶠ t in f, (s ∩ ϕ t ⁻¹' n).nonempty :=
begin
simp_rw [frequently_iff, omega_limit_def, mem_Inter, mem_closure_iff_nhds],
split,
{ intros h _ hn _ hu,
rcases h _ hu _ hn with ⟨_, _, _, _, ht, hx, hϕtx⟩,
exact ⟨_, ht, _, hx, by rwa [mem_preimage, hϕtx]⟩, },
{ intros h _ hu _ hn,
rcases h _ hn hu with ⟨_, ht, _, hx, hϕtx⟩,
exact ⟨_, hϕtx, _, _, ht, hx, rfl⟩ }
end
/-- An element `y` is in the ω-limit set of `s` w.r.t. `f` if the
forward images of `s` frequently (w.r.t. `f`) intersect arbitrary
neighbourhoods of `y`. -/
lemma mem_omega_limit_iff_frequently₂ (y : β) : y ∈ ω f ϕ s ↔
∀ n ∈ 𝓝 y, ∃ᶠ t in f, (ϕ t '' s ∩ n).nonempty :=
by simp_rw [mem_omega_limit_iff_frequently, image_inter_nonempty_iff]
/-- An element `y` is in the ω-limit of `x` w.r.t. `f` if the forward
images of `x` frequently (w.r.t. `f`) falls within an arbitrary
neighbourhood of `y`. -/
lemma mem_omega_limit_singleton_iff_map_cluster_point (x : α) (y : β) :
y ∈ ω f ϕ {x} ↔ map_cluster_pt y f (λ t, ϕ t x) :=
by simp_rw [mem_omega_limit_iff_frequently, map_cluster_pt_iff, singleton_inter_nonempty,
mem_preimage]
/-!
### Set operations and omega limits
-/
lemma omega_limit_inter : ω f ϕ (s₁ ∩ s₂) ⊆ ω f ϕ s₁ ∩ ω f ϕ s₂ :=
subset_inter (omega_limit_mono_right _ _ (inter_subset_left _ _))
(omega_limit_mono_right _ _(inter_subset_right _ _))
lemma omega_limit_Inter (p : ι → set α) : ω f ϕ (⋂ i, p i) ⊆ ⋂ i, ω f ϕ (p i) :=
subset_Inter $ λ i, omega_limit_mono_right _ _ (Inter_subset _ _)
lemma omega_limit_union : ω f ϕ (s₁ ∪ s₂) = ω f ϕ s₁ ∪ ω f ϕ s₂ :=
begin
ext y, split,
{ simp only [mem_union, mem_omega_limit_iff_frequently, union_inter_distrib_right,
union_nonempty, frequently_or_distrib],
contrapose!,
simp only [not_frequently, not_nonempty_iff_eq_empty, ← subset_empty_iff],
rintro ⟨⟨n₁, hn₁, h₁⟩, ⟨n₂, hn₂, h₂⟩⟩,
refine ⟨n₁ ∩ n₂, inter_mem hn₁ hn₂, h₁.mono $ λ t, _, h₂.mono $ λ t, _⟩,
exacts [subset.trans $ inter_subset_inter_right _ $ preimage_mono $ inter_subset_left _ _,
subset.trans $ inter_subset_inter_right _ $ preimage_mono $ inter_subset_right _ _] },
{ rintros (hy|hy),
exacts [omega_limit_mono_right _ _ (subset_union_left _ _) hy,
omega_limit_mono_right _ _ (subset_union_right _ _) hy] },
end
lemma omega_limit_Union (p : ι → set α) : (⋃ i, ω f ϕ (p i)) ⊆ ω f ϕ ⋃ i, p i :=
by { rw Union_subset_iff,
exact λ i, omega_limit_mono_right _ _ (subset_Union _ _)}
/-!
Different expressions for omega limits, useful for rewrites. In
particular, one may restrict the intersection to sets in `f` which are
subsets of some set `v` also in `f`.
-/
lemma omega_limit_eq_Inter : ω f ϕ s = ⋂ u : ↥f.sets, closure (image2 ϕ u s) :=
bInter_eq_Inter _ _
lemma omega_limit_eq_bInter_inter {v : set τ} (hv : v ∈ f) :
ω f ϕ s = ⋂ u ∈ f, closure (image2 ϕ (u ∩ v) s) :=
subset.antisymm
(Inter₂_mono' $ λ u hu, ⟨u ∩ v, inter_mem hu hv, subset.rfl⟩)
(Inter₂_mono $ λ u hu, closure_mono $ image2_subset (inter_subset_left _ _) subset.rfl)
lemma omega_limit_eq_Inter_inter {v : set τ} (hv : v ∈ f) :
ω f ϕ s = ⋂ (u : ↥f.sets), closure (image2 ϕ (u ∩ v) s) :=
by { rw omega_limit_eq_bInter_inter _ _ _ hv, apply bInter_eq_Inter }
lemma omega_limit_subset_closure_fw_image {u : set τ} (hu : u ∈ f) :
ω f ϕ s ⊆ closure (image2 ϕ u s) :=
begin
rw omega_limit_eq_Inter,
intros _ hx,
rw mem_Inter at hx,
exact hx ⟨u, hu⟩,
end
/-!
### `ω-limits and compactness
-/
/-- A set is eventually carried into any open neighbourhood of its ω-limit:
if `c` is a compact set such that `closure {ϕ t x | t ∈ v, x ∈ s} ⊆ c` for some `v ∈ f`
and `n` is an open neighbourhood of `ω f ϕ s`, then for some `u ∈ f` we have
`closure {ϕ t x | t ∈ u, x ∈ s} ⊆ n`. -/
lemma eventually_closure_subset_of_is_compact_absorbing_of_is_open_of_omega_limit_subset'
{c : set β} (hc₁ : is_compact c) (hc₂ : ∃ v ∈ f, closure (image2 ϕ v s) ⊆ c)
{n : set β} (hn₁ : is_open n) (hn₂ : ω f ϕ s ⊆ n) :
∃ u ∈ f, closure (image2 ϕ u s) ⊆ n :=
begin
rcases hc₂ with ⟨v, hv₁, hv₂⟩,
let k := closure (image2 ϕ v s),
have hk : is_compact (k \ n) :=
is_compact.diff (compact_of_is_closed_subset hc₁ is_closed_closure hv₂) hn₁,
let j := λ u, (closure (image2 ϕ (u ∩ v) s))ᶜ,
have hj₁ : ∀ u ∈ f, is_open (j u), from
λ _ _, (is_open_compl_iff.mpr is_closed_closure),
have hj₂ : k \ n ⊆ ⋃ u ∈ f, j u, begin
have : (⋃ u ∈ f, j u) = ⋃ (u : ↥f.sets), j u, from bUnion_eq_Union _ _,
rw [this, diff_subset_comm, diff_Union],
rw omega_limit_eq_Inter_inter _ _ _ hv₁ at hn₂,
simp_rw diff_compl,
rw ←inter_Inter,
exact subset.trans (inter_subset_right _ _) hn₂,
end,
rcases hk.elim_finite_subcover_image hj₁ hj₂ with ⟨g, hg₁ : ∀ u ∈ g, u ∈ f, hg₂, hg₃⟩,
let w := (⋂ u ∈ g, u) ∩ v,
have hw₂ : w ∈ f, by simpa *,
have hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ, from
calc k \ n ⊆ ⋃ u ∈ g, j u : hg₃
... ⊆ (closure (image2 ϕ w s))ᶜ :
begin
simp only [Union_subset_iff, compl_subset_compl],
intros u hu,
mono* using [w],
exact Inter_subset_of_subset u (Inter_subset_of_subset hu subset.rfl),
end,
have hw₄ : kᶜ ⊆ (closure (image2 ϕ w s))ᶜ, begin
rw compl_subset_compl,
calc closure (image2 ϕ w s)
⊆ _ : closure_mono (image2_subset (inter_subset_right _ _) subset.rfl)
end,
have hnc : nᶜ ⊆ (k \ n) ∪ kᶜ, by rw [union_comm, ←inter_subset, diff_eq, inter_comm],
have hw : closure (image2 ϕ w s) ⊆ n, from
compl_subset_compl.mp (subset.trans hnc (union_subset hw₃ hw₄)),
exact ⟨_, hw₂, hw⟩
end
/-- A set is eventually carried into any open neighbourhood of its ω-limit:
if `c` is a compact set such that `closure {ϕ t x | t ∈ v, x ∈ s} ⊆ c` for some `v ∈ f`
and `n` is an open neighbourhood of `ω f ϕ s`, then for some `u ∈ f` we have
`closure {ϕ t x | t ∈ u, x ∈ s} ⊆ n`. -/
lemma eventually_closure_subset_of_is_compact_absorbing_of_is_open_of_omega_limit_subset
[t2_space β] {c : set β} (hc₁ : is_compact c) (hc₂ : ∀ᶠ t in f, maps_to (ϕ t) s c)
{n : set β} (hn₁ : is_open n) (hn₂ : ω f ϕ s ⊆ n) :
∃ u ∈ f, closure (image2 ϕ u s) ⊆ n :=
eventually_closure_subset_of_is_compact_absorbing_of_is_open_of_omega_limit_subset'
f ϕ _ hc₁ ⟨_, hc₂, closure_minimal (image2_subset_iff.2 (λ t, id)) hc₁.is_closed⟩ hn₁ hn₂
lemma eventually_maps_to_of_is_compact_absorbing_of_is_open_of_omega_limit_subset
[t2_space β] {c : set β} (hc₁ : is_compact c) (hc₂ : ∀ᶠ t in f, maps_to (ϕ t) s c)
{n : set β} (hn₁ : is_open n) (hn₂ : ω f ϕ s ⊆ n) :
∀ᶠ t in f, maps_to (ϕ t) s n :=
begin
rcases eventually_closure_subset_of_is_compact_absorbing_of_is_open_of_omega_limit_subset
f ϕ s hc₁ hc₂ hn₁ hn₂ with ⟨u, hu_mem, hu⟩,
refine mem_of_superset hu_mem (λ t ht x hx, _),
exact hu (subset_closure $ mem_image2_of_mem ht hx)
end
lemma eventually_closure_subset_of_is_open_of_omega_limit_subset [compact_space β]
{v : set β} (hv₁ : is_open v) (hv₂ : ω f ϕ s ⊆ v) :
∃ u ∈ f, closure (image2 ϕ u s) ⊆ v :=
eventually_closure_subset_of_is_compact_absorbing_of_is_open_of_omega_limit_subset'
_ _ _ compact_univ ⟨univ, univ_mem, subset_univ _⟩ hv₁ hv₂
lemma eventually_maps_to_of_is_open_of_omega_limit_subset [compact_space β]
{v : set β} (hv₁ : is_open v) (hv₂ : ω f ϕ s ⊆ v) :
∀ᶠ t in f, maps_to (ϕ t) s v :=
begin
rcases eventually_closure_subset_of_is_open_of_omega_limit_subset f ϕ s hv₁ hv₂
with ⟨u, hu_mem, hu⟩,
refine mem_of_superset hu_mem (λ t ht x hx, _),
exact hu (subset_closure $ mem_image2_of_mem ht hx)
end
/-- The ω-limit of a nonempty set w.r.t. a nontrivial filter is nonempty. -/
lemma nonempty_omega_limit_of_is_compact_absorbing [ne_bot f] {c : set β} (hc₁ : is_compact c)
(hc₂ : ∃ v ∈ f, closure (image2 ϕ v s) ⊆ c) (hs : s.nonempty) :
(ω f ϕ s).nonempty :=
begin
rcases hc₂ with ⟨v, hv₁, hv₂⟩,
rw omega_limit_eq_Inter_inter _ _ _ hv₁,
apply is_compact.nonempty_Inter_of_directed_nonempty_compact_closed,
{ rintro ⟨u₁, hu₁⟩ ⟨u₂, hu₂⟩,
use ⟨u₁ ∩ u₂, inter_mem hu₁ hu₂⟩, split,
all_goals { exact closure_mono (image2_subset
(inter_subset_inter_left _ (by simp)) subset.rfl) }},
{ intro u,
have hn : (image2 ϕ (u ∩ v) s).nonempty, from
nonempty.image2 (nonempty_of_mem (inter_mem u.prop hv₁)) hs,
exact hn.mono subset_closure },
{ intro _,
apply compact_of_is_closed_subset hc₁ is_closed_closure,
calc _ ⊆ closure (image2 ϕ v s) : closure_mono (image2_subset
(inter_subset_right _ _) subset.rfl)
... ⊆ c : hv₂ },
{ exact λ _, is_closed_closure },
end
lemma nonempty_omega_limit [compact_space β] [ne_bot f] (hs : s.nonempty) :
(ω f ϕ s).nonempty :=
nonempty_omega_limit_of_is_compact_absorbing _ _ _
compact_univ ⟨univ, univ_mem, subset_univ _⟩ hs
end omega_limit
/-!
### ω-limits of Flows by a Monoid
-/
namespace flow
variables
{τ : Type*} [topological_space τ] [add_monoid τ] [has_continuous_add τ]
{α : Type*} [topological_space α]
(f : filter τ) (ϕ : flow τ α) (s : set α)
open_locale omega_limit
lemma is_invariant_omega_limit (hf : ∀ t, tendsto ((+) t) f f) :
is_invariant ϕ (ω f ϕ s) :=
begin
refine λ t, maps_to.mono_right _ (omega_limit_subset_of_tendsto ϕ s (hf t)),
exact maps_to_omega_limit _ (maps_to_id _) (λ t' x, (ϕ.map_add _ _ _).symm)
(continuous_const.flow ϕ continuous_id)
end
lemma omega_limit_image_subset (t : τ) (ht : tendsto (+ t) f f) :
ω f ϕ (ϕ t '' s) ⊆ ω f ϕ s :=
begin
simp only [omega_limit_image_eq, ← map_add],
exact omega_limit_subset_of_tendsto ϕ s ht
end
end flow
/-!
### ω-limits of Flows by a Group
-/
namespace flow
variables
{τ : Type*} [topological_space τ] [add_comm_group τ] [topological_add_group τ]
{α : Type*} [topological_space α]
(f : filter τ) (ϕ : flow τ α) (s : set α)
open_locale omega_limit
/-- the ω-limit of a forward image of `s` is the same as the ω-limit of `s`. -/
@[simp] lemma omega_limit_image_eq (hf : ∀ t, tendsto (+ t) f f) (t : τ) :
ω f ϕ (ϕ t '' s) = ω f ϕ s :=
subset.antisymm (omega_limit_image_subset _ _ _ _ (hf t)) $
calc ω f ϕ s = ω f ϕ (ϕ (-t) '' (ϕ t '' s)) : by simp [image_image, ← map_add]
... ⊆ ω f ϕ (ϕ t '' s) : omega_limit_image_subset _ _ _ _ (hf _)
lemma omega_limit_omega_limit (hf : ∀ t, tendsto ((+) t) f f) :
ω f ϕ (ω f ϕ s) ⊆ ω f ϕ s :=
begin
simp only [subset_def, mem_omega_limit_iff_frequently₂, frequently_iff],
intros _ h,
rintro n hn u hu,
rcases mem_nhds_iff.mp hn with ⟨o, ho₁, ho₂, ho₃⟩,
rcases h o (is_open.mem_nhds ho₂ ho₃) hu with ⟨t, ht₁, ht₂⟩,
have l₁ : (ω f ϕ s ∩ o).nonempty, from
ht₂.mono (inter_subset_inter_left _
((is_invariant_iff_image _ _).mp (is_invariant_omega_limit _ _ _ hf) _)),
have l₂ : ((closure (image2 ϕ u s)) ∩ o).nonempty :=
l₁.mono (λ b hb, ⟨omega_limit_subset_closure_fw_image _ _ _ hu hb.1, hb.2⟩),
have l₃ : (o ∩ image2 ϕ u s).nonempty,
begin
rcases l₂ with ⟨b, hb₁, hb₂⟩,
exact mem_closure_iff_nhds.mp hb₁ o (is_open.mem_nhds ho₂ hb₂)
end,
rcases l₃ with ⟨ϕra, ho, ⟨_, _, hr, ha, hϕra⟩⟩,
exact ⟨_, hr, ϕra, ⟨_, ha, hϕra⟩, ho₁ ho⟩,
end
end flow