Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Mario Carneiro. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Mario Carneiro, Johannes Hölzl, Sander Dahmen, Scott Morrison | |
-/ | |
import linear_algebra.dfinsupp | |
import linear_algebra.invariant_basis_number | |
import linear_algebra.isomorphisms | |
import linear_algebra.std_basis | |
import set_theory.cardinal.cofinality | |
/-! | |
# Dimension of modules and vector spaces | |
## Main definitions | |
* The rank of a module is defined as `module.rank : cardinal`. | |
This is defined as the supremum of the cardinalities of linearly independent subsets. | |
* The rank of a linear map is defined as the rank of its range. | |
## Main statements | |
* `linear_map.dim_le_of_injective`: the source of an injective linear map has dimension | |
at most that of the target. | |
* `linear_map.dim_le_of_surjective`: the target of a surjective linear map has dimension | |
at most that of that source. | |
* `basis_fintype_of_finite_spans`: | |
the existence of a finite spanning set implies that any basis is finite. | |
* `infinite_basis_le_maximal_linear_independent`: | |
if `b` is an infinite basis for a module `M`, | |
and `s` is a maximal linearly independent set, | |
then the cardinality of `b` is bounded by the cardinality of `s`. | |
For modules over rings satisfying the rank condition | |
* `basis.le_span`: | |
the cardinality of a basis is bounded by the cardinality of any spanning set | |
For modules over rings satisfying the strong rank condition | |
* `linear_independent_le_span`: | |
For any linearly independent family `v : ι → M` | |
and any finite spanning set `w : set M`, | |
the cardinality of `ι` is bounded by the cardinality of `w`. | |
* `linear_independent_le_basis`: | |
If `b` is a basis for a module `M`, | |
and `s` is a linearly independent set, | |
then the cardinality of `s` is bounded by the cardinality of `b`. | |
For modules over rings with invariant basis number | |
(including all commutative rings and all noetherian rings) | |
* `mk_eq_mk_of_basis`: the dimension theorem, any two bases of the same vector space have the same | |
cardinality. | |
For vector spaces (i.e. modules over a field), we have | |
* `dim_quotient_add_dim`: if `V₁` is a submodule of `V`, then | |
`module.rank (V/V₁) + module.rank V₁ = module.rank V`. | |
* `dim_range_add_dim_ker`: the rank-nullity theorem. | |
## Implementation notes | |
There is a naming discrepancy: most of the theorem names refer to `dim`, | |
even though the definition is of `module.rank`. | |
This reflects that `module.rank` was originally called `dim`, and only defined for vector spaces. | |
Many theorems in this file are not universe-generic when they relate dimensions | |
in different universes. They should be as general as they can be without | |
inserting `lift`s. The types `V`, `V'`, ... all live in different universes, | |
and `V₁`, `V₂`, ... all live in the same universe. | |
-/ | |
noncomputable theory | |
universes u v v' v'' u₁' w w' | |
variables {K : Type u} {V V₁ V₂ V₃ : Type v} {V' V'₁ : Type v'} {V'' : Type v''} | |
variables {ι : Type w} {ι' : Type w'} {η : Type u₁'} {φ : η → Type*} | |
open_locale classical big_operators cardinal | |
open basis submodule function set | |
section module | |
section | |
variables [semiring K] [add_comm_monoid V] [module K V] | |
include K | |
variables (K V) | |
/-- The rank of a module, defined as a term of type `cardinal`. | |
We define this as the supremum of the cardinalities of linearly independent subsets. | |
For a free module over any ring satisfying the strong rank condition | |
(e.g. left-noetherian rings, commutative rings, and in particular division rings and fields), | |
this is the same as the dimension of the space (i.e. the cardinality of any basis). | |
In particular this agrees with the usual notion of the dimension of a vector space. | |
The definition is marked as protected to avoid conflicts with `_root_.rank`, | |
the rank of a linear map. | |
-/ | |
protected def module.rank : cardinal := | |
⨆ ι : {s : set V // linear_independent K (coe : s → V)}, #ι.1 | |
end | |
section | |
variables {R : Type u} [ring R] | |
variables {M : Type v} [add_comm_group M] [module R M] | |
variables {M' : Type v'} [add_comm_group M'] [module R M'] | |
variables {M₁ : Type v} [add_comm_group M₁] [module R M₁] | |
theorem linear_map.lift_dim_le_of_injective (f : M →ₗ[R] M') (i : injective f) : | |
cardinal.lift.{v'} (module.rank R M) ≤ cardinal.lift.{v} (module.rank R M') := | |
begin | |
dsimp [module.rank], | |
rw [cardinal.lift_supr (cardinal.bdd_above_range.{v' v'} _), | |
cardinal.lift_supr (cardinal.bdd_above_range.{v v} _)], | |
apply csupr_mono' (cardinal.bdd_above_range.{v' v} _), | |
rintro ⟨s, li⟩, | |
refine ⟨⟨f '' s, _⟩, cardinal.lift_mk_le'.mpr ⟨(equiv.set.image f s i).to_embedding⟩⟩, | |
exact (li.map' _ $ linear_map.ker_eq_bot.mpr i).image, | |
end | |
theorem linear_map.dim_le_of_injective (f : M →ₗ[R] M₁) (i : injective f) : | |
module.rank R M ≤ module.rank R M₁ := | |
cardinal.lift_le.1 (f.lift_dim_le_of_injective i) | |
theorem dim_le {n : ℕ} | |
(H : ∀ s : finset M, linear_independent R (λ i : s, (i : M)) → s.card ≤ n) : | |
module.rank R M ≤ n := | |
begin | |
apply csupr_le', | |
rintro ⟨s, li⟩, | |
exact linear_independent_bounded_of_finset_linear_independent_bounded H _ li, | |
end | |
lemma lift_dim_range_le (f : M →ₗ[R] M') : | |
cardinal.lift.{v} (module.rank R f.range) ≤ cardinal.lift.{v'} (module.rank R M) := | |
begin | |
dsimp [module.rank], | |
rw [cardinal.lift_supr (cardinal.bdd_above_range.{v' v'} _)], | |
apply csupr_le', | |
rintro ⟨s, li⟩, | |
apply le_trans, | |
swap 2, | |
apply cardinal.lift_le.mpr, | |
refine (le_csupr (cardinal.bdd_above_range.{v v} _) ⟨range_splitting f '' s, _⟩), | |
{ apply linear_independent.of_comp f.range_restrict, | |
convert li.comp (equiv.set.range_splitting_image_equiv f s) (equiv.injective _) using 1, }, | |
{ exact (cardinal.lift_mk_eq'.mpr ⟨equiv.set.range_splitting_image_equiv f s⟩).ge, }, | |
end | |
lemma dim_range_le (f : M →ₗ[R] M₁) : module.rank R f.range ≤ module.rank R M := | |
by simpa using lift_dim_range_le f | |
lemma lift_dim_map_le (f : M →ₗ[R] M') (p : submodule R M) : | |
cardinal.lift.{v} (module.rank R (p.map f)) ≤ cardinal.lift.{v'} (module.rank R p) := | |
begin | |
have h := lift_dim_range_le (f.comp (submodule.subtype p)), | |
rwa [linear_map.range_comp, range_subtype] at h, | |
end | |
lemma dim_map_le (f : M →ₗ[R] M₁) (p : submodule R M) : module.rank R (p.map f) ≤ module.rank R p := | |
by simpa using lift_dim_map_le f p | |
lemma dim_le_of_submodule (s t : submodule R M) (h : s ≤ t) : | |
module.rank R s ≤ module.rank R t := | |
(of_le h).dim_le_of_injective $ assume ⟨x, hx⟩ ⟨y, hy⟩ eq, | |
subtype.eq $ show x = y, from subtype.ext_iff_val.1 eq | |
/-- Two linearly equivalent vector spaces have the same dimension, a version with different | |
universes. -/ | |
theorem linear_equiv.lift_dim_eq (f : M ≃ₗ[R] M') : | |
cardinal.lift.{v'} (module.rank R M) = cardinal.lift.{v} (module.rank R M') := | |
begin | |
apply le_antisymm, | |
{ exact f.to_linear_map.lift_dim_le_of_injective f.injective, }, | |
{ exact f.symm.to_linear_map.lift_dim_le_of_injective f.symm.injective, }, | |
end | |
/-- Two linearly equivalent vector spaces have the same dimension. -/ | |
theorem linear_equiv.dim_eq (f : M ≃ₗ[R] M₁) : | |
module.rank R M = module.rank R M₁ := | |
cardinal.lift_inj.1 f.lift_dim_eq | |
lemma dim_eq_of_injective (f : M →ₗ[R] M₁) (h : injective f) : | |
module.rank R M = module.rank R f.range := | |
(linear_equiv.of_injective f h).dim_eq | |
/-- Pushforwards of submodules along a `linear_equiv` have the same dimension. -/ | |
lemma linear_equiv.dim_map_eq (f : M ≃ₗ[R] M₁) (p : submodule R M) : | |
module.rank R (p.map (f : M →ₗ[R] M₁)) = module.rank R p := | |
(f.submodule_map p).dim_eq.symm | |
variables (R M) | |
@[simp] lemma dim_top : module.rank R (⊤ : submodule R M) = module.rank R M := | |
begin | |
have : (⊤ : submodule R M) ≃ₗ[R] M := linear_equiv.of_top ⊤ rfl, | |
rw this.dim_eq, | |
end | |
variables {R M} | |
lemma dim_range_of_surjective (f : M →ₗ[R] M') (h : surjective f) : | |
module.rank R f.range = module.rank R M' := | |
by rw [linear_map.range_eq_top.2 h, dim_top] | |
lemma dim_submodule_le (s : submodule R M) : module.rank R s ≤ module.rank R M := | |
begin | |
rw ←dim_top R M, | |
exact dim_le_of_submodule _ _ le_top, | |
end | |
lemma linear_map.dim_le_of_surjective (f : M →ₗ[R] M₁) (h : surjective f) : | |
module.rank R M₁ ≤ module.rank R M := | |
begin | |
rw ←dim_range_of_surjective f h, | |
apply dim_range_le, | |
end | |
theorem dim_quotient_le (p : submodule R M) : | |
module.rank R (M ⧸ p) ≤ module.rank R M := | |
(mkq p).dim_le_of_surjective (surjective_quot_mk _) | |
variables [nontrivial R] | |
lemma {m} cardinal_lift_le_dim_of_linear_independent | |
{ι : Type w} {v : ι → M} (hv : linear_independent R v) : | |
cardinal.lift.{max v m} (#ι) ≤ cardinal.lift.{max w m} (module.rank R M) := | |
begin | |
apply le_trans, | |
{ exact cardinal.lift_mk_le.mpr | |
⟨(equiv.of_injective _ hv.injective).to_embedding⟩, }, | |
{ simp only [cardinal.lift_le], | |
apply le_trans, | |
swap, | |
exact le_csupr (cardinal.bdd_above_range.{v v} _) ⟨range v, hv.coe_range⟩, | |
exact le_rfl, }, | |
end | |
lemma cardinal_lift_le_dim_of_linear_independent' | |
{ι : Type w} {v : ι → M} (hv : linear_independent R v) : | |
cardinal.lift.{v} (#ι) ≤ cardinal.lift.{w} (module.rank R M) := | |
cardinal_lift_le_dim_of_linear_independent.{u v w 0} hv | |
lemma cardinal_le_dim_of_linear_independent | |
{ι : Type v} {v : ι → M} (hv : linear_independent R v) : | |
#ι ≤ module.rank R M := | |
by simpa using cardinal_lift_le_dim_of_linear_independent hv | |
lemma cardinal_le_dim_of_linear_independent' | |
{s : set M} (hs : linear_independent R (λ x, x : s → M)) : | |
#s ≤ module.rank R M := | |
cardinal_le_dim_of_linear_independent hs | |
variables (R M) | |
@[simp] lemma dim_punit : module.rank R punit = 0 := | |
begin | |
apply le_bot_iff.mp, | |
apply csupr_le', | |
rintro ⟨s, li⟩, | |
apply le_bot_iff.mpr, | |
apply cardinal.mk_emptyc_iff.mpr, | |
simp only [subtype.coe_mk], | |
by_contradiction h, | |
have ne : s.nonempty := ne_empty_iff_nonempty.mp h, | |
simpa using linear_independent.ne_zero (⟨_, ne.some_mem⟩ : s) li, | |
end | |
@[simp] lemma dim_bot : module.rank R (⊥ : submodule R M) = 0 := | |
begin | |
have : (⊥ : submodule R M) ≃ₗ[R] punit := bot_equiv_punit, | |
rw [this.dim_eq, dim_punit], | |
end | |
variables {R M} | |
/-- A linearly-independent family of vectors in a module over a non-trivial ring must be finite if | |
the module is Noetherian. -/ | |
lemma linear_independent.finite_of_is_noetherian [is_noetherian R M] | |
{v : ι → M} (hv : linear_independent R v) : finite ι := | |
begin | |
have hwf := is_noetherian_iff_well_founded.mp (by apply_instance : is_noetherian R M), | |
refine complete_lattice.well_founded.finite_of_independent hwf | |
hv.independent_span_singleton (λ i contra, _), | |
apply hv.ne_zero i, | |
have : v i ∈ R ∙ v i := submodule.mem_span_singleton_self (v i), | |
rwa [contra, submodule.mem_bot] at this, | |
end | |
lemma linear_independent.set_finite_of_is_noetherian [is_noetherian R M] | |
{s : set M} (hi : linear_independent R (coe : s → M)) : s.finite := | |
@set.to_finite _ _ hi.finite_of_is_noetherian | |
/-- | |
Over any nontrivial ring, the existence of a finite spanning set implies that any basis is finite. | |
-/ | |
-- One might hope that a finite spanning set implies that any linearly independent set is finite. | |
-- While this is true over a division ring | |
-- (simply because any linearly independent set can be extended to a basis), | |
-- I'm not certain what more general statements are possible. | |
def basis_fintype_of_finite_spans (w : set M) [fintype w] (s : span R w = ⊤) | |
{ι : Type w} (b : basis ι R M) : fintype ι := | |
begin | |
-- We'll work by contradiction, assuming `ι` is infinite. | |
apply fintype_of_not_infinite _, | |
introI i, | |
-- Let `S` be the union of the supports of `x ∈ w` expressed as linear combinations of `b`. | |
-- This is a finite set since `w` is finite. | |
let S : finset ι := finset.univ.sup (λ x : w, (b.repr x).support), | |
let bS : set M := b '' S, | |
have h : ∀ x ∈ w, x ∈ span R bS, | |
{ intros x m, | |
rw [←b.total_repr x, finsupp.span_image_eq_map_total, submodule.mem_map], | |
use b.repr x, | |
simp only [and_true, eq_self_iff_true, finsupp.mem_supported], | |
change (b.repr x).support ≤ S, | |
convert (finset.le_sup (by simp : (⟨x, m⟩ : w) ∈ finset.univ)), | |
refl, }, | |
-- Thus this finite subset of the basis elements spans the entire module. | |
have k : span R bS = ⊤ := eq_top_iff.2 (le_trans s.ge (span_le.2 h)), | |
-- Now there is some `x : ι` not in `S`, since `ι` is infinite. | |
obtain ⟨x, nm⟩ := infinite.exists_not_mem_finset S, | |
-- However it must be in the span of the finite subset, | |
have k' : b x ∈ span R bS, { rw k, exact mem_top, }, | |
-- giving the desire contradiction. | |
refine b.linear_independent.not_mem_span_image _ k', | |
exact nm, | |
end | |
/-- | |
Over any ring `R`, if `b` is a basis for a module `M`, | |
and `s` is a maximal linearly independent set, | |
then the union of the supports of `x ∈ s` (when written out in the basis `b`) is all of `b`. | |
-/ | |
-- From [Les familles libres maximales d'un module ont-elles le meme cardinal?][lazarus1973] | |
lemma union_support_maximal_linear_independent_eq_range_basis | |
{ι : Type w} (b : basis ι R M) | |
{κ : Type w'} (v : κ → M) (i : linear_independent R v) (m : i.maximal) : | |
(⋃ k, ((b.repr (v k)).support : set ι)) = univ := | |
begin | |
-- If that's not the case, | |
by_contradiction h, | |
simp only [←ne.def, ne_univ_iff_exists_not_mem, mem_Union, not_exists_not, | |
finsupp.mem_support_iff, finset.mem_coe] at h, | |
-- We have some basis element `b b'` which is not in the support of any of the `v i`. | |
obtain ⟨b', w⟩ := h, | |
-- Using this, we'll construct a linearly independent family strictly larger than `v`, | |
-- by also using this `b b'`. | |
let v' : option κ → M := λ o, o.elim (b b') v, | |
have r : range v ⊆ range v', | |
{ rintro - ⟨k, rfl⟩, | |
use some k, | |
refl, }, | |
have r' : b b' ∉ range v, | |
{ rintro ⟨k, p⟩, | |
simpa [w] using congr_arg (λ m, (b.repr m) b') p, }, | |
have r'' : range v ≠ range v', | |
{ intro e, | |
have p : b b' ∈ range v', { use none, refl, }, | |
rw ←e at p, | |
exact r' p, }, | |
have inj' : injective v', | |
{ rintros (_|k) (_|k) z, | |
{ refl, }, | |
{ exfalso, exact r' ⟨k, z.symm⟩, }, | |
{ exfalso, exact r' ⟨k, z⟩, }, | |
{ congr, exact i.injective z, }, }, | |
-- The key step in the proof is checking that this strictly larger family is linearly independent. | |
have i' : linear_independent R (coe : range v' → M), | |
{ rw [linear_independent_subtype_range inj', linear_independent_iff], | |
intros l z, | |
rw [finsupp.total_option] at z, | |
simp only [v', option.elim] at z, | |
change _ + finsupp.total κ M R v l.some = 0 at z, | |
-- We have some linear combination of `b b'` and the `v i`, which we want to show is trivial. | |
-- We'll first show the coefficient of `b b'` is zero, | |
-- by expressing the `v i` in the basis `b`, and using that the `v i` have no `b b'` term. | |
have l₀ : l none = 0, | |
{ rw ←eq_neg_iff_add_eq_zero at z, | |
replace z := eq_neg_of_eq_neg z, | |
apply_fun (λ x, b.repr x b') at z, | |
simp only [repr_self, linear_equiv.map_smul, mul_one, finsupp.single_eq_same, pi.neg_apply, | |
finsupp.smul_single', linear_equiv.map_neg, finsupp.coe_neg] at z, | |
erw finsupp.congr_fun (finsupp.apply_total R (b.repr : M →ₗ[R] ι →₀ R) v l.some) b' at z, | |
simpa [finsupp.total_apply, w] using z, }, | |
-- Then all the other coefficients are zero, because `v` is linear independent. | |
have l₁ : l.some = 0, | |
{ rw [l₀, zero_smul, zero_add] at z, | |
exact linear_independent_iff.mp i _ z, }, | |
-- Finally we put those facts together to show the linear combination is trivial. | |
ext (_|a), | |
{ simp only [l₀, finsupp.coe_zero, pi.zero_apply], }, | |
{ erw finsupp.congr_fun l₁ a, | |
simp only [finsupp.coe_zero, pi.zero_apply], }, }, | |
dsimp [linear_independent.maximal] at m, | |
specialize m (range v') i' r, | |
exact r'' m, | |
end | |
/-- | |
Over any ring `R`, if `b` is an infinite basis for a module `M`, | |
and `s` is a maximal linearly independent set, | |
then the cardinality of `b` is bounded by the cardinality of `s`. | |
-/ | |
lemma infinite_basis_le_maximal_linear_independent' | |
{ι : Type w} (b : basis ι R M) [infinite ι] | |
{κ : Type w'} (v : κ → M) (i : linear_independent R v) (m : i.maximal) : | |
cardinal.lift.{w'} (#ι) ≤ cardinal.lift.{w} (#κ) := | |
begin | |
let Φ := λ k : κ, (b.repr (v k)).support, | |
have w₁ : #ι ≤ #(set.range Φ), | |
{ apply cardinal.le_range_of_union_finset_eq_top, | |
exact union_support_maximal_linear_independent_eq_range_basis b v i m, }, | |
have w₂ : | |
cardinal.lift.{w'} (#(set.range Φ)) ≤ cardinal.lift.{w} (#κ) := | |
cardinal.mk_range_le_lift, | |
exact (cardinal.lift_le.mpr w₁).trans w₂, | |
end | |
/-- | |
Over any ring `R`, if `b` is an infinite basis for a module `M`, | |
and `s` is a maximal linearly independent set, | |
then the cardinality of `b` is bounded by the cardinality of `s`. | |
-/ | |
-- (See `infinite_basis_le_maximal_linear_independent'` for the more general version | |
-- where the index types can live in different universes.) | |
lemma infinite_basis_le_maximal_linear_independent | |
{ι : Type w} (b : basis ι R M) [infinite ι] | |
{κ : Type w} (v : κ → M) (i : linear_independent R v) (m : i.maximal) : | |
#ι ≤ #κ := | |
cardinal.lift_le.mp (infinite_basis_le_maximal_linear_independent' b v i m) | |
lemma complete_lattice.independent.subtype_ne_bot_le_rank [no_zero_smul_divisors R M] | |
{V : ι → submodule R M} (hV : complete_lattice.independent V) : | |
cardinal.lift.{v} (#{i : ι // V i ≠ ⊥}) ≤ cardinal.lift.{w} (module.rank R M) := | |
begin | |
set I := {i : ι // V i ≠ ⊥}, | |
have hI : ∀ i : I, ∃ v ∈ V i, v ≠ (0:M), | |
{ intros i, | |
rw ← submodule.ne_bot_iff, | |
exact i.prop }, | |
choose v hvV hv using hI, | |
have : linear_independent R v, | |
{ exact (hV.comp subtype.coe_injective).linear_independent _ hvV hv }, | |
exact cardinal_lift_le_dim_of_linear_independent' this | |
end | |
end | |
section rank_zero | |
variables {R : Type u} {M : Type v} | |
variables [ring R] [nontrivial R] [add_comm_group M] [module R M] [no_zero_smul_divisors R M] | |
lemma dim_zero_iff_forall_zero : module.rank R M = 0 ↔ ∀ x : M, x = 0 := | |
begin | |
refine ⟨λ h, _, λ h, _⟩, | |
{ contrapose! h, | |
obtain ⟨x, hx⟩ := h, | |
suffices : 1 ≤ module.rank R M, | |
{ intro h, exact lt_irrefl _ (lt_of_lt_of_le cardinal.zero_lt_one (h ▸ this)) }, | |
suffices : linear_independent R (λ (y : ({x} : set M)), ↑y), | |
{ simpa using (cardinal_le_dim_of_linear_independent this), }, | |
exact linear_independent_singleton hx }, | |
{ have : (⊤ : submodule R M) = ⊥, | |
{ ext x, simp [h x] }, | |
rw [←dim_top, this, dim_bot] } | |
end | |
lemma dim_zero_iff : module.rank R M = 0 ↔ subsingleton M := | |
dim_zero_iff_forall_zero.trans (subsingleton_iff_forall_eq 0).symm | |
lemma dim_pos_iff_exists_ne_zero : 0 < module.rank R M ↔ ∃ x : M, x ≠ 0 := | |
begin | |
rw ←not_iff_not, | |
simpa using dim_zero_iff_forall_zero | |
end | |
lemma dim_pos_iff_nontrivial : 0 < module.rank R M ↔ nontrivial M := | |
dim_pos_iff_exists_ne_zero.trans (nontrivial_iff_exists_ne 0).symm | |
lemma dim_pos [h : nontrivial M] : 0 < module.rank R M := | |
dim_pos_iff_nontrivial.2 h | |
end rank_zero | |
section invariant_basis_number | |
variables {R : Type u} [ring R] [invariant_basis_number R] | |
variables {M : Type v} [add_comm_group M] [module R M] | |
/-- The dimension theorem: if `v` and `v'` are two bases, their index types | |
have the same cardinalities. -/ | |
theorem mk_eq_mk_of_basis (v : basis ι R M) (v' : basis ι' R M) : | |
cardinal.lift.{w'} (#ι) = cardinal.lift.{w} (#ι') := | |
begin | |
haveI := nontrivial_of_invariant_basis_number R, | |
casesI fintype_or_infinite ι, | |
{ -- `v` is a finite basis, so by `basis_fintype_of_finite_spans` so is `v'`. | |
haveI : fintype (range v) := set.fintype_range v, | |
haveI := basis_fintype_of_finite_spans _ v.span_eq v', | |
-- We clean up a little: | |
rw [cardinal.mk_fintype, cardinal.mk_fintype], | |
simp only [cardinal.lift_nat_cast, cardinal.nat_cast_inj], | |
-- Now we can use invariant basis number to show they have the same cardinality. | |
apply card_eq_of_lequiv R, | |
exact (((finsupp.linear_equiv_fun_on_fintype R R ι).symm.trans v.repr.symm) ≪≫ₗ | |
v'.repr) ≪≫ₗ (finsupp.linear_equiv_fun_on_fintype R R ι'), }, | |
{ -- `v` is an infinite basis, | |
-- so by `infinite_basis_le_maximal_linear_independent`, `v'` is at least as big, | |
-- and then applying `infinite_basis_le_maximal_linear_independent` again | |
-- we see they have the same cardinality. | |
have w₁ := | |
infinite_basis_le_maximal_linear_independent' v _ v'.linear_independent v'.maximal, | |
rcases cardinal.lift_mk_le'.mp w₁ with ⟨f⟩, | |
haveI : infinite ι' := infinite.of_injective f f.2, | |
have w₂ := | |
infinite_basis_le_maximal_linear_independent' v' _ v.linear_independent v.maximal, | |
exact le_antisymm w₁ w₂, } | |
end | |
/-- Given two bases indexed by `ι` and `ι'` of an `R`-module, where `R` satisfies the invariant | |
basis number property, an equiv `ι ≃ ι' `. -/ | |
def basis.index_equiv (v : basis ι R M) (v' : basis ι' R M) : ι ≃ ι' := | |
nonempty.some (cardinal.lift_mk_eq.1 (cardinal.lift_umax_eq.2 (mk_eq_mk_of_basis v v'))) | |
theorem mk_eq_mk_of_basis' {ι' : Type w} (v : basis ι R M) (v' : basis ι' R M) : | |
#ι = #ι' := | |
cardinal.lift_inj.1 $ mk_eq_mk_of_basis v v' | |
end invariant_basis_number | |
section rank_condition | |
variables {R : Type u} [ring R] [rank_condition R] | |
variables {M : Type v} [add_comm_group M] [module R M] | |
/-- | |
An auxiliary lemma for `basis.le_span`. | |
If `R` satisfies the rank condition, | |
then for any finite basis `b : basis ι R M`, | |
and any finite spanning set `w : set M`, | |
the cardinality of `ι` is bounded by the cardinality of `w`. | |
-/ | |
lemma basis.le_span'' {ι : Type*} [fintype ι] (b : basis ι R M) | |
{w : set M} [fintype w] (s : span R w = ⊤) : | |
fintype.card ι ≤ fintype.card w := | |
begin | |
-- We construct an surjective linear map `(w → R) →ₗ[R] (ι → R)`, | |
-- by expressing a linear combination in `w` as a linear combination in `ι`. | |
fapply card_le_of_surjective' R, | |
{ exact b.repr.to_linear_map.comp (finsupp.total w M R coe), }, | |
{ apply surjective.comp, | |
apply linear_equiv.surjective, | |
rw [←linear_map.range_eq_top, finsupp.range_total], | |
simpa using s, }, | |
end | |
/-- | |
Another auxiliary lemma for `basis.le_span`, which does not require assuming the basis is finite, | |
but still assumes we have a finite spanning set. | |
-/ | |
lemma basis_le_span' {ι : Type*} (b : basis ι R M) | |
{w : set M} [fintype w] (s : span R w = ⊤) : | |
#ι ≤ fintype.card w := | |
begin | |
haveI := nontrivial_of_invariant_basis_number R, | |
haveI := basis_fintype_of_finite_spans w s b, | |
rw cardinal.mk_fintype ι, | |
simp only [cardinal.nat_cast_le], | |
exact basis.le_span'' b s, | |
end | |
/-- | |
If `R` satisfies the rank condition, | |
then the cardinality of any basis is bounded by the cardinality of any spanning set. | |
-/ | |
-- Note that if `R` satisfies the strong rank condition, | |
-- this also follows from `linear_independent_le_span` below. | |
theorem basis.le_span {J : set M} (v : basis ι R M) | |
(hJ : span R J = ⊤) : #(range v) ≤ #J := | |
begin | |
haveI := nontrivial_of_invariant_basis_number R, | |
casesI fintype_or_infinite J, | |
{ rw [←cardinal.lift_le, cardinal.mk_range_eq_of_injective v.injective, cardinal.mk_fintype J], | |
convert cardinal.lift_le.{w v}.2 (basis_le_span' v hJ), | |
simp, }, | |
{ have := cardinal.mk_range_eq_of_injective v.injective, | |
let S : J → set ι := λ j, ↑(v.repr j).support, | |
let S' : J → set M := λ j, v '' S j, | |
have hs : range v ⊆ ⋃ j, S' j, | |
{ intros b hb, | |
rcases mem_range.1 hb with ⟨i, hi⟩, | |
have : span R J ≤ comap v.repr.to_linear_map (finsupp.supported R R (⋃ j, S j)) := | |
span_le.2 (λ j hj x hx, ⟨_, ⟨⟨j, hj⟩, rfl⟩, hx⟩), | |
rw hJ at this, | |
replace : v.repr (v i) ∈ (finsupp.supported R R (⋃ j, S j)) := this trivial, | |
rw [v.repr_self, finsupp.mem_supported, | |
finsupp.support_single_ne_zero _ one_ne_zero] at this, | |
{ subst b, | |
rcases mem_Union.1 (this (finset.mem_singleton_self _)) with ⟨j, hj⟩, | |
exact mem_Union.2 ⟨j, (mem_image _ _ _).2 ⟨i, hj, rfl⟩⟩ }, | |
{ apply_instance } }, | |
refine le_of_not_lt (λ IJ, _), | |
suffices : #(⋃ j, S' j) < #(range v), | |
{ exact not_le_of_lt this ⟨set.embedding_of_subset _ _ hs⟩ }, | |
refine lt_of_le_of_lt (le_trans cardinal.mk_Union_le_sum_mk | |
(cardinal.sum_le_sum _ (λ _, ℵ₀) _)) _, | |
{ exact λ j, (cardinal.lt_aleph_0_of_finite _).le }, | |
{ simpa } }, | |
end | |
end rank_condition | |
section strong_rank_condition | |
variables {R : Type u} [ring R] [strong_rank_condition R] | |
variables {M : Type v} [add_comm_group M] [module R M] | |
open submodule | |
-- An auxiliary lemma for `linear_independent_le_span'`, | |
-- with the additional assumption that the linearly independent family is finite. | |
lemma linear_independent_le_span_aux' | |
{ι : Type*} [fintype ι] (v : ι → M) (i : linear_independent R v) | |
(w : set M) [fintype w] (s : range v ≤ span R w) : | |
fintype.card ι ≤ fintype.card w := | |
begin | |
-- We construct an injective linear map `(ι → R) →ₗ[R] (w → R)`, | |
-- by thinking of `f : ι → R` as a linear combination of the finite family `v`, | |
-- and expressing that (using the axiom of choice) as a linear combination over `w`. | |
-- We can do this linearly by constructing the map on a basis. | |
fapply card_le_of_injective' R, | |
{ apply finsupp.total, | |
exact λ i, span.repr R w ⟨v i, s (mem_range_self i)⟩, }, | |
{ intros f g h, | |
apply_fun finsupp.total w M R coe at h, | |
simp only [finsupp.total_total, submodule.coe_mk, span.finsupp_total_repr] at h, | |
rw [←sub_eq_zero, ←linear_map.map_sub] at h, | |
exact sub_eq_zero.mp (linear_independent_iff.mp i _ h), }, | |
end | |
/-- | |
If `R` satisfies the strong rank condition, | |
then any linearly independent family `v : ι → M` | |
contained in the span of some finite `w : set M`, | |
is itself finite. | |
-/ | |
def linear_independent_fintype_of_le_span_fintype | |
{ι : Type*} (v : ι → M) (i : linear_independent R v) | |
(w : set M) [fintype w] (s : range v ≤ span R w) : fintype ι := | |
fintype_of_finset_card_le (fintype.card w) (λ t, begin | |
let v' := λ x : (t : set ι), v x, | |
have i' : linear_independent R v' := i.comp _ subtype.val_injective, | |
have s' : range v' ≤ span R w := (range_comp_subset_range _ _).trans s, | |
simpa using linear_independent_le_span_aux' v' i' w s', | |
end) | |
/-- | |
If `R` satisfies the strong rank condition, | |
then for any linearly independent family `v : ι → M` | |
contained in the span of some finite `w : set M`, | |
the cardinality of `ι` is bounded by the cardinality of `w`. | |
-/ | |
lemma linear_independent_le_span' {ι : Type*} (v : ι → M) (i : linear_independent R v) | |
(w : set M) [fintype w] (s : range v ≤ span R w) : | |
#ι ≤ fintype.card w := | |
begin | |
haveI : fintype ι := linear_independent_fintype_of_le_span_fintype v i w s, | |
rw cardinal.mk_fintype, | |
simp only [cardinal.nat_cast_le], | |
exact linear_independent_le_span_aux' v i w s, | |
end | |
/-- | |
If `R` satisfies the strong rank condition, | |
then for any linearly independent family `v : ι → M` | |
and any finite spanning set `w : set M`, | |
the cardinality of `ι` is bounded by the cardinality of `w`. | |
-/ | |
lemma linear_independent_le_span {ι : Type*} (v : ι → M) (i : linear_independent R v) | |
(w : set M) [fintype w] (s : span R w = ⊤) : | |
#ι ≤ fintype.card w := | |
begin | |
apply linear_independent_le_span' v i w, | |
rw s, | |
exact le_top, | |
end | |
/-- | |
An auxiliary lemma for `linear_independent_le_basis`: | |
we handle the case where the basis `b` is infinite. | |
-/ | |
lemma linear_independent_le_infinite_basis | |
{ι : Type*} (b : basis ι R M) [infinite ι] | |
{κ : Type*} (v : κ → M) (i : linear_independent R v) : | |
#κ ≤ #ι := | |
begin | |
by_contradiction, | |
rw [not_le, ← cardinal.mk_finset_of_infinite ι] at h, | |
let Φ := λ k : κ, (b.repr (v k)).support, | |
obtain ⟨s, w : infinite ↥(Φ ⁻¹' {s})⟩ := cardinal.exists_infinite_fiber Φ h (by apply_instance), | |
let v' := λ k : Φ ⁻¹' {s}, v k, | |
have i' : linear_independent R v' := i.comp _ subtype.val_injective, | |
have w' : fintype (Φ ⁻¹' {s}), | |
{ apply linear_independent_fintype_of_le_span_fintype v' i' (s.image b), | |
rintros m ⟨⟨p,⟨rfl⟩⟩,rfl⟩, | |
simp only [set_like.mem_coe, subtype.coe_mk, finset.coe_image], | |
apply basis.mem_span_repr_support, }, | |
exactI w.false, | |
end | |
/-- | |
Over any ring `R` satisfying the strong rank condition, | |
if `b` is a basis for a module `M`, | |
and `s` is a linearly independent set, | |
then the cardinality of `s` is bounded by the cardinality of `b`. | |
-/ | |
lemma linear_independent_le_basis | |
{ι : Type*} (b : basis ι R M) | |
{κ : Type*} (v : κ → M) (i : linear_independent R v) : | |
#κ ≤ #ι := | |
begin | |
-- We split into cases depending on whether `ι` is infinite. | |
cases fintype_or_infinite ι; resetI, | |
{ -- When `ι` is finite, we have `linear_independent_le_span`, | |
rw cardinal.mk_fintype ι, | |
haveI : nontrivial R := nontrivial_of_invariant_basis_number R, | |
rw fintype.card_congr (equiv.of_injective b b.injective), | |
exact linear_independent_le_span v i (range b) b.span_eq, }, | |
{ -- and otherwise we have `linear_indepedent_le_infinite_basis`. | |
exact linear_independent_le_infinite_basis b v i, }, | |
end | |
/-- In an `n`-dimensional space, the rank is at most `m`. -/ | |
lemma basis.card_le_card_of_linear_independent_aux | |
{R : Type*} [ring R] [strong_rank_condition R] | |
(n : ℕ) {m : ℕ} (v : fin m → fin n → R) : | |
linear_independent R v → m ≤ n := | |
λ h, by simpa using (linear_independent_le_basis (pi.basis_fun R (fin n)) v h) | |
/-- | |
Over any ring `R` satisfying the strong rank condition, | |
if `b` is an infinite basis for a module `M`, | |
then every maximal linearly independent set has the same cardinality as `b`. | |
This proof (along with some of the lemmas above) comes from | |
[Les familles libres maximales d'un module ont-elles le meme cardinal?][lazarus1973] | |
-/ | |
-- When the basis is not infinite this need not be true! | |
lemma maximal_linear_independent_eq_infinite_basis | |
{ι : Type*} (b : basis ι R M) [infinite ι] | |
{κ : Type*} (v : κ → M) (i : linear_independent R v) (m : i.maximal) : | |
#κ = #ι := | |
begin | |
apply le_antisymm, | |
{ exact linear_independent_le_basis b v i, }, | |
{ haveI : nontrivial R := nontrivial_of_invariant_basis_number R, | |
exact infinite_basis_le_maximal_linear_independent b v i m, } | |
end | |
theorem basis.mk_eq_dim'' {ι : Type v} (v : basis ι R M) : | |
#ι = module.rank R M := | |
begin | |
haveI := nontrivial_of_invariant_basis_number R, | |
apply le_antisymm, | |
{ transitivity, | |
swap, | |
apply le_csupr (cardinal.bdd_above_range.{v v} _), | |
exact ⟨set.range v, by { convert v.reindex_range.linear_independent, ext, simp }⟩, | |
exact (cardinal.mk_range_eq v v.injective).ge, }, | |
{ apply csupr_le', | |
rintro ⟨s, li⟩, | |
apply linear_independent_le_basis v _ li, }, | |
end | |
-- By this stage we want to have a complete API for `module.rank`, | |
-- so we set it `irreducible` here, to keep ourselves honest. | |
attribute [irreducible] module.rank | |
theorem basis.mk_range_eq_dim (v : basis ι R M) : | |
#(range v) = module.rank R M := | |
v.reindex_range.mk_eq_dim'' | |
/-- If a vector space has a finite basis, then its dimension (seen as a cardinal) is equal to the | |
cardinality of the basis. -/ | |
lemma dim_eq_card_basis {ι : Type w} [fintype ι] (h : basis ι R M) : | |
module.rank R M = fintype.card ι := | |
by {haveI := nontrivial_of_invariant_basis_number R, | |
rw [←h.mk_range_eq_dim, cardinal.mk_fintype, set.card_range_of_injective h.injective] } | |
lemma basis.card_le_card_of_linear_independent {ι : Type*} [fintype ι] | |
(b : basis ι R M) {ι' : Type*} [fintype ι'] {v : ι' → M} (hv : linear_independent R v) : | |
fintype.card ι' ≤ fintype.card ι := | |
begin | |
letI := nontrivial_of_invariant_basis_number R, | |
simpa [dim_eq_card_basis b, cardinal.mk_fintype] using | |
cardinal_lift_le_dim_of_linear_independent' hv | |
end | |
lemma basis.card_le_card_of_submodule (N : submodule R M) [fintype ι] (b : basis ι R M) | |
[fintype ι'] (b' : basis ι' R N) : fintype.card ι' ≤ fintype.card ι := | |
b.card_le_card_of_linear_independent (b'.linear_independent.map' N.subtype N.ker_subtype) | |
lemma basis.card_le_card_of_le | |
{N O : submodule R M} (hNO : N ≤ O) [fintype ι] (b : basis ι R O) [fintype ι'] | |
(b' : basis ι' R N) : fintype.card ι' ≤ fintype.card ι := | |
b.card_le_card_of_linear_independent | |
(b'.linear_independent.map' (submodule.of_le hNO) (N.ker_of_le O _)) | |
theorem basis.mk_eq_dim (v : basis ι R M) : | |
cardinal.lift.{v} (#ι) = cardinal.lift.{w} (module.rank R M) := | |
begin | |
haveI := nontrivial_of_invariant_basis_number R, | |
rw [←v.mk_range_eq_dim, cardinal.mk_range_eq_of_injective v.injective] | |
end | |
theorem {m} basis.mk_eq_dim' (v : basis ι R M) : | |
cardinal.lift.{max v m} (#ι) = cardinal.lift.{max w m} (module.rank R M) := | |
by simpa using v.mk_eq_dim | |
/-- If a module has a finite dimension, all bases are indexed by a finite type. -/ | |
lemma basis.nonempty_fintype_index_of_dim_lt_aleph_0 {ι : Type*} | |
(b : basis ι R M) (h : module.rank R M < ℵ₀) : | |
nonempty (fintype ι) := | |
by rwa [← cardinal.lift_lt, ← b.mk_eq_dim, | |
-- ensure `aleph_0` has the correct universe | |
cardinal.lift_aleph_0, ← cardinal.lift_aleph_0.{u_1 v}, | |
cardinal.lift_lt, cardinal.lt_aleph_0_iff_fintype] at h | |
/-- If a module has a finite dimension, all bases are indexed by a finite type. -/ | |
noncomputable def basis.fintype_index_of_dim_lt_aleph_0 {ι : Type*} | |
(b : basis ι R M) (h : module.rank R M < ℵ₀) : | |
fintype ι := | |
classical.choice (b.nonempty_fintype_index_of_dim_lt_aleph_0 h) | |
/-- If a module has a finite dimension, all bases are indexed by a finite set. -/ | |
lemma basis.finite_index_of_dim_lt_aleph_0 {ι : Type*} {s : set ι} | |
(b : basis s R M) (h : module.rank R M < ℵ₀) : | |
s.finite := | |
finite_def.2 (b.nonempty_fintype_index_of_dim_lt_aleph_0 h) | |
lemma dim_span {v : ι → M} (hv : linear_independent R v) : | |
module.rank R ↥(span R (range v)) = #(range v) := | |
begin | |
haveI := nontrivial_of_invariant_basis_number R, | |
rw [←cardinal.lift_inj, ← (basis.span hv).mk_eq_dim, | |
cardinal.mk_range_eq_of_injective (@linear_independent.injective ι R M v _ _ _ _ hv)] | |
end | |
lemma dim_span_set {s : set M} (hs : linear_independent R (λ x, x : s → M)) : | |
module.rank R ↥(span R s) = #s := | |
by { rw [← @set_of_mem_eq _ s, ← subtype.range_coe_subtype], exact dim_span hs } | |
/-- If `N` is a submodule in a free, finitely generated module, | |
do induction on adjoining a linear independent element to a submodule. -/ | |
def submodule.induction_on_rank [is_domain R] [fintype ι] (b : basis ι R M) | |
(P : submodule R M → Sort*) (ih : ∀ (N : submodule R M), | |
(∀ (N' ≤ N) (x ∈ N), (∀ (c : R) (y ∈ N'), c • x + y = (0 : M) → c = 0) → P N') → | |
P N) | |
(N : submodule R M) : P N := | |
submodule.induction_on_rank_aux b P ih (fintype.card ι) N (λ s hs hli, | |
by simpa using b.card_le_card_of_linear_independent hli) | |
/-- If `S` a finite-dimensional ring extension of `R` which is free as an `R`-module, | |
then the rank of an ideal `I` of `S` over `R` is the same as the rank of `S`. | |
-/ | |
lemma ideal.rank_eq {R S : Type*} [comm_ring R] [strong_rank_condition R] [ring S] [is_domain S] | |
[algebra R S] {n m : Type*} [fintype n] [fintype m] | |
(b : basis n R S) {I : ideal S} (hI : I ≠ ⊥) (c : basis m R I) : | |
fintype.card m = fintype.card n := | |
begin | |
obtain ⟨a, ha⟩ := submodule.nonzero_mem_of_bot_lt (bot_lt_iff_ne_bot.mpr hI), | |
have : linear_independent R (λ i, b i • a), | |
{ have hb := b.linear_independent, | |
rw fintype.linear_independent_iff at ⊢ hb, | |
intros g hg, | |
apply hb g, | |
simp only [← smul_assoc, ← finset.sum_smul, smul_eq_zero] at hg, | |
exact hg.resolve_right ha }, | |
exact le_antisymm | |
(b.card_le_card_of_linear_independent (c.linear_independent.map' (submodule.subtype I) | |
(linear_map.ker_eq_bot.mpr subtype.coe_injective))) | |
(c.card_le_card_of_linear_independent this), | |
end | |
variables (R) | |
@[simp] lemma dim_self : module.rank R R = 1 := | |
by rw [←cardinal.lift_inj, ← (basis.singleton punit R).mk_eq_dim, cardinal.mk_punit] | |
end strong_rank_condition | |
section division_ring | |
variables [division_ring K] [add_comm_group V] [module K V] [add_comm_group V₁] [module K V₁] | |
variables {K V} | |
/-- If a vector space has a finite dimension, the index set of `basis.of_vector_space` is finite. -/ | |
lemma basis.finite_of_vector_space_index_of_dim_lt_aleph_0 (h : module.rank K V < ℵ₀) : | |
(basis.of_vector_space_index K V).finite := | |
finite_def.2 $ (basis.of_vector_space K V).nonempty_fintype_index_of_dim_lt_aleph_0 h | |
variables [add_comm_group V'] [module K V'] | |
/-- Two vector spaces are isomorphic if they have the same dimension. -/ | |
theorem nonempty_linear_equiv_of_lift_dim_eq | |
(cond : cardinal.lift.{v'} (module.rank K V) = cardinal.lift.{v} (module.rank K V')) : | |
nonempty (V ≃ₗ[K] V') := | |
begin | |
let B := basis.of_vector_space K V, | |
let B' := basis.of_vector_space K V', | |
have : cardinal.lift.{v' v} (#_) = cardinal.lift.{v v'} (#_), | |
by rw [B.mk_eq_dim'', cond, B'.mk_eq_dim''], | |
exact (cardinal.lift_mk_eq.{v v' 0}.1 this).map (B.equiv B') | |
end | |
/-- Two vector spaces are isomorphic if they have the same dimension. -/ | |
theorem nonempty_linear_equiv_of_dim_eq (cond : module.rank K V = module.rank K V₁) : | |
nonempty (V ≃ₗ[K] V₁) := | |
nonempty_linear_equiv_of_lift_dim_eq $ congr_arg _ cond | |
section | |
variables (V V' V₁) | |
/-- Two vector spaces are isomorphic if they have the same dimension. -/ | |
def linear_equiv.of_lift_dim_eq | |
(cond : cardinal.lift.{v'} (module.rank K V) = cardinal.lift.{v} (module.rank K V')) : | |
V ≃ₗ[K] V' := | |
classical.choice (nonempty_linear_equiv_of_lift_dim_eq cond) | |
/-- Two vector spaces are isomorphic if they have the same dimension. -/ | |
def linear_equiv.of_dim_eq (cond : module.rank K V = module.rank K V₁) : V ≃ₗ[K] V₁ := | |
classical.choice (nonempty_linear_equiv_of_dim_eq cond) | |
end | |
/-- Two vector spaces are isomorphic if and only if they have the same dimension. -/ | |
theorem linear_equiv.nonempty_equiv_iff_lift_dim_eq : | |
nonempty (V ≃ₗ[K] V') ↔ | |
cardinal.lift.{v'} (module.rank K V) = cardinal.lift.{v} (module.rank K V') := | |
⟨λ ⟨h⟩, linear_equiv.lift_dim_eq h, λ h, nonempty_linear_equiv_of_lift_dim_eq h⟩ | |
/-- Two vector spaces are isomorphic if and only if they have the same dimension. -/ | |
theorem linear_equiv.nonempty_equiv_iff_dim_eq : | |
nonempty (V ≃ₗ[K] V₁) ↔ module.rank K V = module.rank K V₁ := | |
⟨λ ⟨h⟩, linear_equiv.dim_eq h, λ h, nonempty_linear_equiv_of_dim_eq h⟩ | |
-- TODO how far can we generalise this? | |
-- When `s` is finite, we could prove this for any ring satisfying the strong rank condition | |
-- using `linear_independent_le_span'` | |
lemma dim_span_le (s : set V) : module.rank K (span K s) ≤ #s := | |
begin | |
obtain ⟨b, hb, hsab, hlib⟩ := exists_linear_independent K s, | |
convert cardinal.mk_le_mk_of_subset hb, | |
rw [← hsab, dim_span_set hlib] | |
end | |
lemma dim_span_of_finset (s : finset V) : | |
module.rank K (span K (↑s : set V)) < ℵ₀ := | |
calc module.rank K (span K (↑s : set V)) ≤ #(↑s : set V) : dim_span_le ↑s | |
... = s.card : by rw [finset.coe_sort_coe, cardinal.mk_coe_finset] | |
... < ℵ₀ : cardinal.nat_lt_aleph_0 _ | |
theorem dim_prod : module.rank K (V × V₁) = module.rank K V + module.rank K V₁ := | |
begin | |
let b := basis.of_vector_space K V, | |
let c := basis.of_vector_space K V₁, | |
rw [← cardinal.lift_inj, | |
← (basis.prod b c).mk_eq_dim, | |
cardinal.lift_add, ← cardinal.mk_ulift, | |
← b.mk_eq_dim, ← c.mk_eq_dim, | |
← cardinal.mk_ulift, ← cardinal.mk_ulift, | |
cardinal.add_def (ulift _)], | |
exact cardinal.lift_inj.1 (cardinal.lift_mk_eq.2 | |
⟨equiv.ulift.trans (equiv.sum_congr equiv.ulift equiv.ulift).symm ⟩), | |
end | |
section fintype | |
variable [fintype η] | |
variables [∀i, add_comm_group (φ i)] [∀i, module K (φ i)] | |
open linear_map | |
lemma dim_pi : module.rank K (Πi, φ i) = cardinal.sum (λi, module.rank K (φ i)) := | |
begin | |
let b := assume i, basis.of_vector_space K (φ i), | |
let this : basis (Σ j, _) K (Π j, φ j) := pi.basis b, | |
rw [← cardinal.lift_inj, ← this.mk_eq_dim], | |
simp [← (b _).mk_range_eq_dim] | |
end | |
lemma dim_fun {V η : Type u} [fintype η] [add_comm_group V] [module K V] : | |
module.rank K (η → V) = fintype.card η * module.rank K V := | |
by rw [dim_pi, cardinal.sum_const', cardinal.mk_fintype] | |
lemma dim_fun_eq_lift_mul : | |
module.rank K (η → V) = (fintype.card η : cardinal.{max u₁' v}) * | |
cardinal.lift.{u₁'} (module.rank K V) := | |
by rw [dim_pi, cardinal.sum_const, cardinal.mk_fintype, cardinal.lift_nat_cast] | |
lemma dim_fun' : module.rank K (η → K) = fintype.card η := | |
by rw [dim_fun_eq_lift_mul, dim_self, cardinal.lift_one, mul_one, cardinal.nat_cast_inj] | |
lemma dim_fin_fun (n : ℕ) : module.rank K (fin n → K) = n := | |
by simp [dim_fun'] | |
end fintype | |
end division_ring | |
section field | |
variables [field K] [add_comm_group V] [module K V] [add_comm_group V₁] [module K V₁] | |
variables [add_comm_group V'] [module K V'] | |
theorem dim_quotient_add_dim (p : submodule K V) : | |
module.rank K (V ⧸ p) + module.rank K p = module.rank K V := | |
by classical; exact let ⟨f⟩ := quotient_prod_linear_equiv p in dim_prod.symm.trans f.dim_eq | |
/-- rank-nullity theorem -/ | |
theorem dim_range_add_dim_ker (f : V →ₗ[K] V₁) : | |
module.rank K f.range + module.rank K f.ker = module.rank K V := | |
begin | |
haveI := λ (p : submodule K V), classical.dec_eq (V ⧸ p), | |
rw [← f.quot_ker_equiv_range.dim_eq, dim_quotient_add_dim] | |
end | |
lemma dim_eq_of_surjective (f : V →ₗ[K] V₁) (h : surjective f) : | |
module.rank K V = module.rank K V₁ + module.rank K f.ker := | |
by rw [← dim_range_add_dim_ker f, ← dim_range_of_surjective f h] | |
section | |
variables [add_comm_group V₂] [module K V₂] | |
variables [add_comm_group V₃] [module K V₃] | |
open linear_map | |
/-- This is mostly an auxiliary lemma for `dim_sup_add_dim_inf_eq`. -/ | |
lemma dim_add_dim_split | |
(db : V₂ →ₗ[K] V) (eb : V₃ →ₗ[K] V) (cd : V₁ →ₗ[K] V₂) (ce : V₁ →ₗ[K] V₃) | |
(hde : ⊤ ≤ db.range ⊔ eb.range) | |
(hgd : ker cd = ⊥) | |
(eq : db.comp cd = eb.comp ce) | |
(eq₂ : ∀d e, db d = eb e → (∃c, cd c = d ∧ ce c = e)) : | |
module.rank K V + module.rank K V₁ = module.rank K V₂ + module.rank K V₃ := | |
have hf : surjective (coprod db eb), | |
by rwa [←range_eq_top, range_coprod, eq_top_iff], | |
begin | |
conv {to_rhs, rw [← dim_prod, dim_eq_of_surjective _ hf] }, | |
congr' 1, | |
apply linear_equiv.dim_eq, | |
refine linear_equiv.of_bijective _ _ _, | |
{ refine cod_restrict _ (prod cd (- ce)) _, | |
{ assume c, | |
simp only [add_eq_zero_iff_eq_neg, linear_map.prod_apply, mem_ker, pi.prod, | |
coprod_apply, neg_neg, map_neg, neg_apply], | |
exact linear_map.ext_iff.1 eq c } }, | |
{ rw [← ker_eq_bot, ker_cod_restrict, ker_prod, hgd, bot_inf_eq] }, | |
{ rw [← range_eq_top, eq_top_iff, range_cod_restrict, ← map_le_iff_le_comap, | |
map_top, range_subtype], | |
rintros ⟨d, e⟩, | |
have h := eq₂ d (-e), | |
simp only [add_eq_zero_iff_eq_neg, linear_map.prod_apply, mem_ker, set_like.mem_coe, | |
prod.mk.inj_iff, coprod_apply, map_neg, neg_apply, linear_map.mem_range, pi.prod] at ⊢ h, | |
assume hde, | |
rcases h hde with ⟨c, h₁, h₂⟩, | |
refine ⟨c, h₁, _⟩, | |
rw [h₂, _root_.neg_neg] } | |
end | |
lemma dim_sup_add_dim_inf_eq (s t : submodule K V) : | |
module.rank K (s ⊔ t : submodule K V) + module.rank K (s ⊓ t : submodule K V) = | |
module.rank K s + module.rank K t := | |
dim_add_dim_split (of_le le_sup_left) (of_le le_sup_right) (of_le inf_le_left) (of_le inf_le_right) | |
begin | |
rw [← map_le_map_iff' (ker_subtype $ s ⊔ t), map_sup, map_top, | |
← linear_map.range_comp, ← linear_map.range_comp, subtype_comp_of_le, subtype_comp_of_le, | |
range_subtype, range_subtype, range_subtype], | |
exact le_rfl | |
end | |
(ker_of_le _ _ _) | |
begin ext ⟨x, hx⟩, refl end | |
begin | |
rintros ⟨b₁, hb₁⟩ ⟨b₂, hb₂⟩ eq, | |
obtain rfl : b₁ = b₂ := congr_arg subtype.val eq, | |
exact ⟨⟨b₁, hb₁, hb₂⟩, rfl, rfl⟩ | |
end | |
lemma dim_add_le_dim_add_dim (s t : submodule K V) : | |
module.rank K (s ⊔ t : submodule K V) ≤ module.rank K s + module.rank K t := | |
by { rw [← dim_sup_add_dim_inf_eq], exact self_le_add_right _ _ } | |
end | |
lemma exists_mem_ne_zero_of_dim_pos {s : submodule K V} (h : 0 < module.rank K s) : | |
∃ b : V, b ∈ s ∧ b ≠ 0 := | |
exists_mem_ne_zero_of_ne_bot $ assume eq, by rw [eq, dim_bot] at h; exact lt_irrefl _ h | |
end field | |
section rank | |
section | |
variables [ring K] [add_comm_group V] [module K V] [add_comm_group V₁] [module K V₁] | |
variables [add_comm_group V'] [module K V'] | |
/-- `rank f` is the rank of a `linear_map f`, defined as the dimension of `f.range`. -/ | |
def rank (f : V →ₗ[K] V') : cardinal := module.rank K f.range | |
lemma rank_le_range (f : V →ₗ[K] V₁) : rank f ≤ module.rank K V₁ := | |
dim_submodule_le _ | |
@[simp] lemma rank_zero [nontrivial K] : rank (0 : V →ₗ[K] V') = 0 := | |
by rw [rank, linear_map.range_zero, dim_bot] | |
variables [add_comm_group V''] [module K V''] | |
lemma rank_comp_le1 (g : V →ₗ[K] V') (f : V' →ₗ[K] V'') : rank (f.comp g) ≤ rank f := | |
begin | |
refine dim_le_of_submodule _ _ _, | |
rw [linear_map.range_comp], | |
exact linear_map.map_le_range, | |
end | |
variables [add_comm_group V'₁] [module K V'₁] | |
lemma rank_comp_le2 (g : V →ₗ[K] V') (f : V' →ₗ[K] V'₁) : rank (f.comp g) ≤ rank g := | |
by rw [rank, rank, linear_map.range_comp]; exact dim_map_le _ _ | |
end | |
section field | |
variables [field K] [add_comm_group V] [module K V] [add_comm_group V₁] [module K V₁] | |
variables [add_comm_group V'] [module K V'] | |
lemma rank_le_domain (f : V →ₗ[K] V₁) : rank f ≤ module.rank K V := | |
by { rw [← dim_range_add_dim_ker f], exact self_le_add_right _ _ } | |
lemma rank_add_le (f g : V →ₗ[K] V') : rank (f + g) ≤ rank f + rank g := | |
calc rank (f + g) ≤ module.rank K (f.range ⊔ g.range : submodule K V') : | |
begin | |
refine dim_le_of_submodule _ _ _, | |
exact (linear_map.range_le_iff_comap.2 $ eq_top_iff'.2 $ | |
assume x, show f x + g x ∈ (f.range ⊔ g.range : submodule K V'), from | |
mem_sup.2 ⟨_, ⟨x, rfl⟩, _, ⟨x, rfl⟩, rfl⟩) | |
end | |
... ≤ rank f + rank g : dim_add_le_dim_add_dim _ _ | |
lemma rank_finset_sum_le {η} (s : finset η) (f : η → V →ₗ[K] V') : | |
rank (∑ d in s, f d) ≤ ∑ d in s, rank (f d) := | |
@finset.sum_hom_rel _ _ _ _ _ (λa b, rank a ≤ b) f (λ d, rank (f d)) s (le_of_eq rank_zero) | |
(λ i g c h, le_trans (rank_add_le _ _) (add_le_add_left h _)) | |
end field | |
end rank | |
section division_ring | |
variables [division_ring K] [add_comm_group V] [module K V] [add_comm_group V'] [module K V'] | |
/-- The `ι` indexed basis on `V`, where `ι` is an empty type and `V` is zero-dimensional. | |
See also `finite_dimensional.fin_basis`. | |
-/ | |
def basis.of_dim_eq_zero {ι : Type*} [is_empty ι] (hV : module.rank K V = 0) : | |
basis ι K V := | |
begin | |
haveI : subsingleton V := dim_zero_iff.1 hV, | |
exact basis.empty _ | |
end | |
@[simp] lemma basis.of_dim_eq_zero_apply {ι : Type*} [is_empty ι] | |
(hV : module.rank K V = 0) (i : ι) : | |
basis.of_dim_eq_zero hV i = 0 := | |
rfl | |
lemma le_dim_iff_exists_linear_independent {c : cardinal} : | |
c ≤ module.rank K V ↔ ∃ s : set V, #s = c ∧ linear_independent K (coe : s → V) := | |
begin | |
split, | |
{ intro h, | |
let t := basis.of_vector_space K V, | |
rw [← t.mk_eq_dim'', cardinal.le_mk_iff_exists_subset] at h, | |
rcases h with ⟨s, hst, hsc⟩, | |
exact ⟨s, hsc, (of_vector_space_index.linear_independent K V).mono hst⟩ }, | |
{ rintro ⟨s, rfl, si⟩, | |
exact cardinal_le_dim_of_linear_independent si } | |
end | |
lemma le_dim_iff_exists_linear_independent_finset {n : ℕ} : | |
↑n ≤ module.rank K V ↔ | |
∃ s : finset V, s.card = n ∧ linear_independent K (coe : (s : set V) → V) := | |
begin | |
simp only [le_dim_iff_exists_linear_independent, cardinal.mk_eq_nat_iff_finset], | |
split, | |
{ rintro ⟨s, ⟨t, rfl, rfl⟩, si⟩, | |
exact ⟨t, rfl, si⟩ }, | |
{ rintro ⟨s, rfl, si⟩, | |
exact ⟨s, ⟨s, rfl, rfl⟩, si⟩ } | |
end | |
/-- A vector space has dimension at most `1` if and only if there is a | |
single vector of which all vectors are multiples. -/ | |
lemma dim_le_one_iff : module.rank K V ≤ 1 ↔ ∃ v₀ : V, ∀ v, ∃ r : K, r • v₀ = v := | |
begin | |
let b := basis.of_vector_space K V, | |
split, | |
{ intro hd, | |
rw [← b.mk_eq_dim'', cardinal.le_one_iff_subsingleton, subsingleton_coe] at hd, | |
rcases eq_empty_or_nonempty (of_vector_space_index K V) with hb | ⟨⟨v₀, hv₀⟩⟩, | |
{ use 0, | |
have h' : ∀ v : V, v = 0, { simpa [hb, submodule.eq_bot_iff] using b.span_eq.symm }, | |
intro v, | |
simp [h' v] }, | |
{ use v₀, | |
have h' : (K ∙ v₀) = ⊤, { simpa [hd.eq_singleton_of_mem hv₀] using b.span_eq }, | |
intro v, | |
have hv : v ∈ (⊤ : submodule K V) := mem_top, | |
rwa [←h', mem_span_singleton] at hv } }, | |
{ rintros ⟨v₀, hv₀⟩, | |
have h : (K ∙ v₀) = ⊤, | |
{ ext, simp [mem_span_singleton, hv₀] }, | |
rw [←dim_top, ←h], | |
convert dim_span_le _, | |
simp } | |
end | |
/-- A submodule has dimension at most `1` if and only if there is a | |
single vector in the submodule such that the submodule is contained in | |
its span. -/ | |
lemma dim_submodule_le_one_iff (s : submodule K V) : module.rank K s ≤ 1 ↔ ∃ v₀ ∈ s, s ≤ K ∙ v₀ := | |
begin | |
simp_rw [dim_le_one_iff, le_span_singleton_iff], | |
split, | |
{ rintro ⟨⟨v₀, hv₀⟩, h⟩, | |
use [v₀, hv₀], | |
intros v hv, | |
obtain ⟨r, hr⟩ := h ⟨v, hv⟩, | |
use r, | |
simp_rw [subtype.ext_iff, coe_smul, submodule.coe_mk] at hr, | |
exact hr }, | |
{ rintro ⟨v₀, hv₀, h⟩, | |
use ⟨v₀, hv₀⟩, | |
rintro ⟨v, hv⟩, | |
obtain ⟨r, hr⟩ := h v hv, | |
use r, | |
simp_rw [subtype.ext_iff, coe_smul, submodule.coe_mk], | |
exact hr } | |
end | |
/-- A submodule has dimension at most `1` if and only if there is a | |
single vector, not necessarily in the submodule, such that the | |
submodule is contained in its span. -/ | |
lemma dim_submodule_le_one_iff' (s : submodule K V) : module.rank K s ≤ 1 ↔ ∃ v₀, s ≤ K ∙ v₀ := | |
begin | |
rw dim_submodule_le_one_iff, | |
split, | |
{ rintros ⟨v₀, hv₀, h⟩, | |
exact ⟨v₀, h⟩ }, | |
{ rintros ⟨v₀, h⟩, | |
by_cases hw : ∃ w : V, w ∈ s ∧ w ≠ 0, | |
{ rcases hw with ⟨w, hw, hw0⟩, | |
use [w, hw], | |
rcases mem_span_singleton.1 (h hw) with ⟨r', rfl⟩, | |
have h0 : r' ≠ 0, | |
{ rintro rfl, | |
simpa using hw0 }, | |
rwa span_singleton_smul_eq (is_unit.mk0 _ h0) _ }, | |
{ push_neg at hw, | |
rw ←submodule.eq_bot_iff at hw, | |
simp [hw] } } | |
end | |
lemma submodule.rank_le_one_iff_is_principal (W : submodule K V) : | |
module.rank K W ≤ 1 ↔ W.is_principal := | |
begin | |
simp only [dim_le_one_iff, submodule.is_principal_iff, le_antisymm_iff, | |
le_span_singleton_iff, span_singleton_le_iff_mem], | |
split, | |
{ rintro ⟨⟨m, hm⟩, hm'⟩, | |
choose f hf using hm', | |
exact ⟨m, ⟨λ v hv, ⟨f ⟨v, hv⟩, congr_arg coe (hf ⟨v, hv⟩)⟩, hm⟩⟩ }, | |
{ rintro ⟨a, ⟨h, ha⟩⟩, | |
choose f hf using h, | |
exact ⟨⟨a, ha⟩, λ v, ⟨f v.1 v.2, subtype.ext (hf v.1 v.2)⟩⟩ } | |
end | |
lemma module.rank_le_one_iff_top_is_principal : | |
module.rank K V ≤ 1 ↔ (⊤ : submodule K V).is_principal := | |
by rw [← submodule.rank_le_one_iff_is_principal, dim_top] | |
end division_ring | |
section field | |
variables [field K] [add_comm_group V] [module K V] [add_comm_group V'] [module K V'] | |
lemma le_rank_iff_exists_linear_independent {c : cardinal} {f : V →ₗ[K] V'} : | |
c ≤ rank f ↔ | |
∃ s : set V, cardinal.lift.{v'} (#s) = cardinal.lift.{v} c ∧ | |
linear_independent K (λ x : s, f x) := | |
begin | |
rcases f.range_restrict.exists_right_inverse_of_surjective f.range_range_restrict with ⟨g, hg⟩, | |
have fg : left_inverse f.range_restrict g, from linear_map.congr_fun hg, | |
refine ⟨λ h, _, _⟩, | |
{ rcases le_dim_iff_exists_linear_independent.1 h with ⟨s, rfl, si⟩, | |
refine ⟨g '' s, cardinal.mk_image_eq_lift _ _ fg.injective, _⟩, | |
replace fg : ∀ x, f (g x) = x, by { intro x, convert congr_arg subtype.val (fg x) }, | |
replace si : linear_independent K (λ x : s, f (g x)), | |
by simpa only [fg] using si.map' _ (ker_subtype _), | |
exact si.image_of_comp s g f }, | |
{ rintro ⟨s, hsc, si⟩, | |
have : linear_independent K (λ x : s, f.range_restrict x), | |
from linear_independent.of_comp (f.range.subtype) (by convert si), | |
convert cardinal_le_dim_of_linear_independent this.image, | |
rw [← cardinal.lift_inj, ← hsc, cardinal.mk_image_eq_of_inj_on_lift], | |
exact inj_on_iff_injective.2 this.injective } | |
end | |
lemma le_rank_iff_exists_linear_independent_finset {n : ℕ} {f : V →ₗ[K] V'} : | |
↑n ≤ rank f ↔ ∃ s : finset V, s.card = n ∧ linear_independent K (λ x : (s : set V), f x) := | |
begin | |
simp only [le_rank_iff_exists_linear_independent, cardinal.lift_nat_cast, | |
cardinal.lift_eq_nat_iff, cardinal.mk_eq_nat_iff_finset], | |
split, | |
{ rintro ⟨s, ⟨t, rfl, rfl⟩, si⟩, | |
exact ⟨t, rfl, si⟩ }, | |
{ rintro ⟨s, rfl, si⟩, | |
exact ⟨s, ⟨s, rfl, rfl⟩, si⟩ } | |
end | |
end field | |
end module | |