Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Kenny Lau. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Kenny Lau, Yury Kudryashov | |
-/ | |
import algebra.char_p.basic | |
import algebra.group_with_zero.power | |
import algebra.hom.iterate | |
import algebra.ring.equiv | |
/-! | |
-/ | |
universes u v | |
open function | |
section defs | |
variables (R : Type u) [comm_semiring R] (p : ℕ) [fact p.prime] [char_p R p] | |
/-- A perfect ring is a ring of characteristic p that has p-th root. -/ | |
class perfect_ring : Type u := | |
(pth_root' : R → R) | |
(frobenius_pth_root' : ∀ x, frobenius R p (pth_root' x) = x) | |
(pth_root_frobenius' : ∀ x, pth_root' (frobenius R p x) = x) | |
/-- Frobenius automorphism of a perfect ring. -/ | |
def frobenius_equiv [perfect_ring R p] : R ≃+* R := | |
{ inv_fun := perfect_ring.pth_root' p, | |
left_inv := perfect_ring.pth_root_frobenius', | |
right_inv := perfect_ring.frobenius_pth_root', | |
.. frobenius R p } | |
/-- `p`-th root of an element in a `perfect_ring` as a `ring_hom`. -/ | |
def pth_root [perfect_ring R p] : R →+* R := | |
(frobenius_equiv R p).symm | |
end defs | |
section | |
variables {R : Type u} [comm_semiring R] {S : Type v} [comm_semiring S] (f : R →* S) (g : R →+* S) | |
{p : ℕ} [fact p.prime] [char_p R p] [perfect_ring R p] [char_p S p] [perfect_ring S p] | |
@[simp] lemma coe_frobenius_equiv : ⇑(frobenius_equiv R p) = frobenius R p := rfl | |
@[simp] lemma coe_frobenius_equiv_symm : ⇑(frobenius_equiv R p).symm = pth_root R p := rfl | |
@[simp] theorem frobenius_pth_root (x : R) : frobenius R p (pth_root R p x) = x := | |
(frobenius_equiv R p).apply_symm_apply x | |
@[simp] theorem pth_root_pow_p (x : R) : pth_root R p x ^ p = x := | |
frobenius_pth_root x | |
@[simp] theorem pth_root_frobenius (x : R) : pth_root R p (frobenius R p x) = x := | |
(frobenius_equiv R p).symm_apply_apply x | |
@[simp] theorem pth_root_pow_p' (x : R) : pth_root R p (x ^ p) = x := | |
pth_root_frobenius x | |
theorem left_inverse_pth_root_frobenius : left_inverse (pth_root R p) (frobenius R p) := | |
pth_root_frobenius | |
theorem right_inverse_pth_root_frobenius : function.right_inverse (pth_root R p) (frobenius R p) := | |
frobenius_pth_root | |
theorem commute_frobenius_pth_root : function.commute (frobenius R p) (pth_root R p) := | |
λ x, (frobenius_pth_root x).trans (pth_root_frobenius x).symm | |
theorem eq_pth_root_iff {x y : R} : x = pth_root R p y ↔ frobenius R p x = y := | |
(frobenius_equiv R p).to_equiv.eq_symm_apply | |
theorem pth_root_eq_iff {x y : R} : pth_root R p x = y ↔ x = frobenius R p y := | |
(frobenius_equiv R p).to_equiv.symm_apply_eq | |
theorem monoid_hom.map_pth_root (x : R) : f (pth_root R p x) = pth_root S p (f x) := | |
eq_pth_root_iff.2 $ by rw [← f.map_frobenius, frobenius_pth_root] | |
theorem monoid_hom.map_iterate_pth_root (x : R) (n : ℕ) : | |
f (pth_root R p^[n] x) = (pth_root S p^[n] (f x)) := | |
semiconj.iterate_right f.map_pth_root n x | |
theorem ring_hom.map_pth_root (x : R) : | |
g (pth_root R p x) = pth_root S p (g x) := | |
g.to_monoid_hom.map_pth_root x | |
theorem ring_hom.map_iterate_pth_root (x : R) (n : ℕ) : | |
g (pth_root R p^[n] x) = (pth_root S p^[n] (g x)) := | |
g.to_monoid_hom.map_iterate_pth_root x n | |
variables (p) | |
lemma injective_pow_p {x y : R} (hxy : x ^ p = y ^ p) : x = y := | |
left_inverse_pth_root_frobenius.injective hxy | |
end | |
section | |
variables (K : Type u) [comm_ring K] (p : ℕ) [fact p.prime] [char_p K p] | |
/-- `perfect_closure K p` is the quotient by this relation. -/ | |
@[mk_iff] inductive perfect_closure.r : (ℕ × K) → (ℕ × K) → Prop | |
| intro : ∀ n x, perfect_closure.r (n, x) (n+1, frobenius K p x) | |
/-- The perfect closure is the smallest extension that makes frobenius surjective. -/ | |
def perfect_closure : Type u := quot (perfect_closure.r K p) | |
end | |
namespace perfect_closure | |
variables (K : Type u) | |
section ring | |
variables [comm_ring K] (p : ℕ) [fact p.prime] [char_p K p] | |
/-- Constructor for `perfect_closure`. -/ | |
def mk (x : ℕ × K) : perfect_closure K p := quot.mk (r K p) x | |
@[simp] lemma quot_mk_eq_mk (x : ℕ × K) : | |
(quot.mk (r K p) x : perfect_closure K p) = mk K p x := rfl | |
variables {K p} | |
/-- Lift a function `ℕ × K → L` to a function on `perfect_closure K p`. -/ | |
@[elab_as_eliminator] | |
def lift_on {L : Type*} (x : perfect_closure K p) (f : ℕ × K → L) | |
(hf : ∀ x y, r K p x y → f x = f y) : L := | |
quot.lift_on x f hf | |
@[simp] lemma lift_on_mk {L : Sort*} (f : ℕ × K → L) | |
(hf : ∀ x y, r K p x y → f x = f y) (x : ℕ × K) : | |
(mk K p x).lift_on f hf = f x := | |
rfl | |
@[elab_as_eliminator] | |
lemma induction_on (x : perfect_closure K p) {q : perfect_closure K p → Prop} | |
(h : ∀ x, q (mk K p x)) : q x := | |
quot.induction_on x h | |
variables (K p) | |
private lemma mul_aux_left (x1 x2 y : ℕ × K) (H : r K p x1 x2) : | |
mk K p (x1.1 + y.1, ((frobenius K p)^[y.1] x1.2) * ((frobenius K p)^[x1.1] y.2)) = | |
mk K p (x2.1 + y.1, ((frobenius K p)^[y.1] x2.2) * ((frobenius K p)^[x2.1] y.2)) := | |
match x1, x2, H with | |
| _, _, r.intro n x := quot.sound $ by rw [← iterate_succ_apply, iterate_succ', | |
iterate_succ', ← frobenius_mul, nat.succ_add]; apply r.intro | |
end | |
private lemma mul_aux_right (x y1 y2 : ℕ × K) (H : r K p y1 y2) : | |
mk K p (x.1 + y1.1, ((frobenius K p)^[y1.1] x.2) * ((frobenius K p)^[x.1] y1.2)) = | |
mk K p (x.1 + y2.1, ((frobenius K p)^[y2.1] x.2) * ((frobenius K p)^[x.1] y2.2)) := | |
match y1, y2, H with | |
| _, _, r.intro n y := quot.sound $ by rw [← iterate_succ_apply, iterate_succ', | |
iterate_succ', ← frobenius_mul]; apply r.intro | |
end | |
instance : has_mul (perfect_closure K p) := | |
⟨quot.lift (λ x:ℕ×K, quot.lift (λ y:ℕ×K, mk K p | |
(x.1 + y.1, ((frobenius K p)^[y.1] x.2) * ((frobenius K p)^[x.1] y.2))) (mul_aux_right K p x)) | |
(λ x1 x2 (H : r K p x1 x2), funext $ λ e, quot.induction_on e $ λ y, | |
mul_aux_left K p x1 x2 y H)⟩ | |
@[simp] lemma mk_mul_mk (x y : ℕ × K) : | |
mk K p x * mk K p y = mk K p | |
(x.1 + y.1, ((frobenius K p)^[y.1] x.2) * ((frobenius K p)^[x.1] y.2)) := | |
rfl | |
instance : comm_monoid (perfect_closure K p) := | |
{ mul_assoc := λ e f g, quot.induction_on e $ λ ⟨m, x⟩, quot.induction_on f $ λ ⟨n, y⟩, | |
quot.induction_on g $ λ ⟨s, z⟩, congr_arg (quot.mk _) $ | |
by simp only [add_assoc, mul_assoc, ring_hom.iterate_map_mul, | |
← iterate_add_apply, add_comm, add_left_comm], | |
one := mk K p (0, 1), | |
one_mul := λ e, quot.induction_on e (λ ⟨n, x⟩, congr_arg (quot.mk _) $ | |
by simp only [ring_hom.iterate_map_one, iterate_zero_apply, one_mul, zero_add]), | |
mul_one := λ e, quot.induction_on e (λ ⟨n, x⟩, congr_arg (quot.mk _) $ | |
by simp only [ring_hom.iterate_map_one, iterate_zero_apply, mul_one, add_zero]), | |
mul_comm := λ e f, quot.induction_on e (λ ⟨m, x⟩, quot.induction_on f (λ ⟨n, y⟩, | |
congr_arg (quot.mk _) $ by simp only [add_comm, mul_comm])), | |
.. (infer_instance : has_mul (perfect_closure K p)) } | |
lemma one_def : (1 : perfect_closure K p) = mk K p (0, 1) := rfl | |
instance : inhabited (perfect_closure K p) := ⟨1⟩ | |
private lemma add_aux_left (x1 x2 y : ℕ × K) (H : r K p x1 x2) : | |
mk K p (x1.1 + y.1, ((frobenius K p)^[y.1] x1.2) + ((frobenius K p)^[x1.1] y.2)) = | |
mk K p (x2.1 + y.1, ((frobenius K p)^[y.1] x2.2) + ((frobenius K p)^[x2.1] y.2)) := | |
match x1, x2, H with | |
| _, _, r.intro n x := quot.sound $ by rw [← iterate_succ_apply, iterate_succ', | |
iterate_succ', ← frobenius_add, nat.succ_add]; apply r.intro | |
end | |
private lemma add_aux_right (x y1 y2 : ℕ × K) (H : r K p y1 y2) : | |
mk K p (x.1 + y1.1, ((frobenius K p)^[y1.1] x.2) + ((frobenius K p)^[x.1] y1.2)) = | |
mk K p (x.1 + y2.1, ((frobenius K p)^[y2.1] x.2) + ((frobenius K p)^[x.1] y2.2)) := | |
match y1, y2, H with | |
| _, _, r.intro n y := quot.sound $ by rw [← iterate_succ_apply, iterate_succ', | |
iterate_succ', ← frobenius_add]; apply r.intro | |
end | |
instance : has_add (perfect_closure K p) := | |
⟨quot.lift (λ x:ℕ×K, quot.lift (λ y:ℕ×K, mk K p | |
(x.1 + y.1, ((frobenius K p)^[y.1] x.2) + ((frobenius K p)^[x.1] y.2))) (add_aux_right K p x)) | |
(λ x1 x2 (H : r K p x1 x2), funext $ λ e, quot.induction_on e $ λ y, | |
add_aux_left K p x1 x2 y H)⟩ | |
@[simp] lemma mk_add_mk (x y : ℕ × K) : | |
mk K p x + mk K p y = | |
mk K p (x.1 + y.1, ((frobenius K p)^[y.1] x.2) + ((frobenius K p)^[x.1] y.2)) := rfl | |
instance : has_neg (perfect_closure K p) := | |
⟨quot.lift (λ x:ℕ×K, mk K p (x.1, -x.2)) (λ x y (H : r K p x y), match x, y, H with | |
| _, _, r.intro n x := quot.sound $ by rw ← frobenius_neg; apply r.intro | |
end)⟩ | |
@[simp] lemma neg_mk (x : ℕ × K) : - mk K p x = mk K p (x.1, -x.2) := rfl | |
instance : has_zero (perfect_closure K p) := ⟨mk K p (0, 0)⟩ | |
lemma zero_def : (0 : perfect_closure K p) = mk K p (0, 0) := rfl | |
@[simp] lemma mk_zero_zero : mk K p (0, 0) = 0 := rfl | |
theorem mk_zero (n : ℕ) : mk K p (n, 0) = 0 := | |
by induction n with n ih; [refl, rw ← ih]; symmetry; apply quot.sound; | |
have := r.intro n (0:K); rwa [frobenius_zero K p] at this | |
theorem r.sound (m n : ℕ) (x y : K) (H : frobenius K p^[m] x = y) : | |
mk K p (n, x) = mk K p (m + n, y) := | |
by subst H; induction m with m ih; [simp only [zero_add, iterate_zero_apply], | |
rw [ih, nat.succ_add, iterate_succ']]; apply quot.sound; apply r.intro | |
instance : add_comm_group (perfect_closure K p) := | |
{ add_assoc := λ e f g, quot.induction_on e $ λ ⟨m, x⟩, quot.induction_on f $ λ ⟨n, y⟩, | |
quot.induction_on g $ λ ⟨s, z⟩, congr_arg (quot.mk _) $ | |
by simp only [ring_hom.iterate_map_add, ← iterate_add_apply, add_assoc, add_comm s _], | |
zero := 0, | |
zero_add := λ e, quot.induction_on e (λ ⟨n, x⟩, congr_arg (quot.mk _) $ | |
by simp only [ring_hom.iterate_map_zero, iterate_zero_apply, zero_add]), | |
add_zero := λ e, quot.induction_on e (λ ⟨n, x⟩, congr_arg (quot.mk _) $ | |
by simp only [ring_hom.iterate_map_zero, iterate_zero_apply, add_zero]), | |
sub_eq_add_neg := λ a b, rfl, | |
add_left_neg := λ e, by exact quot.induction_on e (λ ⟨n, x⟩, | |
by simp only [quot_mk_eq_mk, neg_mk, mk_add_mk, | |
ring_hom.iterate_map_neg, add_left_neg, mk_zero]), | |
add_comm := λ e f, quot.induction_on e (λ ⟨m, x⟩, quot.induction_on f (λ ⟨n, y⟩, | |
congr_arg (quot.mk _) $ by simp only [add_comm])), | |
.. (infer_instance : has_add (perfect_closure K p)), | |
.. (infer_instance : has_neg (perfect_closure K p)) } | |
instance : comm_ring (perfect_closure K p) := | |
{ left_distrib := λ e f g, quot.induction_on e $ λ ⟨m, x⟩, quot.induction_on f $ λ ⟨n, y⟩, | |
quot.induction_on g $ λ ⟨s, z⟩, show quot.mk _ _ = quot.mk _ _, | |
by simp only [add_assoc, add_comm, add_left_comm]; apply r.sound; | |
simp only [ring_hom.iterate_map_mul, ring_hom.iterate_map_add, | |
← iterate_add_apply, mul_add, add_comm, add_left_comm], | |
right_distrib := λ e f g, quot.induction_on e $ λ ⟨m, x⟩, quot.induction_on f $ λ ⟨n, y⟩, | |
quot.induction_on g $ λ ⟨s, z⟩, show quot.mk _ _ = quot.mk _ _, | |
by simp only [add_assoc, add_comm _ s, add_left_comm _ s]; apply r.sound; | |
simp only [ring_hom.iterate_map_mul, ring_hom.iterate_map_add, | |
← iterate_add_apply, add_mul, add_comm, add_left_comm], | |
.. perfect_closure.add_comm_group K p, | |
.. add_monoid_with_one.unary, | |
.. (infer_instance : comm_monoid (perfect_closure K p)) } | |
theorem eq_iff' (x y : ℕ × K) : mk K p x = mk K p y ↔ | |
∃ z, (frobenius K p^[y.1 + z] x.2) = (frobenius K p^[x.1 + z] y.2) := | |
begin | |
split, | |
{ intro H, | |
replace H := quot.exact _ H, | |
induction H, | |
case eqv_gen.rel : x y H | |
{ cases H with n x, exact ⟨0, rfl⟩ }, | |
case eqv_gen.refl : H | |
{ exact ⟨0, rfl⟩ }, | |
case eqv_gen.symm : x y H ih | |
{ cases ih with w ih, exact ⟨w, ih.symm⟩ }, | |
case eqv_gen.trans : x y z H1 H2 ih1 ih2 | |
{ cases ih1 with z1 ih1, | |
cases ih2 with z2 ih2, | |
existsi z2+(y.1+z1), | |
rw [← add_assoc, iterate_add_apply, ih1], | |
rw [← iterate_add_apply, add_comm, iterate_add_apply, ih2], | |
rw [← iterate_add_apply], | |
simp only [add_comm, add_left_comm] } }, | |
intro H, | |
cases x with m x, | |
cases y with n y, | |
cases H with z H, dsimp only at H, | |
rw [r.sound K p (n+z) m x _ rfl, r.sound K p (m+z) n y _ rfl, H], | |
rw [add_assoc, add_comm, add_comm z] | |
end | |
theorem nat_cast (n x : ℕ) : (x : perfect_closure K p) = mk K p (n, x) := | |
begin | |
induction n with n ih, | |
{ induction x with x ih, {simp}, | |
rw [nat.cast_succ, nat.cast_succ, ih], refl }, | |
rw ih, apply quot.sound, | |
conv {congr, skip, skip, rw ← frobenius_nat_cast K p x}, | |
apply r.intro | |
end | |
theorem int_cast (x : ℤ) : (x : perfect_closure K p) = mk K p (0, x) := | |
by induction x; simp only [int.cast_of_nat, int.cast_neg_succ_of_nat, nat_cast K p 0]; refl | |
theorem nat_cast_eq_iff (x y : ℕ) : (x : perfect_closure K p) = y ↔ (x : K) = y := | |
begin | |
split; intro H, | |
{ rw [nat_cast K p 0, nat_cast K p 0, eq_iff'] at H, | |
cases H with z H, | |
simpa only [zero_add, iterate_fixed (frobenius_nat_cast K p _)] using H }, | |
rw [nat_cast K p 0, nat_cast K p 0, H] | |
end | |
instance : char_p (perfect_closure K p) p := | |
begin | |
constructor, intro x, rw ← char_p.cast_eq_zero_iff K, | |
rw [← nat.cast_zero, nat_cast_eq_iff, nat.cast_zero] | |
end | |
theorem frobenius_mk (x : ℕ × K) : | |
(frobenius (perfect_closure K p) p : perfect_closure K p → perfect_closure K p) | |
(mk K p x) = mk _ _ (x.1, x.2^p) := | |
begin | |
simp only [frobenius_def], cases x with n x, dsimp only, | |
suffices : ∀ p':ℕ, mk K p (n, x) ^ p' = mk K p (n, x ^ p'), | |
{ apply this }, | |
intro p, induction p with p ih, | |
case nat.zero { apply r.sound, rw [(frobenius _ _).iterate_map_one, pow_zero] }, | |
case nat.succ | |
{ rw [pow_succ, ih], | |
symmetry, | |
apply r.sound, | |
simp only [pow_succ, (frobenius _ _).iterate_map_mul] } | |
end | |
/-- Embedding of `K` into `perfect_closure K p` -/ | |
def of : K →+* perfect_closure K p := | |
{ to_fun := λ x, mk _ _ (0, x), | |
map_one' := rfl, | |
map_mul' := λ x y, rfl, | |
map_zero' := rfl, | |
map_add' := λ x y, rfl } | |
lemma of_apply (x : K) : of K p x = mk _ _ (0, x) := rfl | |
end ring | |
theorem eq_iff [comm_ring K] [is_domain K] (p : ℕ) [fact p.prime] [char_p K p] | |
(x y : ℕ × K) : quot.mk (r K p) x = quot.mk (r K p) y ↔ | |
(frobenius K p^[y.1] x.2) = (frobenius K p^[x.1] y.2) := | |
(eq_iff' K p x y).trans ⟨λ ⟨z, H⟩, (frobenius_inj K p).iterate z $ | |
by simpa only [add_comm, iterate_add] using H, | |
λ H, ⟨0, H⟩⟩ | |
section field | |
variables [field K] (p : ℕ) [fact p.prime] [char_p K p] | |
instance : has_inv (perfect_closure K p) := | |
⟨quot.lift (λ x:ℕ×K, quot.mk (r K p) (x.1, x.2⁻¹)) (λ x y (H : r K p x y), match x, y, H with | |
| _, _, r.intro n x := quot.sound $ by { simp only [frobenius_def], rw ← inv_pow, apply r.intro } | |
end)⟩ | |
instance : field (perfect_closure K p) := | |
{ exists_pair_ne := ⟨0, 1, λ H, zero_ne_one ((eq_iff _ _ _ _).1 H)⟩, | |
mul_inv_cancel := λ e, induction_on e $ λ ⟨m, x⟩ H, | |
have _ := mt (eq_iff _ _ _ _).2 H, (eq_iff _ _ _ _).2 | |
(by simp only [(frobenius _ _).iterate_map_one, (frobenius K p).iterate_map_zero, | |
iterate_zero_apply, ← (frobenius _ p).iterate_map_mul] at this ⊢; | |
rw [mul_inv_cancel this, (frobenius _ _).iterate_map_one]), | |
inv_zero := congr_arg (quot.mk (r K p)) (by rw [inv_zero]), | |
.. (infer_instance : has_inv (perfect_closure K p)), | |
.. (infer_instance : comm_ring (perfect_closure K p)) } | |
instance : perfect_ring (perfect_closure K p) p := | |
{ pth_root' := λ e, lift_on e (λ x, mk K p (x.1 + 1, x.2)) (λ x y H, | |
match x, y, H with | |
| _, _, r.intro n x := quot.sound (r.intro _ _) | |
end), | |
frobenius_pth_root' := λ e, induction_on e (λ ⟨n, x⟩, | |
by { simp only [lift_on_mk, frobenius_mk], exact (quot.sound $ r.intro _ _).symm }), | |
pth_root_frobenius' := λ e, induction_on e (λ ⟨n, x⟩, | |
by { simp only [lift_on_mk, frobenius_mk], exact (quot.sound $ r.intro _ _).symm }) } | |
theorem eq_pth_root (x : ℕ × K) : | |
mk K p x = (pth_root (perfect_closure K p) p^[x.1] (of K p x.2)) := | |
begin | |
rcases x with ⟨m, x⟩, | |
induction m with m ih, {refl}, | |
rw [iterate_succ_apply', ← ih]; refl | |
end | |
/-- Given a field `K` of characteristic `p` and a perfect ring `L` of the same characteristic, | |
any homomorphism `K →+* L` can be lifted to `perfect_closure K p`. -/ | |
def lift (L : Type v) [comm_semiring L] [char_p L p] [perfect_ring L p] : | |
(K →+* L) ≃ (perfect_closure K p →+* L) := | |
begin | |
have := left_inverse_pth_root_frobenius.iterate, | |
refine_struct { .. }, | |
field to_fun { intro f, | |
refine_struct { .. }, | |
field to_fun { refine λ e, lift_on e (λ x, pth_root L p^[x.1] (f x.2)) _, | |
rintro a b ⟨n⟩, | |
simp only [f.map_frobenius, iterate_succ_apply, pth_root_frobenius] }, | |
field map_one' { exact f.map_one }, | |
field map_zero' { exact f.map_zero }, | |
field map_mul' { rintro ⟨x⟩ ⟨y⟩, | |
simp only [quot_mk_eq_mk, lift_on_mk, mk_mul_mk, ring_hom.map_iterate_frobenius, | |
ring_hom.iterate_map_mul, ring_hom.map_mul], | |
rw [iterate_add_apply, this _ _, add_comm, iterate_add_apply, this _ _] }, | |
field map_add' { rintro ⟨x⟩ ⟨y⟩, | |
simp only [quot_mk_eq_mk, lift_on_mk, mk_add_mk, ring_hom.map_iterate_frobenius, | |
ring_hom.iterate_map_add, ring_hom.map_add], | |
rw [iterate_add_apply, this _ _, add_comm x.1, iterate_add_apply, this _ _] } }, | |
field inv_fun { exact λ f, f.comp (of K p) }, | |
field left_inv { intro f, ext x, refl }, | |
field right_inv { intro f, ext ⟨x⟩, | |
simp only [ring_hom.coe_mk, quot_mk_eq_mk, ring_hom.comp_apply, lift_on_mk], | |
rw [eq_pth_root, ring_hom.map_iterate_pth_root] } | |
end | |
end field | |
end perfect_closure | |
/-- A reduced ring with prime characteristic and surjective frobenius map is perfect. -/ | |
noncomputable def perfect_ring.of_surjective (k : Type*) [comm_ring k] [is_reduced k] (p : ℕ) | |
[fact p.prime] [char_p k p] (h : function.surjective $ frobenius k p) : | |
perfect_ring k p := | |
{ pth_root' := function.surj_inv h, | |
frobenius_pth_root' := function.surj_inv_eq h, | |
pth_root_frobenius' := λ x, frobenius_inj _ _ $ function.surj_inv_eq h _ } | |