Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Yury G. Kudryashov. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yury G. Kudryashov | |
-/ | |
import algebra.hom.iterate | |
import data.list.cycle | |
import data.nat.prime | |
import dynamics.fixed_points.basic | |
/-! | |
# Periodic points | |
A point `x : α` is a periodic point of `f : α → α` of period `n` if `f^[n] x = x`. | |
## Main definitions | |
* `is_periodic_pt f n x` : `x` is a periodic point of `f` of period `n`, i.e. `f^[n] x = x`. | |
We do not require `n > 0` in the definition. | |
* `pts_of_period f n` : the set `{x | is_periodic_pt f n x}`. Note that `n` is not required to | |
be the minimal period of `x`. | |
* `periodic_pts f` : the set of all periodic points of `f`. | |
* `minimal_period f x` : the minimal period of a point `x` under an endomorphism `f` or zero | |
if `x` is not a periodic point of `f`. | |
* `orbit f x`: the cycle `[x, f x, f (f x), ...]` for a periodic point. | |
## Main statements | |
We provide “dot syntax”-style operations on terms of the form `h : is_periodic_pt f n x` including | |
arithmetic operations on `n` and `h.map (hg : semiconj_by g f f')`. We also prove that `f` | |
is bijective on each set `pts_of_period f n` and on `periodic_pts f`. Finally, we prove that `x` | |
is a periodic point of `f` of period `n` if and only if `minimal_period f x | n`. | |
## References | |
* https://en.wikipedia.org/wiki/Periodic_point | |
-/ | |
open set | |
namespace function | |
variables {α : Type*} {β : Type*} {f fa : α → α} {fb : β → β} {x y : α} {m n : ℕ} | |
/-- A point `x` is a periodic point of `f : α → α` of period `n` if `f^[n] x = x`. | |
Note that we do not require `0 < n` in this definition. Many theorems about periodic points | |
need this assumption. -/ | |
def is_periodic_pt (f : α → α) (n : ℕ) (x : α) := is_fixed_pt (f^[n]) x | |
/-- A fixed point of `f` is a periodic point of `f` of any prescribed period. -/ | |
lemma is_fixed_pt.is_periodic_pt (hf : is_fixed_pt f x) (n : ℕ) : is_periodic_pt f n x := | |
hf.iterate n | |
/-- For the identity map, all points are periodic. -/ | |
lemma is_periodic_id (n : ℕ) (x : α) : is_periodic_pt id n x := (is_fixed_pt_id x).is_periodic_pt n | |
/-- Any point is a periodic point of period `0`. -/ | |
lemma is_periodic_pt_zero (f : α → α) (x : α) : is_periodic_pt f 0 x := is_fixed_pt_id x | |
namespace is_periodic_pt | |
instance [decidable_eq α] {f : α → α} {n : ℕ} {x : α} : decidable (is_periodic_pt f n x) := | |
is_fixed_pt.decidable | |
protected lemma is_fixed_pt (hf : is_periodic_pt f n x) : is_fixed_pt (f^[n]) x := hf | |
protected lemma map (hx : is_periodic_pt fa n x) {g : α → β} (hg : semiconj g fa fb) : | |
is_periodic_pt fb n (g x) := | |
hx.map (hg.iterate_right n) | |
lemma apply_iterate (hx : is_periodic_pt f n x) (m : ℕ) : is_periodic_pt f n (f^[m] x) := | |
hx.map $ commute.iterate_self f m | |
protected lemma apply (hx : is_periodic_pt f n x) : is_periodic_pt f n (f x) := | |
hx.apply_iterate 1 | |
protected lemma add (hn : is_periodic_pt f n x) (hm : is_periodic_pt f m x) : | |
is_periodic_pt f (n + m) x := | |
by { rw [is_periodic_pt, iterate_add], exact hn.comp hm } | |
lemma left_of_add (hn : is_periodic_pt f (n + m) x) (hm : is_periodic_pt f m x) : | |
is_periodic_pt f n x := | |
by { rw [is_periodic_pt, iterate_add] at hn, exact hn.left_of_comp hm } | |
lemma right_of_add (hn : is_periodic_pt f (n + m) x) (hm : is_periodic_pt f n x) : | |
is_periodic_pt f m x := | |
by { rw add_comm at hn, exact hn.left_of_add hm } | |
protected lemma sub (hm : is_periodic_pt f m x) (hn : is_periodic_pt f n x) : | |
is_periodic_pt f (m - n) x := | |
begin | |
cases le_total n m with h h, | |
{ refine left_of_add _ hn, | |
rwa [tsub_add_cancel_of_le h] }, | |
{ rw [tsub_eq_zero_iff_le.mpr h], | |
apply is_periodic_pt_zero } | |
end | |
protected lemma mul_const (hm : is_periodic_pt f m x) (n : ℕ) : is_periodic_pt f (m * n) x := | |
by simp only [is_periodic_pt, iterate_mul, hm.is_fixed_pt.iterate n] | |
protected lemma const_mul (hm : is_periodic_pt f m x) (n : ℕ) : is_periodic_pt f (n * m) x := | |
by simp only [mul_comm n, hm.mul_const n] | |
lemma trans_dvd (hm : is_periodic_pt f m x) {n : ℕ} (hn : m ∣ n) : is_periodic_pt f n x := | |
let ⟨k, hk⟩ := hn in hk.symm ▸ hm.mul_const k | |
protected lemma iterate (hf : is_periodic_pt f n x) (m : ℕ) : is_periodic_pt (f^[m]) n x := | |
begin | |
rw [is_periodic_pt, ← iterate_mul, mul_comm, iterate_mul], | |
exact hf.is_fixed_pt.iterate m | |
end | |
lemma comp {g : α → α} (hco : commute f g) (hf : is_periodic_pt f n x) (hg : is_periodic_pt g n x) : | |
is_periodic_pt (f ∘ g) n x := | |
by { rw [is_periodic_pt, hco.comp_iterate], exact hf.comp hg } | |
lemma comp_lcm {g : α → α} (hco : commute f g) (hf : is_periodic_pt f m x) | |
(hg : is_periodic_pt g n x) : | |
is_periodic_pt (f ∘ g) (nat.lcm m n) x := | |
(hf.trans_dvd $ nat.dvd_lcm_left _ _).comp hco (hg.trans_dvd $ nat.dvd_lcm_right _ _) | |
lemma left_of_comp {g : α → α} (hco : commute f g) (hfg : is_periodic_pt (f ∘ g) n x) | |
(hg : is_periodic_pt g n x) : is_periodic_pt f n x := | |
begin | |
rw [is_periodic_pt, hco.comp_iterate] at hfg, | |
exact hfg.left_of_comp hg | |
end | |
lemma iterate_mod_apply (h : is_periodic_pt f n x) (m : ℕ) : | |
f^[m % n] x = (f^[m] x) := | |
by conv_rhs { rw [← nat.mod_add_div m n, iterate_add_apply, (h.mul_const _).eq] } | |
protected lemma mod (hm : is_periodic_pt f m x) (hn : is_periodic_pt f n x) : | |
is_periodic_pt f (m % n) x := | |
(hn.iterate_mod_apply m).trans hm | |
protected lemma gcd (hm : is_periodic_pt f m x) (hn : is_periodic_pt f n x) : | |
is_periodic_pt f (m.gcd n) x := | |
begin | |
revert hm hn, | |
refine nat.gcd.induction m n (λ n h0 hn, _) (λ m n hm ih hm hn, _), | |
{ rwa [nat.gcd_zero_left], }, | |
{ rw [nat.gcd_rec], | |
exact ih (hn.mod hm) hm } | |
end | |
/-- If `f` sends two periodic points `x` and `y` of the same positive period to the same point, | |
then `x = y`. For a similar statement about points of different periods see `eq_of_apply_eq`. -/ | |
lemma eq_of_apply_eq_same (hx : is_periodic_pt f n x) (hy : is_periodic_pt f n y) (hn : 0 < n) | |
(h : f x = f y) : | |
x = y := | |
by rw [← hx.eq, ← hy.eq, ← iterate_pred_comp_of_pos f hn, comp_app, h] | |
/-- If `f` sends two periodic points `x` and `y` of positive periods to the same point, | |
then `x = y`. -/ | |
lemma eq_of_apply_eq (hx : is_periodic_pt f m x) (hy : is_periodic_pt f n y) (hm : 0 < m) | |
(hn : 0 < n) (h : f x = f y) : | |
x = y := | |
(hx.mul_const n).eq_of_apply_eq_same (hy.const_mul m) (mul_pos hm hn) h | |
end is_periodic_pt | |
/-- The set of periodic points of a given (possibly non-minimal) period. -/ | |
def pts_of_period (f : α → α) (n : ℕ) : set α := {x : α | is_periodic_pt f n x} | |
@[simp] lemma mem_pts_of_period : x ∈ pts_of_period f n ↔ is_periodic_pt f n x := | |
iff.rfl | |
lemma semiconj.maps_to_pts_of_period {g : α → β} (h : semiconj g fa fb) (n : ℕ) : | |
maps_to g (pts_of_period fa n) (pts_of_period fb n) := | |
(h.iterate_right n).maps_to_fixed_pts | |
lemma bij_on_pts_of_period (f : α → α) {n : ℕ} (hn : 0 < n) : | |
bij_on f (pts_of_period f n) (pts_of_period f n) := | |
⟨(commute.refl f).maps_to_pts_of_period n, | |
λ x hx y hy hxy, hx.eq_of_apply_eq_same hy hn hxy, | |
λ x hx, ⟨f^[n.pred] x, hx.apply_iterate _, | |
by rw [← comp_app f, comp_iterate_pred_of_pos f hn, hx.eq]⟩⟩ | |
lemma directed_pts_of_period_pnat (f : α → α) : directed (⊆) (λ n : ℕ+, pts_of_period f n) := | |
λ m n, ⟨m * n, λ x hx, hx.mul_const n, λ x hx, hx.const_mul m⟩ | |
/-- The set of periodic points of a map `f : α → α`. -/ | |
def periodic_pts (f : α → α) : set α := {x : α | ∃ n > 0, is_periodic_pt f n x} | |
lemma mk_mem_periodic_pts (hn : 0 < n) (hx : is_periodic_pt f n x) : | |
x ∈ periodic_pts f := | |
⟨n, hn, hx⟩ | |
lemma mem_periodic_pts : x ∈ periodic_pts f ↔ ∃ n > 0, is_periodic_pt f n x := iff.rfl | |
lemma is_periodic_pt_of_mem_periodic_pts_of_is_periodic_pt_iterate (hx : x ∈ periodic_pts f) | |
(hm : is_periodic_pt f m (f^[n] x)) : is_periodic_pt f m x := | |
begin | |
rcases hx with ⟨r, hr, hr'⟩, | |
convert (hm.apply_iterate ((n / r + 1) * r - n)).eq, | |
suffices : n ≤ (n / r + 1) * r, | |
{ rw [←iterate_add_apply, nat.sub_add_cancel this, iterate_mul, (hr'.iterate _).eq] }, | |
rw [add_mul, one_mul], | |
exact (nat.lt_div_mul_add hr).le | |
end | |
variable (f) | |
lemma bUnion_pts_of_period : (⋃ n > 0, pts_of_period f n) = periodic_pts f := | |
set.ext $ λ x, by simp [mem_periodic_pts] | |
lemma Union_pnat_pts_of_period : (⋃ n : ℕ+, pts_of_period f n) = periodic_pts f := | |
supr_subtype.trans $ bUnion_pts_of_period f | |
lemma bij_on_periodic_pts : bij_on f (periodic_pts f) (periodic_pts f) := | |
Union_pnat_pts_of_period f ▸ | |
bij_on_Union_of_directed (directed_pts_of_period_pnat f) (λ i, bij_on_pts_of_period f i.pos) | |
variable {f} | |
lemma semiconj.maps_to_periodic_pts {g : α → β} (h : semiconj g fa fb) : | |
maps_to g (periodic_pts fa) (periodic_pts fb) := | |
λ x ⟨n, hn, hx⟩, ⟨n, hn, hx.map h⟩ | |
open_locale classical | |
noncomputable theory | |
/-- Minimal period of a point `x` under an endomorphism `f`. If `x` is not a periodic point of `f`, | |
then `minimal_period f x = 0`. -/ | |
def minimal_period (f : α → α) (x : α) := | |
if h : x ∈ periodic_pts f then nat.find h else 0 | |
lemma is_periodic_pt_minimal_period (f : α → α) (x : α) : is_periodic_pt f (minimal_period f x) x := | |
begin | |
delta minimal_period, | |
split_ifs with hx, | |
{ exact (nat.find_spec hx).snd }, | |
{ exact is_periodic_pt_zero f x } | |
end | |
@[simp] lemma iterate_minimal_period : f^[minimal_period f x] x = x := | |
is_periodic_pt_minimal_period f x | |
@[simp] lemma iterate_add_minimal_period_eq : f^[n + minimal_period f x] x = (f^[n] x) := | |
by { rw iterate_add_apply, congr, exact is_periodic_pt_minimal_period f x } | |
@[simp] lemma iterate_mod_minimal_period_eq : f^[n % minimal_period f x] x = (f^[n] x) := | |
(is_periodic_pt_minimal_period f x).iterate_mod_apply n | |
lemma minimal_period_pos_of_mem_periodic_pts (hx : x ∈ periodic_pts f) : | |
0 < minimal_period f x := | |
by simp only [minimal_period, dif_pos hx, (nat.find_spec hx).fst.lt] | |
lemma minimal_period_eq_zero_of_nmem_periodic_pts (hx : x ∉ periodic_pts f) : | |
minimal_period f x = 0 := | |
by simp only [minimal_period, dif_neg hx] | |
lemma is_periodic_pt.minimal_period_pos (hn : 0 < n) (hx : is_periodic_pt f n x) : | |
0 < minimal_period f x := | |
minimal_period_pos_of_mem_periodic_pts $ mk_mem_periodic_pts hn hx | |
lemma minimal_period_pos_iff_mem_periodic_pts : | |
0 < minimal_period f x ↔ x ∈ periodic_pts f := | |
⟨not_imp_not.1 $ λ h, | |
by simp only [minimal_period, dif_neg h, lt_irrefl 0, not_false_iff], | |
minimal_period_pos_of_mem_periodic_pts⟩ | |
lemma minimal_period_eq_zero_iff_nmem_periodic_pts : minimal_period f x = 0 ↔ x ∉ periodic_pts f := | |
by rw [←minimal_period_pos_iff_mem_periodic_pts, not_lt, nonpos_iff_eq_zero] | |
lemma is_periodic_pt.minimal_period_le (hn : 0 < n) (hx : is_periodic_pt f n x) : | |
minimal_period f x ≤ n := | |
begin | |
rw [minimal_period, dif_pos (mk_mem_periodic_pts hn hx)], | |
exact nat.find_min' (mk_mem_periodic_pts hn hx) ⟨hn, hx⟩ | |
end | |
lemma minimal_period_apply_iterate (hx : x ∈ periodic_pts f) (n : ℕ) : | |
minimal_period f (f^[n] x) = minimal_period f x := | |
begin | |
apply (is_periodic_pt.minimal_period_le (minimal_period_pos_of_mem_periodic_pts hx) _).antisymm | |
((is_periodic_pt_of_mem_periodic_pts_of_is_periodic_pt_iterate hx | |
(is_periodic_pt_minimal_period f _)).minimal_period_le | |
(minimal_period_pos_of_mem_periodic_pts _)), | |
{ exact (is_periodic_pt_minimal_period f x).apply_iterate n, }, | |
{ rcases hx with ⟨m, hm, hx⟩, | |
exact ⟨m, hm, hx.apply_iterate n⟩ } | |
end | |
lemma minimal_period_apply (hx : x ∈ periodic_pts f) : | |
minimal_period f (f x) = minimal_period f x := | |
minimal_period_apply_iterate hx 1 | |
lemma le_of_lt_minimal_period_of_iterate_eq {m n : ℕ} (hm : m < minimal_period f x) | |
(hmn : f^[m] x = (f^[n] x)) : m ≤ n := | |
begin | |
by_contra' hmn', | |
rw [←nat.add_sub_of_le hmn'.le, add_comm, iterate_add_apply] at hmn, | |
exact ((is_periodic_pt.minimal_period_le (tsub_pos_of_lt hmn') | |
(is_periodic_pt_of_mem_periodic_pts_of_is_periodic_pt_iterate | |
(minimal_period_pos_iff_mem_periodic_pts.1 ((zero_le m).trans_lt hm)) hmn)).trans | |
(nat.sub_le m n)).not_lt hm | |
end | |
lemma eq_of_lt_minimal_period_of_iterate_eq {m n : ℕ} (hm : m < minimal_period f x) | |
(hn : n < minimal_period f x) (hmn : f^[m] x = (f^[n] x)) : m = n := | |
(le_of_lt_minimal_period_of_iterate_eq hm hmn).antisymm | |
(le_of_lt_minimal_period_of_iterate_eq hn hmn.symm) | |
lemma eq_iff_lt_minimal_period_of_iterate_eq {m n : ℕ} (hm : m < minimal_period f x) | |
(hn : n < minimal_period f x) : f^[m] x = (f^[n] x) ↔ m = n := | |
⟨eq_of_lt_minimal_period_of_iterate_eq hm hn, congr_arg _⟩ | |
lemma minimal_period_id : minimal_period id x = 1 := | |
((is_periodic_id _ _ ).minimal_period_le nat.one_pos).antisymm | |
(nat.succ_le_of_lt ((is_periodic_id _ _ ).minimal_period_pos nat.one_pos)) | |
lemma is_fixed_point_iff_minimal_period_eq_one : minimal_period f x = 1 ↔ is_fixed_pt f x := | |
begin | |
refine ⟨λ h, _, λ h, _⟩, | |
{ rw ← iterate_one f, | |
refine function.is_periodic_pt.is_fixed_pt _, | |
rw ← h, | |
exact is_periodic_pt_minimal_period f x }, | |
{ exact ((h.is_periodic_pt 1).minimal_period_le nat.one_pos).antisymm | |
(nat.succ_le_of_lt ((h.is_periodic_pt 1).minimal_period_pos nat.one_pos)) } | |
end | |
lemma is_periodic_pt.eq_zero_of_lt_minimal_period (hx : is_periodic_pt f n x) | |
(hn : n < minimal_period f x) : n = 0 := | |
eq.symm $ (eq_or_lt_of_le $ n.zero_le).resolve_right $ λ hn0, | |
not_lt.2 (hx.minimal_period_le hn0) hn | |
lemma not_is_periodic_pt_of_pos_of_lt_minimal_period : | |
∀ {n : ℕ} (n0 : n ≠ 0) (hn : n < minimal_period f x), ¬ is_periodic_pt f n x | |
| 0 n0 _ := (n0 rfl).elim | |
| (n + 1) _ hn := λ hp, nat.succ_ne_zero _ (hp.eq_zero_of_lt_minimal_period hn) | |
lemma is_periodic_pt.minimal_period_dvd (hx : is_periodic_pt f n x) : minimal_period f x ∣ n := | |
(eq_or_lt_of_le $ n.zero_le).elim (λ hn0, hn0 ▸ dvd_zero _) $ λ hn0, | |
nat.dvd_iff_mod_eq_zero.2 $ | |
(hx.mod $ is_periodic_pt_minimal_period f x).eq_zero_of_lt_minimal_period $ | |
nat.mod_lt _ $ hx.minimal_period_pos hn0 | |
lemma is_periodic_pt_iff_minimal_period_dvd : is_periodic_pt f n x ↔ minimal_period f x ∣ n := | |
⟨is_periodic_pt.minimal_period_dvd, λ h, (is_periodic_pt_minimal_period f x).trans_dvd h⟩ | |
open nat | |
lemma minimal_period_eq_minimal_period_iff {g : β → β} {y : β} : | |
minimal_period f x = minimal_period g y ↔ ∀ n, is_periodic_pt f n x ↔ is_periodic_pt g n y := | |
by simp_rw [is_periodic_pt_iff_minimal_period_dvd, dvd_right_iff_eq] | |
lemma minimal_period_eq_prime {p : ℕ} [hp : fact p.prime] (hper : is_periodic_pt f p x) | |
(hfix : ¬ is_fixed_pt f x) : minimal_period f x = p := | |
(hp.out.eq_one_or_self_of_dvd _ (hper.minimal_period_dvd)).resolve_left | |
(mt is_fixed_point_iff_minimal_period_eq_one.1 hfix) | |
lemma minimal_period_eq_prime_pow {p k : ℕ} [hp : fact p.prime] (hk : ¬ is_periodic_pt f (p ^ k) x) | |
(hk1 : is_periodic_pt f (p ^ (k + 1)) x) : minimal_period f x = p ^ (k + 1) := | |
begin | |
apply nat.eq_prime_pow_of_dvd_least_prime_pow hp.out; | |
rwa ← is_periodic_pt_iff_minimal_period_dvd | |
end | |
lemma commute.minimal_period_of_comp_dvd_lcm {g : α → α} (h : function.commute f g) : | |
minimal_period (f ∘ g) x ∣ nat.lcm (minimal_period f x) (minimal_period g x) := | |
begin | |
rw [← is_periodic_pt_iff_minimal_period_dvd], | |
exact (is_periodic_pt_minimal_period f x).comp_lcm h (is_periodic_pt_minimal_period g x) | |
end | |
lemma commute.minimal_period_of_comp_dvd_mul {g : α → α} (h : function.commute f g) : | |
minimal_period (f ∘ g) x ∣ (minimal_period f x) * (minimal_period g x) := | |
dvd_trans h.minimal_period_of_comp_dvd_lcm (lcm_dvd_mul _ _) | |
lemma commute.minimal_period_of_comp_eq_mul_of_coprime {g : α → α} (h : function.commute f g) | |
(hco : coprime (minimal_period f x) (minimal_period g x)) : | |
minimal_period (f ∘ g) x = (minimal_period f x) * (minimal_period g x) := | |
begin | |
apply dvd_antisymm (h.minimal_period_of_comp_dvd_mul), | |
suffices : ∀ {f g : α → α}, commute f g → coprime (minimal_period f x) (minimal_period g x) → | |
minimal_period f x ∣ minimal_period (f ∘ g) x, | |
from hco.mul_dvd_of_dvd_of_dvd (this h hco) (h.comp_eq.symm ▸ this h.symm hco.symm), | |
clear hco h f g, | |
intros f g h hco, | |
refine hco.dvd_of_dvd_mul_left (is_periodic_pt.left_of_comp h _ _).minimal_period_dvd, | |
{ exact (is_periodic_pt_minimal_period _ _).const_mul _ }, | |
{ exact (is_periodic_pt_minimal_period _ _).mul_const _ } | |
end | |
private lemma minimal_period_iterate_eq_div_gcd_aux (h : 0 < gcd (minimal_period f x) n) : | |
minimal_period (f ^[n]) x = minimal_period f x / nat.gcd (minimal_period f x) n := | |
begin | |
apply nat.dvd_antisymm, | |
{ apply is_periodic_pt.minimal_period_dvd, | |
rw [is_periodic_pt, is_fixed_pt, ← iterate_mul, ← nat.mul_div_assoc _ (gcd_dvd_left _ _), | |
mul_comm, nat.mul_div_assoc _ (gcd_dvd_right _ _), mul_comm, iterate_mul], | |
exact (is_periodic_pt_minimal_period f x).iterate _ }, | |
{ apply coprime.dvd_of_dvd_mul_right (coprime_div_gcd_div_gcd h), | |
apply dvd_of_mul_dvd_mul_right h, | |
rw [nat.div_mul_cancel (gcd_dvd_left _ _), mul_assoc, nat.div_mul_cancel (gcd_dvd_right _ _), | |
mul_comm], | |
apply is_periodic_pt.minimal_period_dvd, | |
rw [is_periodic_pt, is_fixed_pt, iterate_mul], | |
exact is_periodic_pt_minimal_period _ _ } | |
end | |
lemma minimal_period_iterate_eq_div_gcd (h : n ≠ 0) : | |
minimal_period (f ^[n]) x = minimal_period f x / nat.gcd (minimal_period f x) n := | |
minimal_period_iterate_eq_div_gcd_aux $ gcd_pos_of_pos_right _ (nat.pos_of_ne_zero h) | |
lemma minimal_period_iterate_eq_div_gcd' (h : x ∈ periodic_pts f) : | |
minimal_period (f ^[n]) x = minimal_period f x / nat.gcd (minimal_period f x) n := | |
minimal_period_iterate_eq_div_gcd_aux $ | |
gcd_pos_of_pos_left n (minimal_period_pos_iff_mem_periodic_pts.mpr h) | |
/-- The orbit of a periodic point `x` of `f` is the cycle `[x, f x, f (f x), ...]`. Its length is | |
the minimal period of `x`. | |
If `x` is not a periodic point, then this is the empty (aka nil) cycle. -/ | |
def periodic_orbit (f : α → α) (x : α) : cycle α := | |
(list.range (minimal_period f x)).map (λ n, f^[n] x) | |
/-- The definition of a periodic orbit, in terms of `list.map`. -/ | |
lemma periodic_orbit_def (f : α → α) (x : α) : | |
periodic_orbit f x = (list.range (minimal_period f x)).map (λ n, f^[n] x) := | |
rfl | |
/-- The definition of a periodic orbit, in terms of `cycle.map`. -/ | |
lemma periodic_orbit_eq_cycle_map (f : α → α) (x : α) : | |
periodic_orbit f x = (list.range (minimal_period f x) : cycle ℕ).map (λ n, f^[n] x) := | |
rfl | |
@[simp] lemma periodic_orbit_length : (periodic_orbit f x).length = minimal_period f x := | |
by rw [periodic_orbit, cycle.length_coe, list.length_map, list.length_range] | |
@[simp] lemma periodic_orbit_eq_nil_iff_not_periodic_pt : | |
periodic_orbit f x = cycle.nil ↔ x ∉ periodic_pts f := | |
by { simp [periodic_orbit], exact minimal_period_eq_zero_iff_nmem_periodic_pts } | |
lemma periodic_orbit_eq_nil_of_not_periodic_pt (h : x ∉ periodic_pts f) : | |
periodic_orbit f x = cycle.nil := | |
periodic_orbit_eq_nil_iff_not_periodic_pt.2 h | |
@[simp] lemma mem_periodic_orbit_iff (hx : x ∈ periodic_pts f) : | |
y ∈ periodic_orbit f x ↔ ∃ n, f^[n] x = y := | |
begin | |
simp only [periodic_orbit, cycle.mem_coe_iff, list.mem_map, list.mem_range], | |
use λ ⟨a, ha, ha'⟩, ⟨a, ha'⟩, | |
rintro ⟨n, rfl⟩, | |
use [n % minimal_period f x, mod_lt _ (minimal_period_pos_of_mem_periodic_pts hx)], | |
rw iterate_mod_minimal_period_eq | |
end | |
@[simp] lemma iterate_mem_periodic_orbit (hx : x ∈ periodic_pts f) (n : ℕ) : | |
f^[n] x ∈ periodic_orbit f x := | |
(mem_periodic_orbit_iff hx).2 ⟨n, rfl⟩ | |
@[simp] lemma self_mem_periodic_orbit (hx : x ∈ periodic_pts f) : x ∈ periodic_orbit f x := | |
iterate_mem_periodic_orbit hx 0 | |
lemma nodup_periodic_orbit : (periodic_orbit f x).nodup := | |
begin | |
rw [periodic_orbit, cycle.nodup_coe_iff, list.nodup_map_iff_inj_on (list.nodup_range _)], | |
intros m hm n hn hmn, | |
rw list.mem_range at hm hn, | |
rwa eq_iff_lt_minimal_period_of_iterate_eq hm hn at hmn | |
end | |
lemma periodic_orbit_apply_iterate_eq (hx : x ∈ periodic_pts f) (n : ℕ) : | |
periodic_orbit f (f^[n] x) = periodic_orbit f x := | |
eq.symm $ cycle.coe_eq_coe.2 $ ⟨n, begin | |
apply list.ext_le _ (λ m _ _, _), | |
{ simp [minimal_period_apply_iterate hx] }, | |
{ rw list.nth_le_rotate _ n m, | |
simp [iterate_add_apply] } | |
end⟩ | |
lemma periodic_orbit_apply_eq (hx : x ∈ periodic_pts f) : | |
periodic_orbit f (f x) = periodic_orbit f x := | |
periodic_orbit_apply_iterate_eq hx 1 | |
theorem periodic_orbit_chain (r : α → α → Prop) {f : α → α} {x : α} : | |
(periodic_orbit f x).chain r ↔ ∀ n < minimal_period f x, r (f^[n] x) (f^[n+1] x) := | |
begin | |
by_cases hx : x ∈ periodic_pts f, | |
{ have hx' := minimal_period_pos_of_mem_periodic_pts hx, | |
have hM := nat.sub_add_cancel (succ_le_iff.2 hx'), | |
rw [periodic_orbit, ←cycle.map_coe, cycle.chain_map, ←hM, cycle.chain_range_succ], | |
refine ⟨_, λ H, ⟨_, λ m hm, H _ (hm.trans (nat.lt_succ_self _))⟩⟩, | |
{ rintro ⟨hr, H⟩ n hn, | |
cases eq_or_lt_of_le (lt_succ_iff.1 hn) with hM' hM', | |
{ rwa [hM', hM, iterate_minimal_period] }, | |
{ exact H _ hM' } }, | |
{ rw iterate_zero_apply, | |
nth_rewrite 2 ←@iterate_minimal_period α f x, | |
nth_rewrite 1 ←hM, | |
exact H _ (nat.lt_succ_self _) } }, | |
{ rw [periodic_orbit_eq_nil_of_not_periodic_pt hx, | |
minimal_period_eq_zero_of_nmem_periodic_pts hx], | |
simp } | |
end | |
theorem periodic_orbit_chain' (r : α → α → Prop) {f : α → α} {x : α} (hx : x ∈ periodic_pts f) : | |
(periodic_orbit f x).chain r ↔ ∀ n, r (f^[n] x) (f^[n+1] x) := | |
begin | |
rw periodic_orbit_chain r, | |
refine ⟨λ H n, _, λ H n _, H n⟩, | |
rw [iterate_succ_apply, ←iterate_mod_minimal_period_eq], | |
nth_rewrite 1 ←iterate_mod_minimal_period_eq, | |
rw [←iterate_succ_apply, minimal_period_apply hx], | |
exact H _ (mod_lt _ (minimal_period_pos_of_mem_periodic_pts hx)) | |
end | |
end function | |
namespace mul_action | |
open function | |
variables {α β : Type*} [group α] [mul_action α β] {a : α} {b : β} | |
@[to_additive] lemma pow_smul_eq_iff_minimal_period_dvd {n : ℕ} : | |
a ^ n • b = b ↔ function.minimal_period ((•) a) b ∣ n := | |
by rw [←is_periodic_pt_iff_minimal_period_dvd, is_periodic_pt, is_fixed_pt, smul_iterate] | |
@[to_additive] lemma zpow_smul_eq_iff_minimal_period_dvd {n : ℤ} : | |
a ^ n • b = b ↔ (function.minimal_period ((•) a) b : ℤ) ∣ n := | |
begin | |
cases n, | |
{ rw [int.of_nat_eq_coe, zpow_coe_nat, int.coe_nat_dvd, pow_smul_eq_iff_minimal_period_dvd] }, | |
{ rw [int.neg_succ_of_nat_coe, zpow_neg, zpow_coe_nat, inv_smul_eq_iff, eq_comm, | |
dvd_neg, int.coe_nat_dvd, pow_smul_eq_iff_minimal_period_dvd] }, | |
end | |
variables (a b) | |
@[simp, to_additive] lemma pow_smul_mod_minimal_period (n : ℕ) : | |
a ^ (n % function.minimal_period ((•) a) b) • b = a ^ n • b := | |
by conv_rhs { rw [← nat.mod_add_div n (minimal_period ((•) a) b), pow_add, mul_smul, | |
pow_smul_eq_iff_minimal_period_dvd.mpr (dvd_mul_right _ _)] } | |
@[simp, to_additive] lemma zpow_smul_mod_minimal_period (n : ℤ) : | |
a ^ (n % (function.minimal_period ((•) a) b : ℤ)) • b = a ^ n • b := | |
by conv_rhs { rw [← int.mod_add_div n (minimal_period ((•) a) b), zpow_add, mul_smul, | |
zpow_smul_eq_iff_minimal_period_dvd.mpr (dvd_mul_right _ _)] } | |
end mul_action | |