Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
23.3 kB
/-
Copyright (c) 2020 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov
-/
import algebra.hom.iterate
import data.list.cycle
import data.nat.prime
import dynamics.fixed_points.basic
/-!
# Periodic points
A point `x : α` is a periodic point of `f : α → α` of period `n` if `f^[n] x = x`.
## Main definitions
* `is_periodic_pt f n x` : `x` is a periodic point of `f` of period `n`, i.e. `f^[n] x = x`.
We do not require `n > 0` in the definition.
* `pts_of_period f n` : the set `{x | is_periodic_pt f n x}`. Note that `n` is not required to
be the minimal period of `x`.
* `periodic_pts f` : the set of all periodic points of `f`.
* `minimal_period f x` : the minimal period of a point `x` under an endomorphism `f` or zero
if `x` is not a periodic point of `f`.
* `orbit f x`: the cycle `[x, f x, f (f x), ...]` for a periodic point.
## Main statements
We provide “dot syntax”-style operations on terms of the form `h : is_periodic_pt f n x` including
arithmetic operations on `n` and `h.map (hg : semiconj_by g f f')`. We also prove that `f`
is bijective on each set `pts_of_period f n` and on `periodic_pts f`. Finally, we prove that `x`
is a periodic point of `f` of period `n` if and only if `minimal_period f x | n`.
## References
* https://en.wikipedia.org/wiki/Periodic_point
-/
open set
namespace function
variables {α : Type*} {β : Type*} {f fa : α → α} {fb : β → β} {x y : α} {m n : ℕ}
/-- A point `x` is a periodic point of `f : α → α` of period `n` if `f^[n] x = x`.
Note that we do not require `0 < n` in this definition. Many theorems about periodic points
need this assumption. -/
def is_periodic_pt (f : α → α) (n : ℕ) (x : α) := is_fixed_pt (f^[n]) x
/-- A fixed point of `f` is a periodic point of `f` of any prescribed period. -/
lemma is_fixed_pt.is_periodic_pt (hf : is_fixed_pt f x) (n : ℕ) : is_periodic_pt f n x :=
hf.iterate n
/-- For the identity map, all points are periodic. -/
lemma is_periodic_id (n : ℕ) (x : α) : is_periodic_pt id n x := (is_fixed_pt_id x).is_periodic_pt n
/-- Any point is a periodic point of period `0`. -/
lemma is_periodic_pt_zero (f : α → α) (x : α) : is_periodic_pt f 0 x := is_fixed_pt_id x
namespace is_periodic_pt
instance [decidable_eq α] {f : α → α} {n : ℕ} {x : α} : decidable (is_periodic_pt f n x) :=
is_fixed_pt.decidable
protected lemma is_fixed_pt (hf : is_periodic_pt f n x) : is_fixed_pt (f^[n]) x := hf
protected lemma map (hx : is_periodic_pt fa n x) {g : α → β} (hg : semiconj g fa fb) :
is_periodic_pt fb n (g x) :=
hx.map (hg.iterate_right n)
lemma apply_iterate (hx : is_periodic_pt f n x) (m : ℕ) : is_periodic_pt f n (f^[m] x) :=
hx.map $ commute.iterate_self f m
protected lemma apply (hx : is_periodic_pt f n x) : is_periodic_pt f n (f x) :=
hx.apply_iterate 1
protected lemma add (hn : is_periodic_pt f n x) (hm : is_periodic_pt f m x) :
is_periodic_pt f (n + m) x :=
by { rw [is_periodic_pt, iterate_add], exact hn.comp hm }
lemma left_of_add (hn : is_periodic_pt f (n + m) x) (hm : is_periodic_pt f m x) :
is_periodic_pt f n x :=
by { rw [is_periodic_pt, iterate_add] at hn, exact hn.left_of_comp hm }
lemma right_of_add (hn : is_periodic_pt f (n + m) x) (hm : is_periodic_pt f n x) :
is_periodic_pt f m x :=
by { rw add_comm at hn, exact hn.left_of_add hm }
protected lemma sub (hm : is_periodic_pt f m x) (hn : is_periodic_pt f n x) :
is_periodic_pt f (m - n) x :=
begin
cases le_total n m with h h,
{ refine left_of_add _ hn,
rwa [tsub_add_cancel_of_le h] },
{ rw [tsub_eq_zero_iff_le.mpr h],
apply is_periodic_pt_zero }
end
protected lemma mul_const (hm : is_periodic_pt f m x) (n : ℕ) : is_periodic_pt f (m * n) x :=
by simp only [is_periodic_pt, iterate_mul, hm.is_fixed_pt.iterate n]
protected lemma const_mul (hm : is_periodic_pt f m x) (n : ℕ) : is_periodic_pt f (n * m) x :=
by simp only [mul_comm n, hm.mul_const n]
lemma trans_dvd (hm : is_periodic_pt f m x) {n : ℕ} (hn : m ∣ n) : is_periodic_pt f n x :=
let ⟨k, hk⟩ := hn in hk.symm ▸ hm.mul_const k
protected lemma iterate (hf : is_periodic_pt f n x) (m : ℕ) : is_periodic_pt (f^[m]) n x :=
begin
rw [is_periodic_pt, ← iterate_mul, mul_comm, iterate_mul],
exact hf.is_fixed_pt.iterate m
end
lemma comp {g : α → α} (hco : commute f g) (hf : is_periodic_pt f n x) (hg : is_periodic_pt g n x) :
is_periodic_pt (f ∘ g) n x :=
by { rw [is_periodic_pt, hco.comp_iterate], exact hf.comp hg }
lemma comp_lcm {g : α → α} (hco : commute f g) (hf : is_periodic_pt f m x)
(hg : is_periodic_pt g n x) :
is_periodic_pt (f ∘ g) (nat.lcm m n) x :=
(hf.trans_dvd $ nat.dvd_lcm_left _ _).comp hco (hg.trans_dvd $ nat.dvd_lcm_right _ _)
lemma left_of_comp {g : α → α} (hco : commute f g) (hfg : is_periodic_pt (f ∘ g) n x)
(hg : is_periodic_pt g n x) : is_periodic_pt f n x :=
begin
rw [is_periodic_pt, hco.comp_iterate] at hfg,
exact hfg.left_of_comp hg
end
lemma iterate_mod_apply (h : is_periodic_pt f n x) (m : ℕ) :
f^[m % n] x = (f^[m] x) :=
by conv_rhs { rw [← nat.mod_add_div m n, iterate_add_apply, (h.mul_const _).eq] }
protected lemma mod (hm : is_periodic_pt f m x) (hn : is_periodic_pt f n x) :
is_periodic_pt f (m % n) x :=
(hn.iterate_mod_apply m).trans hm
protected lemma gcd (hm : is_periodic_pt f m x) (hn : is_periodic_pt f n x) :
is_periodic_pt f (m.gcd n) x :=
begin
revert hm hn,
refine nat.gcd.induction m n (λ n h0 hn, _) (λ m n hm ih hm hn, _),
{ rwa [nat.gcd_zero_left], },
{ rw [nat.gcd_rec],
exact ih (hn.mod hm) hm }
end
/-- If `f` sends two periodic points `x` and `y` of the same positive period to the same point,
then `x = y`. For a similar statement about points of different periods see `eq_of_apply_eq`. -/
lemma eq_of_apply_eq_same (hx : is_periodic_pt f n x) (hy : is_periodic_pt f n y) (hn : 0 < n)
(h : f x = f y) :
x = y :=
by rw [← hx.eq, ← hy.eq, ← iterate_pred_comp_of_pos f hn, comp_app, h]
/-- If `f` sends two periodic points `x` and `y` of positive periods to the same point,
then `x = y`. -/
lemma eq_of_apply_eq (hx : is_periodic_pt f m x) (hy : is_periodic_pt f n y) (hm : 0 < m)
(hn : 0 < n) (h : f x = f y) :
x = y :=
(hx.mul_const n).eq_of_apply_eq_same (hy.const_mul m) (mul_pos hm hn) h
end is_periodic_pt
/-- The set of periodic points of a given (possibly non-minimal) period. -/
def pts_of_period (f : α → α) (n : ℕ) : set α := {x : α | is_periodic_pt f n x}
@[simp] lemma mem_pts_of_period : x ∈ pts_of_period f n ↔ is_periodic_pt f n x :=
iff.rfl
lemma semiconj.maps_to_pts_of_period {g : α → β} (h : semiconj g fa fb) (n : ℕ) :
maps_to g (pts_of_period fa n) (pts_of_period fb n) :=
(h.iterate_right n).maps_to_fixed_pts
lemma bij_on_pts_of_period (f : α → α) {n : ℕ} (hn : 0 < n) :
bij_on f (pts_of_period f n) (pts_of_period f n) :=
⟨(commute.refl f).maps_to_pts_of_period n,
λ x hx y hy hxy, hx.eq_of_apply_eq_same hy hn hxy,
λ x hx, ⟨f^[n.pred] x, hx.apply_iterate _,
by rw [← comp_app f, comp_iterate_pred_of_pos f hn, hx.eq]⟩⟩
lemma directed_pts_of_period_pnat (f : α → α) : directed (⊆) (λ n : ℕ+, pts_of_period f n) :=
λ m n, ⟨m * n, λ x hx, hx.mul_const n, λ x hx, hx.const_mul m⟩
/-- The set of periodic points of a map `f : α → α`. -/
def periodic_pts (f : α → α) : set α := {x : α | ∃ n > 0, is_periodic_pt f n x}
lemma mk_mem_periodic_pts (hn : 0 < n) (hx : is_periodic_pt f n x) :
x ∈ periodic_pts f :=
⟨n, hn, hx⟩
lemma mem_periodic_pts : x ∈ periodic_pts f ↔ ∃ n > 0, is_periodic_pt f n x := iff.rfl
lemma is_periodic_pt_of_mem_periodic_pts_of_is_periodic_pt_iterate (hx : x ∈ periodic_pts f)
(hm : is_periodic_pt f m (f^[n] x)) : is_periodic_pt f m x :=
begin
rcases hx with ⟨r, hr, hr'⟩,
convert (hm.apply_iterate ((n / r + 1) * r - n)).eq,
suffices : n ≤ (n / r + 1) * r,
{ rw [←iterate_add_apply, nat.sub_add_cancel this, iterate_mul, (hr'.iterate _).eq] },
rw [add_mul, one_mul],
exact (nat.lt_div_mul_add hr).le
end
variable (f)
lemma bUnion_pts_of_period : (⋃ n > 0, pts_of_period f n) = periodic_pts f :=
set.ext $ λ x, by simp [mem_periodic_pts]
lemma Union_pnat_pts_of_period : (⋃ n : ℕ+, pts_of_period f n) = periodic_pts f :=
supr_subtype.trans $ bUnion_pts_of_period f
lemma bij_on_periodic_pts : bij_on f (periodic_pts f) (periodic_pts f) :=
Union_pnat_pts_of_period f ▸
bij_on_Union_of_directed (directed_pts_of_period_pnat f) (λ i, bij_on_pts_of_period f i.pos)
variable {f}
lemma semiconj.maps_to_periodic_pts {g : α → β} (h : semiconj g fa fb) :
maps_to g (periodic_pts fa) (periodic_pts fb) :=
λ x ⟨n, hn, hx⟩, ⟨n, hn, hx.map h⟩
open_locale classical
noncomputable theory
/-- Minimal period of a point `x` under an endomorphism `f`. If `x` is not a periodic point of `f`,
then `minimal_period f x = 0`. -/
def minimal_period (f : α → α) (x : α) :=
if h : x ∈ periodic_pts f then nat.find h else 0
lemma is_periodic_pt_minimal_period (f : α → α) (x : α) : is_periodic_pt f (minimal_period f x) x :=
begin
delta minimal_period,
split_ifs with hx,
{ exact (nat.find_spec hx).snd },
{ exact is_periodic_pt_zero f x }
end
@[simp] lemma iterate_minimal_period : f^[minimal_period f x] x = x :=
is_periodic_pt_minimal_period f x
@[simp] lemma iterate_add_minimal_period_eq : f^[n + minimal_period f x] x = (f^[n] x) :=
by { rw iterate_add_apply, congr, exact is_periodic_pt_minimal_period f x }
@[simp] lemma iterate_mod_minimal_period_eq : f^[n % minimal_period f x] x = (f^[n] x) :=
(is_periodic_pt_minimal_period f x).iterate_mod_apply n
lemma minimal_period_pos_of_mem_periodic_pts (hx : x ∈ periodic_pts f) :
0 < minimal_period f x :=
by simp only [minimal_period, dif_pos hx, (nat.find_spec hx).fst.lt]
lemma minimal_period_eq_zero_of_nmem_periodic_pts (hx : x ∉ periodic_pts f) :
minimal_period f x = 0 :=
by simp only [minimal_period, dif_neg hx]
lemma is_periodic_pt.minimal_period_pos (hn : 0 < n) (hx : is_periodic_pt f n x) :
0 < minimal_period f x :=
minimal_period_pos_of_mem_periodic_pts $ mk_mem_periodic_pts hn hx
lemma minimal_period_pos_iff_mem_periodic_pts :
0 < minimal_period f x ↔ x ∈ periodic_pts f :=
⟨not_imp_not.1 $ λ h,
by simp only [minimal_period, dif_neg h, lt_irrefl 0, not_false_iff],
minimal_period_pos_of_mem_periodic_pts⟩
lemma minimal_period_eq_zero_iff_nmem_periodic_pts : minimal_period f x = 0 ↔ x ∉ periodic_pts f :=
by rw [←minimal_period_pos_iff_mem_periodic_pts, not_lt, nonpos_iff_eq_zero]
lemma is_periodic_pt.minimal_period_le (hn : 0 < n) (hx : is_periodic_pt f n x) :
minimal_period f x ≤ n :=
begin
rw [minimal_period, dif_pos (mk_mem_periodic_pts hn hx)],
exact nat.find_min' (mk_mem_periodic_pts hn hx) ⟨hn, hx⟩
end
lemma minimal_period_apply_iterate (hx : x ∈ periodic_pts f) (n : ℕ) :
minimal_period f (f^[n] x) = minimal_period f x :=
begin
apply (is_periodic_pt.minimal_period_le (minimal_period_pos_of_mem_periodic_pts hx) _).antisymm
((is_periodic_pt_of_mem_periodic_pts_of_is_periodic_pt_iterate hx
(is_periodic_pt_minimal_period f _)).minimal_period_le
(minimal_period_pos_of_mem_periodic_pts _)),
{ exact (is_periodic_pt_minimal_period f x).apply_iterate n, },
{ rcases hx with ⟨m, hm, hx⟩,
exact ⟨m, hm, hx.apply_iterate n⟩ }
end
lemma minimal_period_apply (hx : x ∈ periodic_pts f) :
minimal_period f (f x) = minimal_period f x :=
minimal_period_apply_iterate hx 1
lemma le_of_lt_minimal_period_of_iterate_eq {m n : ℕ} (hm : m < minimal_period f x)
(hmn : f^[m] x = (f^[n] x)) : m ≤ n :=
begin
by_contra' hmn',
rw [←nat.add_sub_of_le hmn'.le, add_comm, iterate_add_apply] at hmn,
exact ((is_periodic_pt.minimal_period_le (tsub_pos_of_lt hmn')
(is_periodic_pt_of_mem_periodic_pts_of_is_periodic_pt_iterate
(minimal_period_pos_iff_mem_periodic_pts.1 ((zero_le m).trans_lt hm)) hmn)).trans
(nat.sub_le m n)).not_lt hm
end
lemma eq_of_lt_minimal_period_of_iterate_eq {m n : ℕ} (hm : m < minimal_period f x)
(hn : n < minimal_period f x) (hmn : f^[m] x = (f^[n] x)) : m = n :=
(le_of_lt_minimal_period_of_iterate_eq hm hmn).antisymm
(le_of_lt_minimal_period_of_iterate_eq hn hmn.symm)
lemma eq_iff_lt_minimal_period_of_iterate_eq {m n : ℕ} (hm : m < minimal_period f x)
(hn : n < minimal_period f x) : f^[m] x = (f^[n] x) ↔ m = n :=
⟨eq_of_lt_minimal_period_of_iterate_eq hm hn, congr_arg _⟩
lemma minimal_period_id : minimal_period id x = 1 :=
((is_periodic_id _ _ ).minimal_period_le nat.one_pos).antisymm
(nat.succ_le_of_lt ((is_periodic_id _ _ ).minimal_period_pos nat.one_pos))
lemma is_fixed_point_iff_minimal_period_eq_one : minimal_period f x = 1 ↔ is_fixed_pt f x :=
begin
refine ⟨λ h, _, λ h, _⟩,
{ rw ← iterate_one f,
refine function.is_periodic_pt.is_fixed_pt _,
rw ← h,
exact is_periodic_pt_minimal_period f x },
{ exact ((h.is_periodic_pt 1).minimal_period_le nat.one_pos).antisymm
(nat.succ_le_of_lt ((h.is_periodic_pt 1).minimal_period_pos nat.one_pos)) }
end
lemma is_periodic_pt.eq_zero_of_lt_minimal_period (hx : is_periodic_pt f n x)
(hn : n < minimal_period f x) : n = 0 :=
eq.symm $ (eq_or_lt_of_le $ n.zero_le).resolve_right $ λ hn0,
not_lt.2 (hx.minimal_period_le hn0) hn
lemma not_is_periodic_pt_of_pos_of_lt_minimal_period :
∀ {n : ℕ} (n0 : n ≠ 0) (hn : n < minimal_period f x), ¬ is_periodic_pt f n x
| 0 n0 _ := (n0 rfl).elim
| (n + 1) _ hn := λ hp, nat.succ_ne_zero _ (hp.eq_zero_of_lt_minimal_period hn)
lemma is_periodic_pt.minimal_period_dvd (hx : is_periodic_pt f n x) : minimal_period f x ∣ n :=
(eq_or_lt_of_le $ n.zero_le).elim (λ hn0, hn0 ▸ dvd_zero _) $ λ hn0,
nat.dvd_iff_mod_eq_zero.2 $
(hx.mod $ is_periodic_pt_minimal_period f x).eq_zero_of_lt_minimal_period $
nat.mod_lt _ $ hx.minimal_period_pos hn0
lemma is_periodic_pt_iff_minimal_period_dvd : is_periodic_pt f n x ↔ minimal_period f x ∣ n :=
⟨is_periodic_pt.minimal_period_dvd, λ h, (is_periodic_pt_minimal_period f x).trans_dvd h⟩
open nat
lemma minimal_period_eq_minimal_period_iff {g : β → β} {y : β} :
minimal_period f x = minimal_period g y ↔ ∀ n, is_periodic_pt f n x ↔ is_periodic_pt g n y :=
by simp_rw [is_periodic_pt_iff_minimal_period_dvd, dvd_right_iff_eq]
lemma minimal_period_eq_prime {p : ℕ} [hp : fact p.prime] (hper : is_periodic_pt f p x)
(hfix : ¬ is_fixed_pt f x) : minimal_period f x = p :=
(hp.out.eq_one_or_self_of_dvd _ (hper.minimal_period_dvd)).resolve_left
(mt is_fixed_point_iff_minimal_period_eq_one.1 hfix)
lemma minimal_period_eq_prime_pow {p k : ℕ} [hp : fact p.prime] (hk : ¬ is_periodic_pt f (p ^ k) x)
(hk1 : is_periodic_pt f (p ^ (k + 1)) x) : minimal_period f x = p ^ (k + 1) :=
begin
apply nat.eq_prime_pow_of_dvd_least_prime_pow hp.out;
rwa ← is_periodic_pt_iff_minimal_period_dvd
end
lemma commute.minimal_period_of_comp_dvd_lcm {g : α → α} (h : function.commute f g) :
minimal_period (f ∘ g) x ∣ nat.lcm (minimal_period f x) (minimal_period g x) :=
begin
rw [← is_periodic_pt_iff_minimal_period_dvd],
exact (is_periodic_pt_minimal_period f x).comp_lcm h (is_periodic_pt_minimal_period g x)
end
lemma commute.minimal_period_of_comp_dvd_mul {g : α → α} (h : function.commute f g) :
minimal_period (f ∘ g) x ∣ (minimal_period f x) * (minimal_period g x) :=
dvd_trans h.minimal_period_of_comp_dvd_lcm (lcm_dvd_mul _ _)
lemma commute.minimal_period_of_comp_eq_mul_of_coprime {g : α → α} (h : function.commute f g)
(hco : coprime (minimal_period f x) (minimal_period g x)) :
minimal_period (f ∘ g) x = (minimal_period f x) * (minimal_period g x) :=
begin
apply dvd_antisymm (h.minimal_period_of_comp_dvd_mul),
suffices : ∀ {f g : α → α}, commute f g → coprime (minimal_period f x) (minimal_period g x) →
minimal_period f x ∣ minimal_period (f ∘ g) x,
from hco.mul_dvd_of_dvd_of_dvd (this h hco) (h.comp_eq.symm ▸ this h.symm hco.symm),
clear hco h f g,
intros f g h hco,
refine hco.dvd_of_dvd_mul_left (is_periodic_pt.left_of_comp h _ _).minimal_period_dvd,
{ exact (is_periodic_pt_minimal_period _ _).const_mul _ },
{ exact (is_periodic_pt_minimal_period _ _).mul_const _ }
end
private lemma minimal_period_iterate_eq_div_gcd_aux (h : 0 < gcd (minimal_period f x) n) :
minimal_period (f ^[n]) x = minimal_period f x / nat.gcd (minimal_period f x) n :=
begin
apply nat.dvd_antisymm,
{ apply is_periodic_pt.minimal_period_dvd,
rw [is_periodic_pt, is_fixed_pt, ← iterate_mul, ← nat.mul_div_assoc _ (gcd_dvd_left _ _),
mul_comm, nat.mul_div_assoc _ (gcd_dvd_right _ _), mul_comm, iterate_mul],
exact (is_periodic_pt_minimal_period f x).iterate _ },
{ apply coprime.dvd_of_dvd_mul_right (coprime_div_gcd_div_gcd h),
apply dvd_of_mul_dvd_mul_right h,
rw [nat.div_mul_cancel (gcd_dvd_left _ _), mul_assoc, nat.div_mul_cancel (gcd_dvd_right _ _),
mul_comm],
apply is_periodic_pt.minimal_period_dvd,
rw [is_periodic_pt, is_fixed_pt, iterate_mul],
exact is_periodic_pt_minimal_period _ _ }
end
lemma minimal_period_iterate_eq_div_gcd (h : n ≠ 0) :
minimal_period (f ^[n]) x = minimal_period f x / nat.gcd (minimal_period f x) n :=
minimal_period_iterate_eq_div_gcd_aux $ gcd_pos_of_pos_right _ (nat.pos_of_ne_zero h)
lemma minimal_period_iterate_eq_div_gcd' (h : x ∈ periodic_pts f) :
minimal_period (f ^[n]) x = minimal_period f x / nat.gcd (minimal_period f x) n :=
minimal_period_iterate_eq_div_gcd_aux $
gcd_pos_of_pos_left n (minimal_period_pos_iff_mem_periodic_pts.mpr h)
/-- The orbit of a periodic point `x` of `f` is the cycle `[x, f x, f (f x), ...]`. Its length is
the minimal period of `x`.
If `x` is not a periodic point, then this is the empty (aka nil) cycle. -/
def periodic_orbit (f : α → α) (x : α) : cycle α :=
(list.range (minimal_period f x)).map (λ n, f^[n] x)
/-- The definition of a periodic orbit, in terms of `list.map`. -/
lemma periodic_orbit_def (f : α → α) (x : α) :
periodic_orbit f x = (list.range (minimal_period f x)).map (λ n, f^[n] x) :=
rfl
/-- The definition of a periodic orbit, in terms of `cycle.map`. -/
lemma periodic_orbit_eq_cycle_map (f : α → α) (x : α) :
periodic_orbit f x = (list.range (minimal_period f x) : cycle ℕ).map (λ n, f^[n] x) :=
rfl
@[simp] lemma periodic_orbit_length : (periodic_orbit f x).length = minimal_period f x :=
by rw [periodic_orbit, cycle.length_coe, list.length_map, list.length_range]
@[simp] lemma periodic_orbit_eq_nil_iff_not_periodic_pt :
periodic_orbit f x = cycle.nil ↔ x ∉ periodic_pts f :=
by { simp [periodic_orbit], exact minimal_period_eq_zero_iff_nmem_periodic_pts }
lemma periodic_orbit_eq_nil_of_not_periodic_pt (h : x ∉ periodic_pts f) :
periodic_orbit f x = cycle.nil :=
periodic_orbit_eq_nil_iff_not_periodic_pt.2 h
@[simp] lemma mem_periodic_orbit_iff (hx : x ∈ periodic_pts f) :
y ∈ periodic_orbit f x ↔ ∃ n, f^[n] x = y :=
begin
simp only [periodic_orbit, cycle.mem_coe_iff, list.mem_map, list.mem_range],
use λ ⟨a, ha, ha'⟩, ⟨a, ha'⟩,
rintro ⟨n, rfl⟩,
use [n % minimal_period f x, mod_lt _ (minimal_period_pos_of_mem_periodic_pts hx)],
rw iterate_mod_minimal_period_eq
end
@[simp] lemma iterate_mem_periodic_orbit (hx : x ∈ periodic_pts f) (n : ℕ) :
f^[n] x ∈ periodic_orbit f x :=
(mem_periodic_orbit_iff hx).2 ⟨n, rfl⟩
@[simp] lemma self_mem_periodic_orbit (hx : x ∈ periodic_pts f) : x ∈ periodic_orbit f x :=
iterate_mem_periodic_orbit hx 0
lemma nodup_periodic_orbit : (periodic_orbit f x).nodup :=
begin
rw [periodic_orbit, cycle.nodup_coe_iff, list.nodup_map_iff_inj_on (list.nodup_range _)],
intros m hm n hn hmn,
rw list.mem_range at hm hn,
rwa eq_iff_lt_minimal_period_of_iterate_eq hm hn at hmn
end
lemma periodic_orbit_apply_iterate_eq (hx : x ∈ periodic_pts f) (n : ℕ) :
periodic_orbit f (f^[n] x) = periodic_orbit f x :=
eq.symm $ cycle.coe_eq_coe.2 $ ⟨n, begin
apply list.ext_le _ (λ m _ _, _),
{ simp [minimal_period_apply_iterate hx] },
{ rw list.nth_le_rotate _ n m,
simp [iterate_add_apply] }
end⟩
lemma periodic_orbit_apply_eq (hx : x ∈ periodic_pts f) :
periodic_orbit f (f x) = periodic_orbit f x :=
periodic_orbit_apply_iterate_eq hx 1
theorem periodic_orbit_chain (r : α → α → Prop) {f : α → α} {x : α} :
(periodic_orbit f x).chain r ↔ ∀ n < minimal_period f x, r (f^[n] x) (f^[n+1] x) :=
begin
by_cases hx : x ∈ periodic_pts f,
{ have hx' := minimal_period_pos_of_mem_periodic_pts hx,
have hM := nat.sub_add_cancel (succ_le_iff.2 hx'),
rw [periodic_orbit, ←cycle.map_coe, cycle.chain_map, ←hM, cycle.chain_range_succ],
refine ⟨_, λ H, ⟨_, λ m hm, H _ (hm.trans (nat.lt_succ_self _))⟩⟩,
{ rintro ⟨hr, H⟩ n hn,
cases eq_or_lt_of_le (lt_succ_iff.1 hn) with hM' hM',
{ rwa [hM', hM, iterate_minimal_period] },
{ exact H _ hM' } },
{ rw iterate_zero_apply,
nth_rewrite 2 ←@iterate_minimal_period α f x,
nth_rewrite 1 ←hM,
exact H _ (nat.lt_succ_self _) } },
{ rw [periodic_orbit_eq_nil_of_not_periodic_pt hx,
minimal_period_eq_zero_of_nmem_periodic_pts hx],
simp }
end
theorem periodic_orbit_chain' (r : α → α → Prop) {f : α → α} {x : α} (hx : x ∈ periodic_pts f) :
(periodic_orbit f x).chain r ↔ ∀ n, r (f^[n] x) (f^[n+1] x) :=
begin
rw periodic_orbit_chain r,
refine ⟨λ H n, _, λ H n _, H n⟩,
rw [iterate_succ_apply, ←iterate_mod_minimal_period_eq],
nth_rewrite 1 ←iterate_mod_minimal_period_eq,
rw [←iterate_succ_apply, minimal_period_apply hx],
exact H _ (mod_lt _ (minimal_period_pos_of_mem_periodic_pts hx))
end
end function
namespace mul_action
open function
variables {α β : Type*} [group α] [mul_action α β] {a : α} {b : β}
@[to_additive] lemma pow_smul_eq_iff_minimal_period_dvd {n : ℕ} :
a ^ n • b = b ↔ function.minimal_period ((•) a) b ∣ n :=
by rw [←is_periodic_pt_iff_minimal_period_dvd, is_periodic_pt, is_fixed_pt, smul_iterate]
@[to_additive] lemma zpow_smul_eq_iff_minimal_period_dvd {n : ℤ} :
a ^ n • b = b ↔ (function.minimal_period ((•) a) b : ℤ) ∣ n :=
begin
cases n,
{ rw [int.of_nat_eq_coe, zpow_coe_nat, int.coe_nat_dvd, pow_smul_eq_iff_minimal_period_dvd] },
{ rw [int.neg_succ_of_nat_coe, zpow_neg, zpow_coe_nat, inv_smul_eq_iff, eq_comm,
dvd_neg, int.coe_nat_dvd, pow_smul_eq_iff_minimal_period_dvd] },
end
variables (a b)
@[simp, to_additive] lemma pow_smul_mod_minimal_period (n : ℕ) :
a ^ (n % function.minimal_period ((•) a) b) • b = a ^ n • b :=
by conv_rhs { rw [← nat.mod_add_div n (minimal_period ((•) a) b), pow_add, mul_smul,
pow_smul_eq_iff_minimal_period_dvd.mpr (dvd_mul_right _ _)] }
@[simp, to_additive] lemma zpow_smul_mod_minimal_period (n : ℤ) :
a ^ (n % (function.minimal_period ((•) a) b : ℤ)) • b = a ^ n • b :=
by conv_rhs { rw [← int.mod_add_div n (minimal_period ((•) a) b), zpow_add, mul_smul,
zpow_smul_eq_iff_minimal_period_dvd.mpr (dvd_mul_right _ _)] }
end mul_action