proof-pile / formal /lean /mathlib /linear_algebra /annihilating_polynomial.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
6.69 kB
/-
Copyright (c) 2022 Justin Thomas. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Justin Thomas
-/
import data.set.basic
import field_theory.minpoly
import ring_theory.principal_ideal_domain
import ring_theory.polynomial_algebra
/-!
# Annihilating Ideal
Given a commutative ring `R` and an `R`-algebra `A`
Every element `a : A` defines
an ideal `polynomial.ann_ideal a βŠ† R[X]`.
Simply put, this is the set of polynomials `p` where
the polynomial evaluation `p(a)` is 0.
## Special case where the ground ring is a field
In the special case that `R` is a field, we use the notation `R = π•œ`.
Here `π•œ[X]` is a PID, so there is a polynomial `g ∈ polynomial.ann_ideal a`
which generates the ideal. We show that if this generator is
chosen to be monic, then it is the minimal polynomial of `a`,
as defined in `field_theory.minpoly`.
## Special case: endomorphism algebra
Given an `R`-module `M` (`[add_comm_group M] [module R M]`)
there are some common specializations which may be more familiar.
* Example 1: `A = M β†’β‚—[R] M`, the endomorphism algebra of an `R`-module M.
* Example 2: `A = n Γ— n` matrices with entries in `R`.
-/
open_locale polynomial
namespace polynomial
section semiring
variables {R A : Type*} [comm_semiring R] [semiring A] [algebra R A]
variables (R)
/-- `ann_ideal R a` is the *annihilating ideal* of all `p : R[X]` such that `p(a) = 0`.
The informal notation `p(a)` stand for `polynomial.aeval a p`.
Again informally, the annihilating ideal of `a` is
`{ p ∈ R[X] | p(a) = 0 }`. This is an ideal in `R[X]`.
The formal definition uses the kernel of the aeval map. -/
noncomputable def ann_ideal (a : A) : ideal R[X] :=
((aeval a).to_ring_hom : R[X] β†’+* A).ker
variables {R}
/-- It is useful to refer to ideal membership sometimes
and the annihilation condition other times. -/
lemma mem_ann_ideal_iff_aeval_eq_zero {a : A} {p : R[X]} :
p ∈ ann_ideal R a ↔ aeval a p = 0 :=
iff.rfl
end semiring
section field
variables {π•œ A : Type*} [field π•œ] [ring A] [algebra π•œ A]
variable (π•œ)
open submodule
/-- `ann_ideal_generator π•œ a` is the monic generator of `ann_ideal π•œ a`
if one exists, otherwise `0`.
Since `π•œ[X]` is a principal ideal domain there is a polynomial `g` such that
`span π•œ {g} = ann_ideal a`. This picks some generator.
We prefer the monic generator of the ideal. -/
noncomputable def ann_ideal_generator (a : A) : π•œ[X] :=
let g := is_principal.generator $ ann_ideal π•œ a
in g * (C g.leading_coeff⁻¹)
section
variables {π•œ}
@[simp] lemma ann_ideal_generator_eq_zero_iff {a : A} :
ann_ideal_generator π•œ a = 0 ↔ ann_ideal π•œ a = βŠ₯ :=
by simp only [ann_ideal_generator, mul_eq_zero, is_principal.eq_bot_iff_generator_eq_zero,
polynomial.C_eq_zero, inv_eq_zero, polynomial.leading_coeff_eq_zero, or_self]
end
/-- `ann_ideal_generator π•œ a` is indeed a generator. -/
@[simp] lemma span_singleton_ann_ideal_generator (a : A) :
ideal.span {ann_ideal_generator π•œ a} = ann_ideal π•œ a :=
begin
by_cases h : ann_ideal_generator π•œ a = 0,
{ rw [h, ann_ideal_generator_eq_zero_iff.mp h, set.singleton_zero, ideal.span_zero] },
{ rw [ann_ideal_generator, ideal.span_singleton_mul_right_unit, ideal.span_singleton_generator],
apply polynomial.is_unit_C.mpr,
apply is_unit.mk0,
apply inv_eq_zero.not.mpr,
apply polynomial.leading_coeff_eq_zero.not.mpr,
apply (mul_ne_zero_iff.mp h).1 }
end
/-- The annihilating ideal generator is a member of the annihilating ideal. -/
lemma ann_ideal_generator_mem (a : A) : ann_ideal_generator π•œ a ∈ ann_ideal π•œ a :=
ideal.mul_mem_right _ _ (submodule.is_principal.generator_mem _)
lemma mem_iff_eq_smul_ann_ideal_generator {p : π•œ[X]} (a : A) :
p ∈ ann_ideal π•œ a ↔ βˆƒ s : π•œ[X], p = s β€’ ann_ideal_generator π•œ a :=
by simp_rw [@eq_comm _ p, ← mem_span_singleton, ← span_singleton_ann_ideal_generator π•œ a,
ideal.span]
/-- The generator we chose for the annihilating ideal is monic when the ideal is non-zero. -/
lemma monic_ann_ideal_generator (a : A) (hg : ann_ideal_generator π•œ a β‰  0) :
monic (ann_ideal_generator π•œ a) :=
monic_mul_leading_coeff_inv (mul_ne_zero_iff.mp hg).1
/-! We are working toward showing the generator of the annihilating ideal
in the field case is the minimal polynomial. We are going to use a uniqueness
theorem of the minimal polynomial.
This is the first condition: it must annihilate the original element `a : A`. -/
lemma ann_ideal_generator_aeval_eq_zero (a : A) :
aeval a (ann_ideal_generator π•œ a) = 0 :=
mem_ann_ideal_iff_aeval_eq_zero.mp (ann_ideal_generator_mem π•œ a)
variables {π•œ}
lemma mem_iff_ann_ideal_generator_dvd {p : π•œ[X]} {a : A} :
p ∈ ann_ideal π•œ a ↔ ann_ideal_generator π•œ a ∣ p :=
by rw [← ideal.mem_span_singleton, span_singleton_ann_ideal_generator]
/-- The generator of the annihilating ideal has minimal degree among
the non-zero members of the annihilating ideal -/
lemma degree_ann_ideal_generator_le_of_mem (a : A) (p : π•œ[X])
(hp : p ∈ ann_ideal π•œ a) (hpn0 : p β‰  0) :
degree (ann_ideal_generator π•œ a) ≀ degree p :=
degree_le_of_dvd (mem_iff_ann_ideal_generator_dvd.1 hp) hpn0
variables (π•œ)
/-- The generator of the annihilating ideal is the minimal polynomial. -/
lemma ann_ideal_generator_eq_minpoly (a : A) :
ann_ideal_generator π•œ a = minpoly π•œ a :=
begin
by_cases h : ann_ideal_generator π•œ a = 0,
{ rw [h, minpoly.eq_zero],
rintro ⟨p, p_monic, (hp : aeval a p = 0)⟩,
refine p_monic.ne_zero (ideal.mem_bot.mp _),
simpa only [ann_ideal_generator_eq_zero_iff.mp h]
using mem_ann_ideal_iff_aeval_eq_zero.mpr hp },
{ exact minpoly.unique _ _
(monic_ann_ideal_generator _ _ h)
(ann_ideal_generator_aeval_eq_zero _ _)
(Ξ» q q_monic hq, (degree_ann_ideal_generator_le_of_mem a q
(mem_ann_ideal_iff_aeval_eq_zero.mpr hq)
q_monic.ne_zero)) }
end
/-- If a monic generates the annihilating ideal, it must match our choice
of the annihilating ideal generator. -/
lemma monic_generator_eq_minpoly (a : A) (p : π•œ[X])
(p_monic : p.monic) (p_gen : ideal.span {p} = ann_ideal π•œ a) :
ann_ideal_generator π•œ a = p :=
begin
by_cases h : p = 0,
{ rwa [h, ann_ideal_generator_eq_zero_iff, ← p_gen, ideal.span_singleton_eq_bot.mpr], },
{ rw [← span_singleton_ann_ideal_generator, ideal.span_singleton_eq_span_singleton] at p_gen,
rw eq_comm,
apply eq_of_monic_of_associated p_monic _ p_gen,
{ apply monic_ann_ideal_generator _ _ ((associated.ne_zero_iff p_gen).mp h), }, },
end
end field
end polynomial