Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Riccardo Brasca. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Riccardo Brasca | |
-/ | |
import linear_algebra.free_module.finite.basic | |
import linear_algebra.matrix.charpoly.coeff | |
import field_theory.minpoly | |
/-! | |
# Characteristic polynomial | |
We define the characteristic polynomial of `f : M ββ[R] M`, where `M` is a finite and | |
free `R`-module. The proof that `f.charpoly` is the characteristic polynomial of the matrix of `f` | |
in any basis is in `linear_algebra/charpoly/to_matrix`. | |
## Main definition | |
* `linear_map.charpoly f` : the characteristic polynomial of `f : M ββ[R] M`. | |
-/ | |
universes u v w | |
variables {R : Type u} {M : Type v} [comm_ring R] [nontrivial R] | |
variables [add_comm_group M] [module R M] [module.free R M] [module.finite R M] (f : M ββ[R] M) | |
open_locale classical matrix polynomial | |
noncomputable theory | |
open module.free polynomial matrix | |
namespace linear_map | |
section basic | |
/-- The characteristic polynomial of `f : M ββ[R] M`. -/ | |
def charpoly : R[X] := | |
(to_matrix (choose_basis R M) (choose_basis R M) f).charpoly | |
lemma charpoly_def : | |
f.charpoly = (to_matrix (choose_basis R M) (choose_basis R M) f).charpoly := rfl | |
end basic | |
section coeff | |
lemma charpoly_monic : f.charpoly.monic := charpoly_monic _ | |
end coeff | |
section cayley_hamilton | |
/-- The **Cayley-Hamilton Theorem**, that the characteristic polynomial of a linear map, applied | |
to the linear map itself, is zero. | |
See `matrix.aeval_self_charpoly` for the equivalent statement about matrices. -/ | |
lemma aeval_self_charpoly : aeval f f.charpoly = 0 := | |
begin | |
apply (linear_equiv.map_eq_zero_iff (alg_equiv_matrix _).to_linear_equiv).1, | |
rw [alg_equiv.to_linear_equiv_apply, β alg_equiv.coe_alg_hom, | |
β polynomial.aeval_alg_hom_apply _ _ _, charpoly_def], | |
exact aeval_self_charpoly _, | |
end | |
lemma is_integral : is_integral R f := β¨f.charpoly, β¨charpoly_monic f, aeval_self_charpoly fβ©β© | |
lemma minpoly_dvd_charpoly {K : Type u} {M : Type v} [field K] [add_comm_group M] [module K M] | |
[finite_dimensional K M] (f : M ββ[K] M) : minpoly K f β£ f.charpoly := | |
minpoly.dvd _ _ (aeval_self_charpoly f) | |
/-- Any endomorphism polynomial `p` is equivalent under evaluation to `p %β f.charpoly`; that is, | |
`p` is equivalent to a polynomial with degree less than the dimension of the module. -/ | |
lemma aeval_eq_aeval_mod_charpoly (p : R[X]) : aeval f p = aeval f (p %β f.charpoly) := | |
(aeval_mod_by_monic_eq_self_of_root f.charpoly_monic f.aeval_self_charpoly).symm | |
/-- Any endomorphism power can be computed as the sum of endomorphism powers less than the | |
dimension of the module. -/ | |
lemma pow_eq_aeval_mod_charpoly (k : β) : f^k = aeval f (X^k %β f.charpoly) := | |
by rw [βaeval_eq_aeval_mod_charpoly, map_pow, aeval_X] | |
variable {f} | |
lemma minpoly_coeff_zero_of_injective (hf : function.injective f) : (minpoly R f).coeff 0 β 0 := | |
begin | |
intro h, | |
obtain β¨P, hPβ© := X_dvd_iff.2 h, | |
have hdegP : P.degree < (minpoly R f).degree, | |
{ rw [hP, mul_comm], | |
refine degree_lt_degree_mul_X (Ξ» h, _), | |
rw [h, mul_zero] at hP, | |
exact minpoly.ne_zero (is_integral f) hP }, | |
have hPmonic : P.monic, | |
{ suffices : (minpoly R f).monic, | |
{ rwa [monic.def, hP, mul_comm, leading_coeff_mul_X, β monic.def] at this }, | |
exact minpoly.monic (is_integral f) }, | |
have hzero : aeval f (minpoly R f) = 0 := minpoly.aeval _ _, | |
simp only [hP, mul_eq_comp, ext_iff, hf, aeval_X, map_eq_zero_iff, coe_comp, alg_hom.map_mul, | |
zero_apply] at hzero, | |
exact not_le.2 hdegP (minpoly.min _ _ hPmonic (ext hzero)), | |
end | |
end cayley_hamilton | |
end linear_map | |