Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Kenny Lau. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes Hölzl, Kenny Lau | |
-/ | |
import data.finsupp.to_dfinsupp | |
import linear_algebra.basis | |
/-! | |
# Properties of the module `Π₀ i, M i` | |
Given an indexed collection of `R`-modules `M i`, the `R`-module structure on `Π₀ i, M i` | |
is defined in `data.dfinsupp`. | |
In this file we define `linear_map` versions of various maps: | |
* `dfinsupp.lsingle a : M →ₗ[R] Π₀ i, M i`: `dfinsupp.single a` as a linear map; | |
* `dfinsupp.lmk s : (Π i : (↑s : set ι), M i) →ₗ[R] Π₀ i, M i`: `dfinsupp.single a` as a linear map; | |
* `dfinsupp.lapply i : (Π₀ i, M i) →ₗ[R] M`: the map `λ f, f i` as a linear map; | |
* `dfinsupp.lsum`: `dfinsupp.sum` or `dfinsupp.lift_add_hom` as a `linear_map`; | |
## Implementation notes | |
This file should try to mirror `linear_algebra.finsupp` where possible. The API of `finsupp` is | |
much more developed, but many lemmas in that file should be eligible to copy over. | |
## Tags | |
function with finite support, module, linear algebra | |
-/ | |
variables {ι : Type*} {R : Type*} {S : Type*} {M : ι → Type*} {N : Type*} | |
variables [dec_ι : decidable_eq ι] | |
namespace dfinsupp | |
variables [semiring R] [Π i, add_comm_monoid (M i)] [Π i, module R (M i)] | |
variables [add_comm_monoid N] [module R N] | |
include dec_ι | |
/-- `dfinsupp.mk` as a `linear_map`. -/ | |
def lmk (s : finset ι) : (Π i : (↑s : set ι), M i) →ₗ[R] Π₀ i, M i := | |
{ to_fun := mk s, map_add' := λ _ _, mk_add, map_smul' := λ c x, mk_smul c x} | |
/-- `dfinsupp.single` as a `linear_map` -/ | |
def lsingle (i) : M i →ₗ[R] Π₀ i, M i := | |
{ to_fun := single i, map_smul' := single_smul, .. dfinsupp.single_add_hom _ _ } | |
/-- Two `R`-linear maps from `Π₀ i, M i` which agree on each `single i x` agree everywhere. -/ | |
lemma lhom_ext ⦃φ ψ : (Π₀ i, M i) →ₗ[R] N⦄ | |
(h : ∀ i x, φ (single i x) = ψ (single i x)) : | |
φ = ψ := | |
linear_map.to_add_monoid_hom_injective $ add_hom_ext h | |
/-- Two `R`-linear maps from `Π₀ i, M i` which agree on each `single i x` agree everywhere. | |
See note [partially-applied ext lemmas]. | |
After apply this lemma, if `M = R` then it suffices to verify `φ (single a 1) = ψ (single a 1)`. -/ | |
@[ext] lemma lhom_ext' ⦃φ ψ : (Π₀ i, M i) →ₗ[R] N⦄ | |
(h : ∀ i, φ.comp (lsingle i) = ψ.comp (lsingle i)) : | |
φ = ψ := | |
lhom_ext $ λ i, linear_map.congr_fun (h i) | |
omit dec_ι | |
/-- Interpret `λ (f : Π₀ i, M i), f i` as a linear map. -/ | |
def lapply (i : ι) : (Π₀ i, M i) →ₗ[R] M i := | |
{ to_fun := λ f, f i, | |
map_add' := λ f g, add_apply f g i, | |
map_smul' := λ c f, smul_apply c f i} | |
include dec_ι | |
@[simp] lemma lmk_apply (s : finset ι) (x) : (lmk s : _ →ₗ[R] Π₀ i, M i) x = mk s x := rfl | |
@[simp] lemma lsingle_apply (i : ι) (x : M i) : (lsingle i : _ →ₗ[R] _) x = single i x := rfl | |
omit dec_ι | |
@[simp] lemma lapply_apply (i : ι) (f : Π₀ i, M i) : (lapply i : _ →ₗ[R] _) f = f i := rfl | |
section lsum | |
/-- Typeclass inference can't find `dfinsupp.add_comm_monoid` without help for this case. | |
This instance allows it to be found where it is needed on the LHS of the colon in | |
`dfinsupp.module_of_linear_map`. -/ | |
instance add_comm_monoid_of_linear_map : add_comm_monoid (Π₀ (i : ι), M i →ₗ[R] N) := | |
@dfinsupp.add_comm_monoid _ (λ i, M i →ₗ[R] N) _ | |
/-- Typeclass inference can't find `dfinsupp.module` without help for this case. | |
This is needed to define `dfinsupp.lsum` below. | |
The cause seems to be an inability to unify the `Π i, add_comm_monoid (M i →ₗ[R] N)` instance that | |
we have with the `Π i, has_zero (M i →ₗ[R] N)` instance which appears as a parameter to the | |
`dfinsupp` type. -/ | |
instance module_of_linear_map [semiring S] [module S N] [smul_comm_class R S N] : | |
module S (Π₀ (i : ι), M i →ₗ[R] N) := | |
@dfinsupp.module _ _ (λ i, M i →ₗ[R] N) _ _ _ | |
variables (S) | |
include dec_ι | |
/-- The `dfinsupp` version of `finsupp.lsum`. | |
See note [bundled maps over different rings] for why separate `R` and `S` semirings are used. -/ | |
@[simps] | |
def lsum [semiring S] [module S N] [smul_comm_class R S N] : | |
(Π i, M i →ₗ[R] N) ≃ₗ[S] ((Π₀ i, M i) →ₗ[R] N) := | |
{ to_fun := λ F, | |
{ to_fun := sum_add_hom (λ i, (F i).to_add_monoid_hom), | |
map_add' := (lift_add_hom (λ i, (F i).to_add_monoid_hom)).map_add, | |
map_smul' := λ c f, by | |
{ dsimp, | |
apply dfinsupp.induction f, | |
{ rw [smul_zero, add_monoid_hom.map_zero, smul_zero] }, | |
{ intros a b f ha hb hf, | |
rw [smul_add, add_monoid_hom.map_add, add_monoid_hom.map_add, smul_add, hf, ←single_smul, | |
sum_add_hom_single, sum_add_hom_single, linear_map.to_add_monoid_hom_coe, | |
linear_map.map_smul], } } }, | |
inv_fun := λ F i, F.comp (lsingle i), | |
left_inv := λ F, by { ext x y, simp }, | |
right_inv := λ F, by { ext x y, simp }, | |
map_add' := λ F G, by { ext x y, simp }, | |
map_smul' := λ c F, by { ext, simp } } | |
/-- While `simp` can prove this, it is often convenient to avoid unfolding `lsum` into `sum_add_hom` | |
with `dfinsupp.lsum_apply_apply`. -/ | |
lemma lsum_single [semiring S] [module S N] [smul_comm_class R S N] | |
(F : Π i, M i →ₗ[R] N) (i) (x : M i) : | |
lsum S F (single i x) = F i x := | |
sum_add_hom_single _ _ _ | |
end lsum | |
/-! ### Bundled versions of `dfinsupp.map_range` | |
The names should match the equivalent bundled `finsupp.map_range` definitions. | |
-/ | |
section map_range | |
variables {β β₁ β₂: ι → Type*} | |
variables [Π i, add_comm_monoid (β i)] [Π i, add_comm_monoid (β₁ i)] [Π i, add_comm_monoid (β₂ i)] | |
variables [Π i, module R (β i)] [Π i, module R (β₁ i)] [Π i, module R (β₂ i)] | |
lemma map_range_smul (f : Π i, β₁ i → β₂ i) (hf : ∀ i, f i 0 = 0) | |
(r : R) (hf' : ∀ i x, f i (r • x) = r • f i x) (g : Π₀ i, β₁ i): | |
map_range f hf (r • g) = r • map_range f hf g := | |
begin | |
ext, | |
simp only [map_range_apply f, coe_smul, pi.smul_apply, hf'] | |
end | |
/-- `dfinsupp.map_range` as an `linear_map`. -/ | |
@[simps apply] | |
def map_range.linear_map (f : Π i, β₁ i →ₗ[R] β₂ i) : (Π₀ i, β₁ i) →ₗ[R] (Π₀ i, β₂ i) := | |
{ to_fun := map_range (λ i x, f i x) (λ i, (f i).map_zero), | |
map_smul' := λ r, map_range_smul _ _ _ (λ i, (f i).map_smul r), | |
.. map_range.add_monoid_hom (λ i, (f i).to_add_monoid_hom) } | |
@[simp] | |
lemma map_range.linear_map_id : | |
map_range.linear_map (λ i, (linear_map.id : (β₂ i) →ₗ[R] _)) = linear_map.id := | |
linear_map.ext map_range_id | |
lemma map_range.linear_map_comp (f : Π i, β₁ i →ₗ[R] β₂ i) (f₂ : Π i, β i →ₗ[R] β₁ i): | |
map_range.linear_map (λ i, (f i).comp (f₂ i)) = | |
(map_range.linear_map f).comp (map_range.linear_map f₂) := | |
linear_map.ext $ map_range_comp (λ i x, f i x) (λ i x, f₂ i x) _ _ _ | |
include dec_ι | |
lemma sum_map_range_index.linear_map | |
[Π (i : ι) (x : β₁ i), decidable (x ≠ 0)] [Π (i : ι) (x : β₂ i), decidable (x ≠ 0)] | |
{f : Π i, β₁ i →ₗ[R] β₂ i} {h : Π i, β₂ i →ₗ[R] N} {l : Π₀ i, β₁ i} : | |
dfinsupp.lsum ℕ h (map_range.linear_map f l) = dfinsupp.lsum ℕ (λ i, (h i).comp (f i)) l := | |
by simpa [dfinsupp.sum_add_hom_apply] using | |
@sum_map_range_index ι N _ _ _ _ _ _ _ _ (λ i, f i) (λ i, by simp) l (λ i, h i) (λ i, by simp) | |
omit dec_ι | |
/-- `dfinsupp.map_range.linear_map` as an `linear_equiv`. -/ | |
@[simps apply] | |
def map_range.linear_equiv (e : Π i, β₁ i ≃ₗ[R] β₂ i) : (Π₀ i, β₁ i) ≃ₗ[R] (Π₀ i, β₂ i) := | |
{ to_fun := map_range (λ i x, e i x) (λ i, (e i).map_zero), | |
inv_fun := map_range (λ i x, (e i).symm x) (λ i, (e i).symm.map_zero), | |
.. map_range.add_equiv (λ i, (e i).to_add_equiv), | |
.. map_range.linear_map (λ i, (e i).to_linear_map) } | |
@[simp] | |
lemma map_range.linear_equiv_refl : | |
(map_range.linear_equiv $ λ i, linear_equiv.refl R (β₁ i)) = linear_equiv.refl _ _ := | |
linear_equiv.ext map_range_id | |
lemma map_range.linear_equiv_trans (f : Π i, β i ≃ₗ[R] β₁ i) (f₂ : Π i, β₁ i ≃ₗ[R] β₂ i): | |
map_range.linear_equiv (λ i, (f i).trans (f₂ i)) = | |
(map_range.linear_equiv f).trans (map_range.linear_equiv f₂) := | |
linear_equiv.ext $ map_range_comp (λ i x, f₂ i x) (λ i x, f i x) _ _ _ | |
@[simp] | |
lemma map_range.linear_equiv_symm (e : Π i, β₁ i ≃ₗ[R] β₂ i) : | |
(map_range.linear_equiv e).symm = map_range.linear_equiv (λ i, (e i).symm) := rfl | |
end map_range | |
section basis | |
/-- The direct sum of free modules is free. | |
Note that while this is stated for `dfinsupp` not `direct_sum`, the types are defeq. -/ | |
noncomputable def basis {η : ι → Type*} (b : Π i, basis (η i) R (M i)) : | |
basis (Σ i, η i) R (Π₀ i, M i) := | |
basis.of_repr ((map_range.linear_equiv (λ i, (b i).repr)).trans | |
(sigma_finsupp_lequiv_dfinsupp R).symm) | |
end basis | |
end dfinsupp | |
include dec_ι | |
namespace submodule | |
variables [semiring R] [add_comm_monoid N] [module R N] | |
open dfinsupp | |
lemma dfinsupp_sum_mem {β : ι → Type*} [Π i, has_zero (β i)] | |
[Π i (x : β i), decidable (x ≠ 0)] (S : submodule R N) | |
(f : Π₀ i, β i) (g : Π i, β i → N) (h : ∀ c, f c ≠ 0 → g c (f c) ∈ S) : f.sum g ∈ S := | |
dfinsupp_sum_mem S f g h | |
lemma dfinsupp_sum_add_hom_mem {β : ι → Type*} [Π i, add_zero_class (β i)] | |
(S : submodule R N) (f : Π₀ i, β i) (g : Π i, β i →+ N) (h : ∀ c, f c ≠ 0 → g c (f c) ∈ S) : | |
dfinsupp.sum_add_hom g f ∈ S := | |
dfinsupp_sum_add_hom_mem S f g h | |
/-- The supremum of a family of submodules is equal to the range of `dfinsupp.lsum`; that is | |
every element in the `supr` can be produced from taking a finite number of non-zero elements | |
of `p i`, coercing them to `N`, and summing them. -/ | |
lemma supr_eq_range_dfinsupp_lsum (p : ι → submodule R N) : | |
supr p = (dfinsupp.lsum ℕ (λ i, (p i).subtype)).range := | |
begin | |
apply le_antisymm, | |
{ apply supr_le _, | |
intros i y hy, | |
exact ⟨dfinsupp.single i ⟨y, hy⟩, dfinsupp.sum_add_hom_single _ _ _⟩, }, | |
{ rintros x ⟨v, rfl⟩, | |
exact dfinsupp_sum_add_hom_mem _ v _ (λ i _, (le_supr p i : p i ≤ _) (v i).prop) } | |
end | |
/-- The bounded supremum of a family of commutative additive submonoids is equal to the range of | |
`dfinsupp.sum_add_hom` composed with `dfinsupp.filter_add_monoid_hom`; that is, every element in the | |
bounded `supr` can be produced from taking a finite number of non-zero elements from the `S i` that | |
satisfy `p i`, coercing them to `γ`, and summing them. -/ | |
lemma bsupr_eq_range_dfinsupp_lsum (p : ι → Prop) | |
[decidable_pred p] (S : ι → submodule R N) : | |
(⨆ i (h : p i), S i) = | |
((dfinsupp.lsum ℕ (λ i, (S i).subtype)).comp (dfinsupp.filter_linear_map R _ p)).range := | |
begin | |
apply le_antisymm, | |
{ refine supr₂_le (λ i hi y hy, ⟨dfinsupp.single i ⟨y, hy⟩, _⟩), | |
rw [linear_map.comp_apply, filter_linear_map_apply, filter_single_pos _ _ hi], | |
exact dfinsupp.sum_add_hom_single _ _ _, }, | |
{ rintros x ⟨v, rfl⟩, | |
refine dfinsupp_sum_add_hom_mem _ _ _ (λ i hi, _), | |
refine mem_supr_of_mem i _, | |
by_cases hp : p i, | |
{ simp [hp], }, | |
{ simp [hp] }, } | |
end | |
lemma mem_supr_iff_exists_dfinsupp (p : ι → submodule R N) (x : N) : | |
x ∈ supr p ↔ ∃ f : Π₀ i, p i, dfinsupp.lsum ℕ (λ i, (p i).subtype) f = x := | |
set_like.ext_iff.mp (supr_eq_range_dfinsupp_lsum p) x | |
/-- A variant of `submodule.mem_supr_iff_exists_dfinsupp` with the RHS fully unfolded. -/ | |
lemma mem_supr_iff_exists_dfinsupp' (p : ι → submodule R N) [Π i (x : p i), decidable (x ≠ 0)] | |
(x : N) : | |
x ∈ supr p ↔ ∃ f : Π₀ i, p i, f.sum (λ i xi, ↑xi) = x := | |
begin | |
rw mem_supr_iff_exists_dfinsupp, | |
simp_rw [dfinsupp.lsum_apply_apply, dfinsupp.sum_add_hom_apply], | |
congr', | |
end | |
lemma mem_bsupr_iff_exists_dfinsupp (p : ι → Prop) [decidable_pred p] (S : ι → submodule R N) | |
(x : N) : | |
x ∈ (⨆ i (h : p i), S i) ↔ | |
∃ f : Π₀ i, S i, dfinsupp.lsum ℕ (λ i, (S i).subtype) (f.filter p) = x := | |
set_like.ext_iff.mp (bsupr_eq_range_dfinsupp_lsum p S) x | |
open_locale big_operators | |
omit dec_ι | |
lemma mem_supr_finset_iff_exists_sum {s : finset ι} (p : ι → submodule R N) (a : N) : | |
a ∈ (⨆ i ∈ s, p i) ↔ ∃ μ : Π i, p i, ∑ i in s, (μ i : N) = a := | |
begin | |
classical, | |
rw submodule.mem_supr_iff_exists_dfinsupp', | |
split; rintro ⟨μ, hμ⟩, | |
{ use λ i, ⟨μ i, (supr_const_le : _ ≤ p i) (coe_mem $ μ i)⟩, | |
rw ← hμ, symmetry, apply finset.sum_subset, | |
{ intro x, contrapose, intro hx, | |
rw [mem_support_iff, not_ne_iff], | |
ext, rw [coe_zero, ← mem_bot R], convert coe_mem (μ x), | |
symmetry, exact supr_neg hx }, | |
{ intros x _ hx, rw [mem_support_iff, not_ne_iff] at hx, rw hx, refl } }, | |
{ refine ⟨dfinsupp.mk s _, _⟩, | |
{ rintro ⟨i, hi⟩, refine ⟨μ i, _⟩, | |
rw supr_pos, { exact coe_mem _ }, { exact hi } }, | |
simp only [dfinsupp.sum], | |
rw [finset.sum_subset support_mk_subset, ← hμ], | |
exact finset.sum_congr rfl (λ x hx, congr_arg coe $ mk_of_mem hx), | |
{ intros x _ hx, rw [mem_support_iff, not_ne_iff] at hx, rw hx, refl } } | |
end | |
end submodule | |
namespace complete_lattice | |
open dfinsupp | |
section semiring | |
variables [semiring R] [add_comm_monoid N] [module R N] | |
/-- Independence of a family of submodules can be expressed as a quantifier over `dfinsupp`s. | |
This is an intermediate result used to prove | |
`complete_lattice.independent_of_dfinsupp_lsum_injective` and | |
`complete_lattice.independent.dfinsupp_lsum_injective`. -/ | |
lemma independent_iff_forall_dfinsupp (p : ι → submodule R N) : | |
independent p ↔ | |
∀ i (x : p i) (v : Π₀ (i : ι), ↥(p i)), lsum ℕ (λ i, (p i).subtype) (erase i v) = x → x = 0 := | |
begin | |
simp_rw [complete_lattice.independent_def, submodule.disjoint_def, | |
submodule.mem_bsupr_iff_exists_dfinsupp, exists_imp_distrib, filter_ne_eq_erase], | |
apply forall_congr (λ i, _), | |
refine subtype.forall'.trans _, | |
simp_rw submodule.coe_eq_zero, | |
refl, | |
end | |
/- If `dfinsupp.lsum` applied with `submodule.subtype` is injective then the submodules are | |
independent. -/ | |
lemma independent_of_dfinsupp_lsum_injective (p : ι → submodule R N) | |
(h : function.injective (lsum ℕ (λ i, (p i).subtype))) : | |
independent p := | |
begin | |
rw independent_iff_forall_dfinsupp, | |
intros i x v hv, | |
replace hv : lsum ℕ (λ i, (p i).subtype) (erase i v) = lsum ℕ (λ i, (p i).subtype) (single i x), | |
{ simpa only [lsum_single] using hv, }, | |
have := dfinsupp.ext_iff.mp (h hv) i, | |
simpa [eq_comm] using this, | |
end | |
/- If `dfinsupp.sum_add_hom` applied with `add_submonoid.subtype` is injective then the additive | |
submonoids are independent. -/ | |
lemma independent_of_dfinsupp_sum_add_hom_injective (p : ι → add_submonoid N) | |
(h : function.injective (sum_add_hom (λ i, (p i).subtype))) : | |
independent p := | |
begin | |
rw ←independent_map_order_iso_iff (add_submonoid.to_nat_submodule : add_submonoid N ≃o _), | |
exact independent_of_dfinsupp_lsum_injective _ h, | |
end | |
/-- Combining `dfinsupp.lsum` with `linear_map.to_span_singleton` is the same as `finsupp.total` -/ | |
lemma lsum_comp_map_range_to_span_singleton | |
[Π (m : R), decidable (m ≠ 0)] | |
(p : ι → submodule R N) {v : ι → N} (hv : ∀ (i : ι), v i ∈ p i) : | |
((lsum ℕ) (λ i, (p i).subtype) : _ →ₗ[R] _).comp | |
((map_range.linear_map | |
(λ i, linear_map.to_span_singleton R ↥(p i) ⟨v i, hv i⟩) : _ →ₗ[R] _).comp | |
(finsupp_lequiv_dfinsupp R : (ι →₀ R) ≃ₗ[R] _).to_linear_map) = | |
finsupp.total ι N R v := | |
by { ext, simp } | |
end semiring | |
section ring | |
variables [ring R] [add_comm_group N] [module R N] | |
/- If `dfinsupp.sum_add_hom` applied with `add_submonoid.subtype` is injective then the additive | |
subgroups are independent. -/ | |
lemma independent_of_dfinsupp_sum_add_hom_injective' (p : ι → add_subgroup N) | |
(h : function.injective (sum_add_hom (λ i, (p i).subtype))) : | |
independent p := | |
begin | |
rw ←independent_map_order_iso_iff (add_subgroup.to_int_submodule : add_subgroup N ≃o _), | |
exact independent_of_dfinsupp_lsum_injective _ h, | |
end | |
/-- The canonical map out of a direct sum of a family of submodules is injective when the submodules | |
are `complete_lattice.independent`. | |
Note that this is not generally true for `[semiring R]`, for instance when `A` is the | |
`ℕ`-submodules of the positive and negative integers. | |
See `counterexamples/direct_sum_is_internal.lean` for a proof of this fact. -/ | |
lemma independent.dfinsupp_lsum_injective {p : ι → submodule R N} | |
(h : independent p) : function.injective (lsum ℕ (λ i, (p i).subtype)) := | |
begin | |
-- simplify everything down to binders over equalities in `N` | |
rw independent_iff_forall_dfinsupp at h, | |
suffices : (lsum ℕ (λ i, (p i).subtype)).ker = ⊥, | |
{ -- Lean can't find this without our help | |
letI : add_comm_group (Π₀ i, p i) := @dfinsupp.add_comm_group _ (λ i, p i) _, | |
rw linear_map.ker_eq_bot at this, exact this }, | |
rw linear_map.ker_eq_bot', | |
intros m hm, | |
ext i : 1, | |
-- split `m` into the piece at `i` and the pieces elsewhere, to match `h` | |
rw [dfinsupp.zero_apply, ←neg_eq_zero], | |
refine h i (-m i) m _, | |
rwa [←erase_add_single i m, linear_map.map_add, lsum_single, submodule.subtype_apply, | |
add_eq_zero_iff_eq_neg, ←submodule.coe_neg] at hm, | |
end | |
/-- The canonical map out of a direct sum of a family of additive subgroups is injective when the | |
additive subgroups are `complete_lattice.independent`. -/ | |
lemma independent.dfinsupp_sum_add_hom_injective {p : ι → add_subgroup N} | |
(h : independent p) : function.injective (sum_add_hom (λ i, (p i).subtype)) := | |
begin | |
rw ←independent_map_order_iso_iff (add_subgroup.to_int_submodule : add_subgroup N ≃o _) at h, | |
exact h.dfinsupp_lsum_injective, | |
end | |
/-- A family of submodules over an additive group are independent if and only iff `dfinsupp.lsum` | |
applied with `submodule.subtype` is injective. | |
Note that this is not generally true for `[semiring R]`; see | |
`complete_lattice.independent.dfinsupp_lsum_injective` for details. -/ | |
lemma independent_iff_dfinsupp_lsum_injective (p : ι → submodule R N) : | |
independent p ↔ function.injective (lsum ℕ (λ i, (p i).subtype)) := | |
⟨independent.dfinsupp_lsum_injective, independent_of_dfinsupp_lsum_injective p⟩ | |
/-- A family of additive subgroups over an additive group are independent if and only if | |
`dfinsupp.sum_add_hom` applied with `add_subgroup.subtype` is injective. -/ | |
lemma independent_iff_dfinsupp_sum_add_hom_injective (p : ι → add_subgroup N) : | |
independent p ↔ function.injective (sum_add_hom (λ i, (p i).subtype)) := | |
⟨independent.dfinsupp_sum_add_hom_injective, independent_of_dfinsupp_sum_add_hom_injective' p⟩ | |
omit dec_ι | |
/-- If a family of submodules is `independent`, then a choice of nonzero vector from each submodule | |
forms a linearly independent family. | |
See also `complete_lattice.independent.linear_independent'`. -/ | |
lemma independent.linear_independent [no_zero_smul_divisors R N] (p : ι → submodule R N) | |
(hp : independent p) {v : ι → N} (hv : ∀ i, v i ∈ p i) (hv' : ∀ i, v i ≠ 0) : | |
linear_independent R v := | |
begin | |
classical, | |
rw linear_independent_iff, | |
intros l hl, | |
let a := dfinsupp.map_range.linear_map | |
(λ i, linear_map.to_span_singleton R (p i) (⟨v i, hv i⟩)) l.to_dfinsupp, | |
have ha : a = 0, | |
{ apply hp.dfinsupp_lsum_injective, | |
rwa ←lsum_comp_map_range_to_span_singleton _ hv at hl }, | |
ext i, | |
apply smul_left_injective R (hv' i), | |
have : l i • v i = a i := rfl, | |
simp [this, ha], | |
end | |
lemma independent_iff_linear_independent_of_ne_zero [no_zero_smul_divisors R N] {v : ι → N} | |
(h_ne_zero : ∀ i, v i ≠ 0) : | |
independent (λ i, R ∙ v i) ↔ linear_independent R v := | |
⟨λ hv, hv.linear_independent _ (λ i, submodule.mem_span_singleton_self $ v i) h_ne_zero, | |
λ hv, hv.independent_span_singleton⟩ | |
end ring | |
end complete_lattice | |