Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
3.2 kB
/-
Copyright (c) 2021 Riccardo Brasca. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Riccardo Brasca
-/
import linear_algebra.charpoly.basic
import linear_algebra.matrix.basis
/-!
# Characteristic polynomial
## Main result
* `linear_map.charpoly_to_matrix f` : `charpoly f` is the characteristic polynomial of the matrix
of `f` in any basis.
-/
universes u v w
variables {R : Type u} {M : Type v} [comm_ring R] [nontrivial R]
variables [add_comm_group M] [module R M] [module.free R M] [module.finite R M] (f : M →ₗ[R] M)
open_locale classical matrix
noncomputable theory
open module.free polynomial matrix
namespace linear_map
section basic
/-- `charpoly f` is the characteristic polynomial of the matrix of `f` in any basis. -/
@[simp] lemma charpoly_to_matrix {ι : Type w} [fintype ι] (b : basis ι R M) :
(to_matrix b b f).charpoly = f.charpoly :=
begin
set A := to_matrix b b f,
set b' := choose_basis R M,
set ι' := choose_basis_index R M,
set A' := to_matrix b' b' f,
set e := basis.index_equiv b b',
set φ := reindex_linear_equiv R R e e,
set φ₁ := reindex_linear_equiv R R e (equiv.refl ι'),
set φ₂ := reindex_linear_equiv R R (equiv.refl ι') (equiv.refl ι'),
set φ₃ := reindex_linear_equiv R R (equiv.refl ι') e,
set P := b.to_matrix b',
set Q := b'.to_matrix b,
have hPQ : C.map_matrix (φ₁ P) ⬝ (C.map_matrix (φ₃ Q)) = 1,
{ rw [ring_hom.map_matrix_apply, ring_hom.map_matrix_apply, ← matrix.map_mul,
@reindex_linear_equiv_mul _ ι' _ _ _ _ R R, basis.to_matrix_mul_to_matrix_flip,
reindex_linear_equiv_one, ← ring_hom.map_matrix_apply, ring_hom.map_one] },
calc A.charpoly = (reindex e e A).charpoly : (charpoly_reindex _ _).symm
... = (scalar ι' X - C.map_matrix (φ A)).det : rfl
... = (scalar ι' X - C.map_matrix (φ (P ⬝ A' ⬝ Q))).det :
by rw [basis_to_matrix_mul_linear_map_to_matrix_mul_basis_to_matrix]
... = (scalar ι' X - C.map_matrix (φ₁ P ⬝ φ₂ A' ⬝ φ₃ Q)).det :
by rw [reindex_linear_equiv_mul, reindex_linear_equiv_mul]
... = (scalar ι' X - (C.map_matrix (φ₁ P) ⬝ C.map_matrix A' ⬝ C.map_matrix (φ₃ Q))).det : by simp
... = (scalar ι' X ⬝ C.map_matrix (φ₁ P) ⬝ (C.map_matrix (φ₃ Q)) -
(C.map_matrix (φ₁ P) ⬝ C.map_matrix A' ⬝ C.map_matrix (φ₃ Q))).det :
by { rw [matrix.mul_assoc ((scalar ι') X), hPQ, matrix.mul_one] }
... = (C.map_matrix (φ₁ P) ⬝ scalar ι' X ⬝ (C.map_matrix (φ₃ Q)) -
(C.map_matrix (φ₁ P) ⬝ C.map_matrix A' ⬝ C.map_matrix (φ₃ Q))).det : by simp
... = (C.map_matrix (φ₁ P) ⬝ (scalar ι' X - C.map_matrix A') ⬝ C.map_matrix (φ₃ Q)).det :
by rw [← matrix.sub_mul, ← matrix.mul_sub]
... = (C.map_matrix (φ₁ P)).det * (scalar ι' X - C.map_matrix A').det *
(C.map_matrix (φ₃ Q)).det : by rw [det_mul, det_mul]
... = (C.map_matrix (φ₁ P)).det * (C.map_matrix (φ₃ Q)).det *
(scalar ι' X - C.map_matrix A').det : by ring
... = (scalar ι' X - C.map_matrix A').det : by rw [← det_mul, hPQ, det_one, one_mul]
... = f.charpoly : rfl
end
end basic
end linear_map